Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.155
      1 /*	$NetBSD: kern_synch.c,v 1.155 2005/12/15 13:43:49 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  * This code is derived from software contributed to The NetBSD Foundation
     11  * by Charles M. Hannum.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *	This product includes software developed by the NetBSD
     24  *	Foundation, Inc. and its contributors.
     25  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26  *    contributors may be used to endorse or promote products derived
     27  *    from this software without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39  * POSSIBILITY OF SUCH DAMAGE.
     40  */
     41 
     42 /*-
     43  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     44  *	The Regents of the University of California.  All rights reserved.
     45  * (c) UNIX System Laboratories, Inc.
     46  * All or some portions of this file are derived from material licensed
     47  * to the University of California by American Telephone and Telegraph
     48  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49  * the permission of UNIX System Laboratories, Inc.
     50  *
     51  * Redistribution and use in source and binary forms, with or without
     52  * modification, are permitted provided that the following conditions
     53  * are met:
     54  * 1. Redistributions of source code must retain the above copyright
     55  *    notice, this list of conditions and the following disclaimer.
     56  * 2. Redistributions in binary form must reproduce the above copyright
     57  *    notice, this list of conditions and the following disclaimer in the
     58  *    documentation and/or other materials provided with the distribution.
     59  * 3. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     76  */
     77 
     78 #include <sys/cdefs.h>
     79 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.155 2005/12/15 13:43:49 yamt Exp $");
     80 
     81 #include "opt_ddb.h"
     82 #include "opt_ktrace.h"
     83 #include "opt_kstack.h"
     84 #include "opt_lockdebug.h"
     85 #include "opt_multiprocessor.h"
     86 #include "opt_perfctrs.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/proc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/buf.h>
     94 #if defined(PERFCTRS)
     95 #include <sys/pmc.h>
     96 #endif
     97 #include <sys/signalvar.h>
     98 #include <sys/resourcevar.h>
     99 #include <sys/sched.h>
    100 #include <sys/sa.h>
    101 #include <sys/savar.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 
    105 #ifdef KTRACE
    106 #include <sys/ktrace.h>
    107 #endif
    108 
    109 #include <machine/cpu.h>
    110 
    111 int	lbolt;			/* once a second sleep address */
    112 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    113 
    114 /*
    115  * Sleep queues.
    116  *
    117  * We're only looking at 7 bits of the address; everything is
    118  * aligned to 4, lots of things are aligned to greater powers
    119  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    120  */
    121 #define	SLPQUE_TABLESIZE	128
    122 #define	SLPQUE_LOOKUP(x)	(((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
    123 
    124 #define	SLPQUE(ident)	(&sched_slpque[SLPQUE_LOOKUP(ident)])
    125 
    126 /*
    127  * The global scheduler state.
    128  */
    129 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    130 __volatile u_int32_t sched_whichqs;	/* bitmap of non-empty queues */
    131 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    132 
    133 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    134 
    135 void schedcpu(void *);
    136 void updatepri(struct lwp *);
    137 void endtsleep(void *);
    138 
    139 __inline void sa_awaken(struct lwp *);
    140 __inline void awaken(struct lwp *);
    141 
    142 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    143 
    144 
    145 
    146 /*
    147  * Force switch among equal priority processes every 100ms.
    148  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    149  */
    150 /* ARGSUSED */
    151 void
    152 roundrobin(struct cpu_info *ci)
    153 {
    154 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    155 
    156 	spc->spc_rrticks = rrticks;
    157 
    158 	if (curlwp != NULL) {
    159 		if (spc->spc_flags & SPCF_SEENRR) {
    160 			/*
    161 			 * The process has already been through a roundrobin
    162 			 * without switching and may be hogging the CPU.
    163 			 * Indicate that the process should yield.
    164 			 */
    165 			spc->spc_flags |= SPCF_SHOULDYIELD;
    166 		} else
    167 			spc->spc_flags |= SPCF_SEENRR;
    168 	}
    169 	need_resched(curcpu());
    170 }
    171 
    172 #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    173 #define	NICE_WEIGHT 2			/* priorities per nice level */
    174 
    175 #define	ESTCPU_SHIFT	11
    176 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    177 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    178 
    179 /*
    180  * Constants for digital decay and forget:
    181  *	90% of (p_estcpu) usage in 5 * loadav time
    182  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    183  *          Note that, as ps(1) mentions, this can let percentages
    184  *          total over 100% (I've seen 137.9% for 3 processes).
    185  *
    186  * Note that hardclock updates p_estcpu and p_cpticks independently.
    187  *
    188  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    189  * That is, the system wants to compute a value of decay such
    190  * that the following for loop:
    191  * 	for (i = 0; i < (5 * loadavg); i++)
    192  * 		p_estcpu *= decay;
    193  * will compute
    194  * 	p_estcpu *= 0.1;
    195  * for all values of loadavg:
    196  *
    197  * Mathematically this loop can be expressed by saying:
    198  * 	decay ** (5 * loadavg) ~= .1
    199  *
    200  * The system computes decay as:
    201  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    202  *
    203  * We wish to prove that the system's computation of decay
    204  * will always fulfill the equation:
    205  * 	decay ** (5 * loadavg) ~= .1
    206  *
    207  * If we compute b as:
    208  * 	b = 2 * loadavg
    209  * then
    210  * 	decay = b / (b + 1)
    211  *
    212  * We now need to prove two things:
    213  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    214  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    215  *
    216  * Facts:
    217  *         For x close to zero, exp(x) =~ 1 + x, since
    218  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    219  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    220  *         For x close to zero, ln(1+x) =~ x, since
    221  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    222  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    223  *         ln(.1) =~ -2.30
    224  *
    225  * Proof of (1):
    226  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    227  *	solving for factor,
    228  *      ln(factor) =~ (-2.30/5*loadav), or
    229  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    230  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    231  *
    232  * Proof of (2):
    233  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    234  *	solving for power,
    235  *      power*ln(b/(b+1)) =~ -2.30, or
    236  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    237  *
    238  * Actual power values for the implemented algorithm are as follows:
    239  *      loadav: 1       2       3       4
    240  *      power:  5.68    10.32   14.94   19.55
    241  */
    242 
    243 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    244 #define	loadfactor(loadav)	(2 * (loadav))
    245 
    246 static fixpt_t
    247 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    248 {
    249 
    250 	if (estcpu == 0) {
    251 		return 0;
    252 	}
    253 
    254 #if !defined(_LP64)
    255 	/* avoid 64bit arithmetics. */
    256 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    257 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    258 		return estcpu * loadfac / (loadfac + FSCALE);
    259 	}
    260 #endif /* !defined(_LP64) */
    261 
    262 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    263 }
    264 
    265 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    266 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    267 
    268 /*
    269  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    270  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    271  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    272  *
    273  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    274  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    275  *
    276  * If you dont want to bother with the faster/more-accurate formula, you
    277  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    278  * (more general) method of calculating the %age of CPU used by a process.
    279  */
    280 #define	CCPU_SHIFT	11
    281 
    282 /*
    283  * Recompute process priorities, every hz ticks.
    284  */
    285 /* ARGSUSED */
    286 void
    287 schedcpu(void *arg)
    288 {
    289 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    290 	struct lwp *l;
    291 	struct proc *p;
    292 	int s, minslp;
    293 	int clkhz;
    294 
    295 	proclist_lock_read();
    296 	PROCLIST_FOREACH(p, &allproc) {
    297 		/*
    298 		 * Increment time in/out of memory and sleep time
    299 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    300 		 * (remember them?) overflow takes 45 days.
    301 		 */
    302 		minslp = 2;
    303 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    304 			l->l_swtime++;
    305 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    306 			    l->l_stat == LSSUSPENDED) {
    307 				l->l_slptime++;
    308 				minslp = min(minslp, l->l_slptime);
    309 			} else
    310 				minslp = 0;
    311 		}
    312 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    313 		/*
    314 		 * If the process has slept the entire second,
    315 		 * stop recalculating its priority until it wakes up.
    316 		 */
    317 		if (minslp > 1)
    318 			continue;
    319 		s = splstatclock();	/* prevent state changes */
    320 		/*
    321 		 * p_pctcpu is only for ps.
    322 		 */
    323 		clkhz = stathz != 0 ? stathz : hz;
    324 #if	(FSHIFT >= CCPU_SHIFT)
    325 		p->p_pctcpu += (clkhz == 100)?
    326 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    327                 	100 * (((fixpt_t) p->p_cpticks)
    328 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    329 #else
    330 		p->p_pctcpu += ((FSCALE - ccpu) *
    331 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    332 #endif
    333 		p->p_cpticks = 0;
    334 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    335 		splx(s);	/* Done with the process CPU ticks update */
    336 		SCHED_LOCK(s);
    337 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    338 			if (l->l_slptime > 1)
    339 				continue;
    340 			resetpriority(l);
    341 			if (l->l_priority >= PUSER) {
    342 				if (l->l_stat == LSRUN &&
    343 				    (l->l_flag & L_INMEM) &&
    344 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    345 					remrunqueue(l);
    346 					l->l_priority = l->l_usrpri;
    347 					setrunqueue(l);
    348 				} else
    349 					l->l_priority = l->l_usrpri;
    350 			}
    351 		}
    352 		SCHED_UNLOCK(s);
    353 	}
    354 	proclist_unlock_read();
    355 	uvm_meter();
    356 	wakeup((caddr_t)&lbolt);
    357 	callout_schedule(&schedcpu_ch, hz);
    358 }
    359 
    360 /*
    361  * Recalculate the priority of a process after it has slept for a while.
    362  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    363  * sleeping for at least eight times the loadfactor will decay p_estcpu to
    364  * less than (1 << ESTCPU_SHIFT).
    365  *
    366  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    367  */
    368 void
    369 updatepri(struct lwp *l)
    370 {
    371 	struct proc *p = l->l_proc;
    372 	fixpt_t newcpu;
    373 	fixpt_t loadfac;
    374 
    375 	SCHED_ASSERT_LOCKED();
    376 
    377 	newcpu = p->p_estcpu;
    378 	loadfac = loadfactor(averunnable.ldavg[0]);
    379 
    380 	if ((l->l_slptime << FSHIFT) >= 8 * loadfac)
    381 		p->p_estcpu = 0; /* XXX NJWLWP */
    382 	else {
    383 		l->l_slptime--;	/* the first time was done in schedcpu */
    384 		while (newcpu && --l->l_slptime)
    385 			newcpu = decay_cpu(loadfac, newcpu);
    386 		p->p_estcpu = newcpu;
    387 	}
    388 	resetpriority(l);
    389 }
    390 
    391 /*
    392  * During autoconfiguration or after a panic, a sleep will simply
    393  * lower the priority briefly to allow interrupts, then return.
    394  * The priority to be used (safepri) is machine-dependent, thus this
    395  * value is initialized and maintained in the machine-dependent layers.
    396  * This priority will typically be 0, or the lowest priority
    397  * that is safe for use on the interrupt stack; it can be made
    398  * higher to block network software interrupts after panics.
    399  */
    400 int safepri;
    401 
    402 /*
    403  * General sleep call.  Suspends the current process until a wakeup is
    404  * performed on the specified identifier.  The process will then be made
    405  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    406  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    407  * before and after sleeping, else signals are not checked.  Returns 0 if
    408  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    409  * signal needs to be delivered, ERESTART is returned if the current system
    410  * call should be restarted if possible, and EINTR is returned if the system
    411  * call should be interrupted by the signal (return EINTR).
    412  *
    413  * The interlock is held until the scheduler_slock is acquired.  The
    414  * interlock will be locked before returning back to the caller
    415  * unless the PNORELOCK flag is specified, in which case the
    416  * interlock will always be unlocked upon return.
    417  */
    418 int
    419 ltsleep(__volatile const void *ident, int priority, const char *wmesg, int timo,
    420     __volatile struct simplelock *interlock)
    421 {
    422 	struct lwp *l = curlwp;
    423 	struct proc *p = l ? l->l_proc : NULL;
    424 	struct slpque *qp;
    425 	struct sadata_upcall *sau;
    426 	int sig, s;
    427 	int catch = priority & PCATCH;
    428 	int relock = (priority & PNORELOCK) == 0;
    429 	int exiterr = (priority & PNOEXITERR) == 0;
    430 
    431 	/*
    432 	 * XXXSMP
    433 	 * This is probably bogus.  Figure out what the right
    434 	 * thing to do here really is.
    435 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    436 	 * in the shutdown case is disgusting but partly necessary given
    437 	 * how shutdown (barely) works.
    438 	 */
    439 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    440 		/*
    441 		 * After a panic, or during autoconfiguration,
    442 		 * just give interrupts a chance, then just return;
    443 		 * don't run any other procs or panic below,
    444 		 * in case this is the idle process and already asleep.
    445 		 */
    446 		s = splhigh();
    447 		splx(safepri);
    448 		splx(s);
    449 		if (interlock != NULL && relock == 0)
    450 			simple_unlock(interlock);
    451 		return (0);
    452 	}
    453 
    454 	KASSERT(p != NULL);
    455 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    456 
    457 #ifdef KTRACE
    458 	if (KTRPOINT(p, KTR_CSW))
    459 		ktrcsw(l, 1, 0);
    460 #endif
    461 
    462 	/*
    463 	 * XXX We need to allocate the sadata_upcall structure here,
    464 	 * XXX since we can't sleep while waiting for memory inside
    465 	 * XXX sa_upcall().  It would be nice if we could safely
    466 	 * XXX allocate the sadata_upcall structure on the stack, here.
    467 	 */
    468 	if (l->l_flag & L_SA) {
    469 		sau = sadata_upcall_alloc(0);
    470 	} else {
    471 		sau = NULL;
    472 	}
    473 
    474 	SCHED_LOCK(s);
    475 
    476 #ifdef DIAGNOSTIC
    477 	if (ident == NULL)
    478 		panic("ltsleep: ident == NULL");
    479 	if (l->l_stat != LSONPROC)
    480 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    481 	if (l->l_back != NULL)
    482 		panic("ltsleep: p_back != NULL");
    483 #endif
    484 
    485 	l->l_wchan = ident;
    486 	l->l_wmesg = wmesg;
    487 	l->l_slptime = 0;
    488 	l->l_priority = priority & PRIMASK;
    489 
    490 	qp = SLPQUE(ident);
    491 	if (qp->sq_head == 0)
    492 		qp->sq_head = l;
    493 	else {
    494 		*qp->sq_tailp = l;
    495 	}
    496 	*(qp->sq_tailp = &l->l_forw) = 0;
    497 
    498 	if (timo)
    499 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    500 
    501 	/*
    502 	 * We can now release the interlock; the scheduler_slock
    503 	 * is held, so a thread can't get in to do wakeup() before
    504 	 * we do the switch.
    505 	 *
    506 	 * XXX We leave the code block here, after inserting ourselves
    507 	 * on the sleep queue, because we might want a more clever
    508 	 * data structure for the sleep queues at some point.
    509 	 */
    510 	if (interlock != NULL)
    511 		simple_unlock(interlock);
    512 
    513 	/*
    514 	 * We put ourselves on the sleep queue and start our timeout
    515 	 * before calling CURSIG, as we could stop there, and a wakeup
    516 	 * or a SIGCONT (or both) could occur while we were stopped.
    517 	 * A SIGCONT would cause us to be marked as SSLEEP
    518 	 * without resuming us, thus we must be ready for sleep
    519 	 * when CURSIG is called.  If the wakeup happens while we're
    520 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    521 	 */
    522 	if (catch) {
    523 		l->l_flag |= L_SINTR;
    524 		if (((sig = CURSIG(l)) != 0) ||
    525 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    526 			if (l->l_wchan != NULL)
    527 				unsleep(l);
    528 			l->l_stat = LSONPROC;
    529 			SCHED_UNLOCK(s);
    530 			goto resume;
    531 		}
    532 		if (l->l_wchan == NULL) {
    533 			catch = 0;
    534 			SCHED_UNLOCK(s);
    535 			goto resume;
    536 		}
    537 	} else
    538 		sig = 0;
    539 	l->l_stat = LSSLEEP;
    540 	p->p_nrlwps--;
    541 	p->p_stats->p_ru.ru_nvcsw++;
    542 	SCHED_ASSERT_LOCKED();
    543 	if (l->l_flag & L_SA)
    544 		sa_switch(l, sau, SA_UPCALL_BLOCKED);
    545 	else
    546 		mi_switch(l, NULL);
    547 
    548 #if	defined(DDB) && !defined(GPROF)
    549 	/* handy breakpoint location after process "wakes" */
    550 	__asm(".globl bpendtsleep\nbpendtsleep:");
    551 #endif
    552 	/*
    553 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    554 	 * either setrunnable() or awaken().
    555 	 */
    556 
    557 	SCHED_ASSERT_UNLOCKED();
    558 	splx(s);
    559 
    560  resume:
    561 	KDASSERT(l->l_cpu != NULL);
    562 	KDASSERT(l->l_cpu == curcpu());
    563 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    564 
    565 	l->l_flag &= ~L_SINTR;
    566 	if (l->l_flag & L_TIMEOUT) {
    567 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    568 		if (sig == 0) {
    569 #ifdef KTRACE
    570 			if (KTRPOINT(p, KTR_CSW))
    571 				ktrcsw(l, 0, 0);
    572 #endif
    573 			if (relock && interlock != NULL)
    574 				simple_lock(interlock);
    575 			return (EWOULDBLOCK);
    576 		}
    577 	} else if (timo)
    578 		callout_stop(&l->l_tsleep_ch);
    579 
    580 	if (catch) {
    581 		const int cancelled = l->l_flag & L_CANCELLED;
    582 		l->l_flag &= ~L_CANCELLED;
    583 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    584 #ifdef KTRACE
    585 			if (KTRPOINT(p, KTR_CSW))
    586 				ktrcsw(l, 0, 0);
    587 #endif
    588 			if (relock && interlock != NULL)
    589 				simple_lock(interlock);
    590 			/*
    591 			 * If this sleep was canceled, don't let the syscall
    592 			 * restart.
    593 			 */
    594 			if (cancelled ||
    595 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    596 				return (EINTR);
    597 			return (ERESTART);
    598 		}
    599 	}
    600 
    601 #ifdef KTRACE
    602 	if (KTRPOINT(p, KTR_CSW))
    603 		ktrcsw(l, 0, 0);
    604 #endif
    605 	if (relock && interlock != NULL)
    606 		simple_lock(interlock);
    607 
    608 	/* XXXNJW this is very much a kluge.
    609 	 * revisit. a better way of preventing looping/hanging syscalls like
    610 	 * wait4() and _lwp_wait() from wedging an exiting process
    611 	 * would be preferred.
    612 	 */
    613 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    614 		return (EINTR);
    615 	return (0);
    616 }
    617 
    618 /*
    619  * Implement timeout for tsleep.
    620  * If process hasn't been awakened (wchan non-zero),
    621  * set timeout flag and undo the sleep.  If proc
    622  * is stopped, just unsleep so it will remain stopped.
    623  */
    624 void
    625 endtsleep(void *arg)
    626 {
    627 	struct lwp *l;
    628 	int s;
    629 
    630 	l = (struct lwp *)arg;
    631 	SCHED_LOCK(s);
    632 	if (l->l_wchan) {
    633 		if (l->l_stat == LSSLEEP)
    634 			setrunnable(l);
    635 		else
    636 			unsleep(l);
    637 		l->l_flag |= L_TIMEOUT;
    638 	}
    639 	SCHED_UNLOCK(s);
    640 }
    641 
    642 /*
    643  * Remove a process from its wait queue
    644  */
    645 void
    646 unsleep(struct lwp *l)
    647 {
    648 	struct slpque *qp;
    649 	struct lwp **hp;
    650 
    651 	SCHED_ASSERT_LOCKED();
    652 
    653 	if (l->l_wchan) {
    654 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    655 		while (*hp != l)
    656 			hp = &(*hp)->l_forw;
    657 		*hp = l->l_forw;
    658 		if (qp->sq_tailp == &l->l_forw)
    659 			qp->sq_tailp = hp;
    660 		l->l_wchan = 0;
    661 	}
    662 }
    663 
    664 __inline void
    665 sa_awaken(struct lwp *l)
    666 {
    667 
    668 	SCHED_ASSERT_LOCKED();
    669 
    670 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    671 		l->l_flag &= ~L_SA_IDLE;
    672 }
    673 
    674 /*
    675  * Optimized-for-wakeup() version of setrunnable().
    676  */
    677 __inline void
    678 awaken(struct lwp *l)
    679 {
    680 
    681 	SCHED_ASSERT_LOCKED();
    682 
    683 	if (l->l_proc->p_sa)
    684 		sa_awaken(l);
    685 
    686 	if (l->l_slptime > 1)
    687 		updatepri(l);
    688 	l->l_slptime = 0;
    689 	l->l_stat = LSRUN;
    690 	l->l_proc->p_nrlwps++;
    691 	/*
    692 	 * Since curpriority is a user priority, p->p_priority
    693 	 * is always better than curpriority on the last CPU on
    694 	 * which it ran.
    695 	 *
    696 	 * XXXSMP See affinity comment in resched_proc().
    697 	 */
    698 	if (l->l_flag & L_INMEM) {
    699 		setrunqueue(l);
    700 		KASSERT(l->l_cpu != NULL);
    701 		need_resched(l->l_cpu);
    702 	} else
    703 		sched_wakeup(&proc0);
    704 }
    705 
    706 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    707 void
    708 sched_unlock_idle(void)
    709 {
    710 
    711 	simple_unlock(&sched_lock);
    712 }
    713 
    714 void
    715 sched_lock_idle(void)
    716 {
    717 
    718 	simple_lock(&sched_lock);
    719 }
    720 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    721 
    722 /*
    723  * Make all processes sleeping on the specified identifier runnable.
    724  */
    725 
    726 void
    727 wakeup(__volatile const void *ident)
    728 {
    729 	int s;
    730 
    731 	SCHED_ASSERT_UNLOCKED();
    732 
    733 	SCHED_LOCK(s);
    734 	sched_wakeup(ident);
    735 	SCHED_UNLOCK(s);
    736 }
    737 
    738 void
    739 sched_wakeup(__volatile const void *ident)
    740 {
    741 	struct slpque *qp;
    742 	struct lwp *l, **q;
    743 
    744 	SCHED_ASSERT_LOCKED();
    745 
    746 	qp = SLPQUE(ident);
    747  restart:
    748 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    749 #ifdef DIAGNOSTIC
    750 		if (l->l_back || (l->l_stat != LSSLEEP &&
    751 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    752 			panic("wakeup");
    753 #endif
    754 		if (l->l_wchan == ident) {
    755 			l->l_wchan = 0;
    756 			*q = l->l_forw;
    757 			if (qp->sq_tailp == &l->l_forw)
    758 				qp->sq_tailp = q;
    759 			if (l->l_stat == LSSLEEP) {
    760 				awaken(l);
    761 				goto restart;
    762 			}
    763 		} else
    764 			q = &l->l_forw;
    765 	}
    766 }
    767 
    768 /*
    769  * Make the highest priority process first in line on the specified
    770  * identifier runnable.
    771  */
    772 void
    773 wakeup_one(__volatile const void *ident)
    774 {
    775 	struct slpque *qp;
    776 	struct lwp *l, **q;
    777 	struct lwp *best_sleepp, **best_sleepq;
    778 	struct lwp *best_stopp, **best_stopq;
    779 	int s;
    780 
    781 	best_sleepp = best_stopp = NULL;
    782 	best_sleepq = best_stopq = NULL;
    783 
    784 	SCHED_LOCK(s);
    785 
    786 	qp = SLPQUE(ident);
    787 
    788 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    789 #ifdef DIAGNOSTIC
    790 		if (l->l_back || (l->l_stat != LSSLEEP &&
    791 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    792 			panic("wakeup_one");
    793 #endif
    794 		if (l->l_wchan == ident) {
    795 			if (l->l_stat == LSSLEEP) {
    796 				if (best_sleepp == NULL ||
    797 				    l->l_priority < best_sleepp->l_priority) {
    798 					best_sleepp = l;
    799 					best_sleepq = q;
    800 				}
    801 			} else {
    802 				if (best_stopp == NULL ||
    803 				    l->l_priority < best_stopp->l_priority) {
    804 				    	best_stopp = l;
    805 					best_stopq = q;
    806 				}
    807 			}
    808 		}
    809 	}
    810 
    811 	/*
    812 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    813 	 * process.
    814 	 */
    815 	if (best_sleepp != NULL) {
    816 		l = best_sleepp;
    817 		q = best_sleepq;
    818 	} else {
    819 		l = best_stopp;
    820 		q = best_stopq;
    821 	}
    822 
    823 	if (l != NULL) {
    824 		l->l_wchan = NULL;
    825 		*q = l->l_forw;
    826 		if (qp->sq_tailp == &l->l_forw)
    827 			qp->sq_tailp = q;
    828 		if (l->l_stat == LSSLEEP)
    829 			awaken(l);
    830 	}
    831 	SCHED_UNLOCK(s);
    832 }
    833 
    834 /*
    835  * General yield call.  Puts the current process back on its run queue and
    836  * performs a voluntary context switch.  Should only be called when the
    837  * current process explicitly requests it (eg sched_yield(2) in compat code).
    838  */
    839 void
    840 yield(void)
    841 {
    842 	struct lwp *l = curlwp;
    843 	int s;
    844 
    845 	SCHED_LOCK(s);
    846 	l->l_priority = l->l_usrpri;
    847 	l->l_stat = LSRUN;
    848 	setrunqueue(l);
    849 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    850 	mi_switch(l, NULL);
    851 	SCHED_ASSERT_UNLOCKED();
    852 	splx(s);
    853 }
    854 
    855 /*
    856  * General preemption call.  Puts the current process back on its run queue
    857  * and performs an involuntary context switch.  If a process is supplied,
    858  * we switch to that process.  Otherwise, we use the normal process selection
    859  * criteria.
    860  */
    861 
    862 void
    863 preempt(int more)
    864 {
    865 	struct lwp *l = curlwp;
    866 	int r, s;
    867 
    868 	SCHED_LOCK(s);
    869 	l->l_priority = l->l_usrpri;
    870 	l->l_stat = LSRUN;
    871 	setrunqueue(l);
    872 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    873 	r = mi_switch(l, NULL);
    874 	SCHED_ASSERT_UNLOCKED();
    875 	splx(s);
    876 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    877 		sa_preempt(l);
    878 }
    879 
    880 /*
    881  * The machine independent parts of context switch.
    882  * Must be called at splsched() (no higher!) and with
    883  * the sched_lock held.
    884  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    885  * the next lwp.
    886  *
    887  * Returns 1 if another process was actually run.
    888  */
    889 int
    890 mi_switch(struct lwp *l, struct lwp *newl)
    891 {
    892 	struct schedstate_percpu *spc;
    893 	struct rlimit *rlim;
    894 	long s, u;
    895 	struct timeval tv;
    896 	int hold_count;
    897 	struct proc *p = l->l_proc;
    898 	int retval;
    899 
    900 	SCHED_ASSERT_LOCKED();
    901 
    902 	/*
    903 	 * Release the kernel_lock, as we are about to yield the CPU.
    904 	 * The scheduler lock is still held until cpu_switch()
    905 	 * selects a new process and removes it from the run queue.
    906 	 */
    907 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    908 
    909 	KDASSERT(l->l_cpu != NULL);
    910 	KDASSERT(l->l_cpu == curcpu());
    911 
    912 	spc = &l->l_cpu->ci_schedstate;
    913 
    914 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
    915 	spinlock_switchcheck();
    916 #endif
    917 #ifdef LOCKDEBUG
    918 	simple_lock_switchcheck();
    919 #endif
    920 
    921 	/*
    922 	 * Compute the amount of time during which the current
    923 	 * process was running.
    924 	 */
    925 	microtime(&tv);
    926 	u = p->p_rtime.tv_usec +
    927 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    928 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    929 	if (u < 0) {
    930 		u += 1000000;
    931 		s--;
    932 	} else if (u >= 1000000) {
    933 		u -= 1000000;
    934 		s++;
    935 	}
    936 	p->p_rtime.tv_usec = u;
    937 	p->p_rtime.tv_sec = s;
    938 
    939 	/*
    940 	 * Check if the process exceeds its CPU resource allocation.
    941 	 * If over max, kill it.  In any case, if it has run for more
    942 	 * than 10 minutes, reduce priority to give others a chance.
    943 	 */
    944 	rlim = &p->p_rlimit[RLIMIT_CPU];
    945 	if (s >= rlim->rlim_cur) {
    946 		/*
    947 		 * XXXSMP: we're inside the scheduler lock perimeter;
    948 		 * use sched_psignal.
    949 		 */
    950 		if (s >= rlim->rlim_max)
    951 			sched_psignal(p, SIGKILL);
    952 		else {
    953 			sched_psignal(p, SIGXCPU);
    954 			if (rlim->rlim_cur < rlim->rlim_max)
    955 				rlim->rlim_cur += 5;
    956 		}
    957 	}
    958 	if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
    959 	    p->p_nice == NZERO) {
    960 		p->p_nice = autoniceval + NZERO;
    961 		resetpriority(l);
    962 	}
    963 
    964 	/*
    965 	 * Process is about to yield the CPU; clear the appropriate
    966 	 * scheduling flags.
    967 	 */
    968 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    969 
    970 #ifdef KSTACK_CHECK_MAGIC
    971 	kstack_check_magic(l);
    972 #endif
    973 
    974 	/*
    975 	 * If we are using h/w performance counters, save context.
    976 	 */
    977 #if PERFCTRS
    978 	if (PMC_ENABLED(p))
    979 		pmc_save_context(p);
    980 #endif
    981 
    982 	/*
    983 	 * Switch to the new current process.  When we
    984 	 * run again, we'll return back here.
    985 	 */
    986 	uvmexp.swtch++;
    987 	if (newl == NULL) {
    988 		retval = cpu_switch(l, NULL);
    989 	} else {
    990 		remrunqueue(newl);
    991 		cpu_switchto(l, newl);
    992 		retval = 0;
    993 	}
    994 
    995 	/*
    996 	 * If we are using h/w performance counters, restore context.
    997 	 */
    998 #if PERFCTRS
    999 	if (PMC_ENABLED(p))
   1000 		pmc_restore_context(p);
   1001 #endif
   1002 
   1003 	/*
   1004 	 * Make sure that MD code released the scheduler lock before
   1005 	 * resuming us.
   1006 	 */
   1007 	SCHED_ASSERT_UNLOCKED();
   1008 
   1009 	/*
   1010 	 * We're running again; record our new start time.  We might
   1011 	 * be running on a new CPU now, so don't use the cache'd
   1012 	 * schedstate_percpu pointer.
   1013 	 */
   1014 	KDASSERT(l->l_cpu != NULL);
   1015 	KDASSERT(l->l_cpu == curcpu());
   1016 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
   1017 
   1018 	/*
   1019 	 * Reacquire the kernel_lock now.  We do this after we've
   1020 	 * released the scheduler lock to avoid deadlock, and before
   1021 	 * we reacquire the interlock.
   1022 	 */
   1023 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
   1024 
   1025 	return retval;
   1026 }
   1027 
   1028 /*
   1029  * Initialize the (doubly-linked) run queues
   1030  * to be empty.
   1031  */
   1032 void
   1033 rqinit()
   1034 {
   1035 	int i;
   1036 
   1037 	for (i = 0; i < RUNQUE_NQS; i++)
   1038 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
   1039 		    (struct lwp *)&sched_qs[i];
   1040 }
   1041 
   1042 static __inline void
   1043 resched_proc(struct lwp *l, u_char pri)
   1044 {
   1045 	struct cpu_info *ci;
   1046 
   1047 	/*
   1048 	 * XXXSMP
   1049 	 * Since l->l_cpu persists across a context switch,
   1050 	 * this gives us *very weak* processor affinity, in
   1051 	 * that we notify the CPU on which the process last
   1052 	 * ran that it should try to switch.
   1053 	 *
   1054 	 * This does not guarantee that the process will run on
   1055 	 * that processor next, because another processor might
   1056 	 * grab it the next time it performs a context switch.
   1057 	 *
   1058 	 * This also does not handle the case where its last
   1059 	 * CPU is running a higher-priority process, but every
   1060 	 * other CPU is running a lower-priority process.  There
   1061 	 * are ways to handle this situation, but they're not
   1062 	 * currently very pretty, and we also need to weigh the
   1063 	 * cost of moving a process from one CPU to another.
   1064 	 *
   1065 	 * XXXSMP
   1066 	 * There is also the issue of locking the other CPU's
   1067 	 * sched state, which we currently do not do.
   1068 	 */
   1069 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1070 	if (pri < ci->ci_schedstate.spc_curpriority)
   1071 		need_resched(ci);
   1072 }
   1073 
   1074 /*
   1075  * Change process state to be runnable,
   1076  * placing it on the run queue if it is in memory,
   1077  * and awakening the swapper if it isn't in memory.
   1078  */
   1079 void
   1080 setrunnable(struct lwp *l)
   1081 {
   1082 	struct proc *p = l->l_proc;
   1083 
   1084 	SCHED_ASSERT_LOCKED();
   1085 
   1086 	switch (l->l_stat) {
   1087 	case 0:
   1088 	case LSRUN:
   1089 	case LSONPROC:
   1090 	case LSZOMB:
   1091 	case LSDEAD:
   1092 	default:
   1093 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1094 	case LSSTOP:
   1095 		/*
   1096 		 * If we're being traced (possibly because someone attached us
   1097 		 * while we were stopped), check for a signal from the debugger.
   1098 		 */
   1099 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1100 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1101 			CHECKSIGS(p);
   1102 		}
   1103 	case LSSLEEP:
   1104 		unsleep(l);		/* e.g. when sending signals */
   1105 		break;
   1106 
   1107 	case LSIDL:
   1108 		break;
   1109 	case LSSUSPENDED:
   1110 		break;
   1111 	}
   1112 
   1113 	if (l->l_proc->p_sa)
   1114 		sa_awaken(l);
   1115 
   1116 	l->l_stat = LSRUN;
   1117 	p->p_nrlwps++;
   1118 
   1119 	if (l->l_flag & L_INMEM)
   1120 		setrunqueue(l);
   1121 
   1122 	if (l->l_slptime > 1)
   1123 		updatepri(l);
   1124 	l->l_slptime = 0;
   1125 	if ((l->l_flag & L_INMEM) == 0)
   1126 		sched_wakeup((caddr_t)&proc0);
   1127 	else
   1128 		resched_proc(l, l->l_priority);
   1129 }
   1130 
   1131 /*
   1132  * Compute the priority of a process when running in user mode.
   1133  * Arrange to reschedule if the resulting priority is better
   1134  * than that of the current process.
   1135  */
   1136 void
   1137 resetpriority(struct lwp *l)
   1138 {
   1139 	unsigned int newpriority;
   1140 	struct proc *p = l->l_proc;
   1141 
   1142 	SCHED_ASSERT_LOCKED();
   1143 
   1144 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
   1145 			NICE_WEIGHT * (p->p_nice - NZERO);
   1146 	newpriority = min(newpriority, MAXPRI);
   1147 	l->l_usrpri = newpriority;
   1148 	resched_proc(l, l->l_usrpri);
   1149 }
   1150 
   1151 /*
   1152  * Recompute priority for all LWPs in a process.
   1153  */
   1154 void
   1155 resetprocpriority(struct proc *p)
   1156 {
   1157 	struct lwp *l;
   1158 
   1159 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1160 	    resetpriority(l);
   1161 }
   1162 
   1163 /*
   1164  * We adjust the priority of the current process.  The priority of a process
   1165  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
   1166  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1167  * will compute a different value each time p_estcpu increases. This can
   1168  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1169  * queue will not change.  The CPU usage estimator ramps up quite quickly
   1170  * when the process is running (linearly), and decays away exponentially, at
   1171  * a rate which is proportionally slower when the system is busy.  The basic
   1172  * principle is that the system will 90% forget that the process used a lot
   1173  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1174  * processes which haven't run much recently, and to round-robin among other
   1175  * processes.
   1176  */
   1177 
   1178 void
   1179 schedclock(struct lwp *l)
   1180 {
   1181 	struct proc *p = l->l_proc;
   1182 	int s;
   1183 
   1184 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
   1185 	SCHED_LOCK(s);
   1186 	resetpriority(l);
   1187 	SCHED_UNLOCK(s);
   1188 
   1189 	if (l->l_priority >= PUSER)
   1190 		l->l_priority = l->l_usrpri;
   1191 }
   1192 
   1193 void
   1194 suspendsched()
   1195 {
   1196 	struct lwp *l;
   1197 	int s;
   1198 
   1199 	/*
   1200 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1201 	 * LSSUSPENDED.
   1202 	 */
   1203 	proclist_lock_read();
   1204 	SCHED_LOCK(s);
   1205 	LIST_FOREACH(l, &alllwp, l_list) {
   1206 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1207 			continue;
   1208 
   1209 		switch (l->l_stat) {
   1210 		case LSRUN:
   1211 			l->l_proc->p_nrlwps--;
   1212 			if ((l->l_flag & L_INMEM) != 0)
   1213 				remrunqueue(l);
   1214 			/* FALLTHROUGH */
   1215 		case LSSLEEP:
   1216 			l->l_stat = LSSUSPENDED;
   1217 			break;
   1218 		case LSONPROC:
   1219 			/*
   1220 			 * XXX SMP: we need to deal with processes on
   1221 			 * others CPU !
   1222 			 */
   1223 			break;
   1224 		default:
   1225 			break;
   1226 		}
   1227 	}
   1228 	SCHED_UNLOCK(s);
   1229 	proclist_unlock_read();
   1230 }
   1231 
   1232 /*
   1233  * scheduler_fork_hook:
   1234  *
   1235  *	Inherit the parent's scheduler history.
   1236  */
   1237 void
   1238 scheduler_fork_hook(struct proc *parent, struct proc *child)
   1239 {
   1240 
   1241 	child->p_estcpu = parent->p_estcpu;
   1242 }
   1243 
   1244 /*
   1245  * scheduler_wait_hook:
   1246  *
   1247  *	Chargeback parents for the sins of their children.
   1248  */
   1249 void
   1250 scheduler_wait_hook(struct proc *parent, struct proc *child)
   1251 {
   1252 
   1253 	/* XXX Only if parent != init?? */
   1254 	parent->p_estcpu = ESTCPULIM(parent->p_estcpu + child->p_estcpu);
   1255 }
   1256 
   1257 /*
   1258  * Low-level routines to access the run queue.  Optimised assembler
   1259  * routines can override these.
   1260  */
   1261 
   1262 #ifndef __HAVE_MD_RUNQUEUE
   1263 
   1264 /*
   1265  * On some architectures, it's faster to use a MSB ordering for the priorites
   1266  * than the traditional LSB ordering.
   1267  */
   1268 #ifdef __HAVE_BIGENDIAN_BITOPS
   1269 #define	RQMASK(n) (0x80000000 >> (n))
   1270 #else
   1271 #define	RQMASK(n) (0x00000001 << (n))
   1272 #endif
   1273 
   1274 /*
   1275  * The primitives that manipulate the run queues.  whichqs tells which
   1276  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1277  * into queues, remrunqueue removes them from queues.  The running process is
   1278  * on no queue, other processes are on a queue related to p->p_priority,
   1279  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1280  * available queues.
   1281  */
   1282 
   1283 #ifdef RQDEBUG
   1284 static void
   1285 checkrunqueue(int whichq, struct lwp *l)
   1286 {
   1287 	const struct prochd * const rq = &sched_qs[whichq];
   1288 	struct lwp *l2;
   1289 	int found = 0;
   1290 	int die = 0;
   1291 	int empty = 1;
   1292 	for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
   1293 		if (l2->l_stat != LSRUN) {
   1294 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1295 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1296 		}
   1297 		if (l2->l_back->l_forw != l2) {
   1298 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1299 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1300 			    l2->l_back->l_forw);
   1301 			die = 1;
   1302 		}
   1303 		if (l2->l_forw->l_back != l2) {
   1304 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1305 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1306 			    l2->l_forw->l_back);
   1307 			die = 1;
   1308 		}
   1309 		if (l2 == l)
   1310 			found = 1;
   1311 		empty = 0;
   1312 	}
   1313 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1314 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1315 		    whichq, rq);
   1316 		die = 1;
   1317 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1318 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1319 		    "run-queue %p\n", whichq, rq);
   1320 		die = 1;
   1321 	}
   1322 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1323 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1324 		    whichq, l);
   1325 		die = 1;
   1326 	}
   1327 	if (l != NULL && empty) {
   1328 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1329 		    "active lwp %p\n", whichq, rq, l);
   1330 		die = 1;
   1331 	}
   1332 	if (l != NULL && !found) {
   1333 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1334 		    whichq, l, rq);
   1335 		die = 1;
   1336 	}
   1337 	if (die)
   1338 		panic("checkrunqueue: inconsistency found");
   1339 }
   1340 #endif /* RQDEBUG */
   1341 
   1342 void
   1343 setrunqueue(struct lwp *l)
   1344 {
   1345 	struct prochd *rq;
   1346 	struct lwp *prev;
   1347 	const int whichq = l->l_priority / PPQ;
   1348 
   1349 #ifdef RQDEBUG
   1350 	checkrunqueue(whichq, NULL);
   1351 #endif
   1352 #ifdef DIAGNOSTIC
   1353 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1354 		panic("setrunqueue");
   1355 #endif
   1356 	sched_whichqs |= RQMASK(whichq);
   1357 	rq = &sched_qs[whichq];
   1358 	prev = rq->ph_rlink;
   1359 	l->l_forw = (struct lwp *)rq;
   1360 	rq->ph_rlink = l;
   1361 	prev->l_forw = l;
   1362 	l->l_back = prev;
   1363 #ifdef RQDEBUG
   1364 	checkrunqueue(whichq, l);
   1365 #endif
   1366 }
   1367 
   1368 void
   1369 remrunqueue(struct lwp *l)
   1370 {
   1371 	struct lwp *prev, *next;
   1372 	const int whichq = l->l_priority / PPQ;
   1373 #ifdef RQDEBUG
   1374 	checkrunqueue(whichq, l);
   1375 #endif
   1376 #ifdef DIAGNOSTIC
   1377 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1378 		panic("remrunqueue: bit %d not set", whichq);
   1379 #endif
   1380 	prev = l->l_back;
   1381 	l->l_back = NULL;
   1382 	next = l->l_forw;
   1383 	prev->l_forw = next;
   1384 	next->l_back = prev;
   1385 	if (prev == next)
   1386 		sched_whichqs &= ~RQMASK(whichq);
   1387 #ifdef RQDEBUG
   1388 	checkrunqueue(whichq, NULL);
   1389 #endif
   1390 }
   1391 
   1392 #undef RQMASK
   1393 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1394