kern_synch.c revision 1.157 1 /* $NetBSD: kern_synch.c,v 1.157 2005/12/24 12:57:14 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by Charles M. Hannum.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the NetBSD
24 * Foundation, Inc. and its contributors.
25 * 4. Neither the name of The NetBSD Foundation nor the names of its
26 * contributors may be used to endorse or promote products derived
27 * from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*-
43 * Copyright (c) 1982, 1986, 1990, 1991, 1993
44 * The Regents of the University of California. All rights reserved.
45 * (c) UNIX System Laboratories, Inc.
46 * All or some portions of this file are derived from material licensed
47 * to the University of California by American Telephone and Telegraph
48 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 * the permission of UNIX System Laboratories, Inc.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.157 2005/12/24 12:57:14 yamt Exp $");
80
81 #include "opt_ddb.h"
82 #include "opt_ktrace.h"
83 #include "opt_kstack.h"
84 #include "opt_lockdebug.h"
85 #include "opt_multiprocessor.h"
86 #include "opt_perfctrs.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/proc.h>
92 #include <sys/kernel.h>
93 #include <sys/buf.h>
94 #if defined(PERFCTRS)
95 #include <sys/pmc.h>
96 #endif
97 #include <sys/signalvar.h>
98 #include <sys/resourcevar.h>
99 #include <sys/sched.h>
100 #include <sys/sa.h>
101 #include <sys/savar.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #ifdef KTRACE
106 #include <sys/ktrace.h>
107 #endif
108
109 #include <machine/cpu.h>
110
111 int lbolt; /* once a second sleep address */
112 int rrticks; /* number of hardclock ticks per roundrobin() */
113
114 /*
115 * Sleep queues.
116 *
117 * We're only looking at 7 bits of the address; everything is
118 * aligned to 4, lots of things are aligned to greater powers
119 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
120 */
121 #define SLPQUE_TABLESIZE 128
122 #define SLPQUE_LOOKUP(x) (((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
123
124 #define SLPQUE(ident) (&sched_slpque[SLPQUE_LOOKUP(ident)])
125
126 /*
127 * The global scheduler state.
128 */
129 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
130 __volatile u_int32_t sched_whichqs; /* bitmap of non-empty queues */
131 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
132
133 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
134
135 void schedcpu(void *);
136 void updatepri(struct lwp *);
137 void endtsleep(void *);
138
139 __inline void sa_awaken(struct lwp *);
140 __inline void awaken(struct lwp *);
141
142 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
143 static unsigned int schedcpu_ticks;
144
145
146 /*
147 * Force switch among equal priority processes every 100ms.
148 * Called from hardclock every hz/10 == rrticks hardclock ticks.
149 */
150 /* ARGSUSED */
151 void
152 roundrobin(struct cpu_info *ci)
153 {
154 struct schedstate_percpu *spc = &ci->ci_schedstate;
155
156 spc->spc_rrticks = rrticks;
157
158 if (curlwp != NULL) {
159 if (spc->spc_flags & SPCF_SEENRR) {
160 /*
161 * The process has already been through a roundrobin
162 * without switching and may be hogging the CPU.
163 * Indicate that the process should yield.
164 */
165 spc->spc_flags |= SPCF_SHOULDYIELD;
166 } else
167 spc->spc_flags |= SPCF_SEENRR;
168 }
169 need_resched(curcpu());
170 }
171
172 #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
173 #define NICE_WEIGHT 2 /* priorities per nice level */
174
175 #define ESTCPU_SHIFT 11
176 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
177 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
178
179 /*
180 * Constants for digital decay and forget:
181 * 90% of (p_estcpu) usage in 5 * loadav time
182 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
183 * Note that, as ps(1) mentions, this can let percentages
184 * total over 100% (I've seen 137.9% for 3 processes).
185 *
186 * Note that hardclock updates p_estcpu and p_cpticks independently.
187 *
188 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
189 * That is, the system wants to compute a value of decay such
190 * that the following for loop:
191 * for (i = 0; i < (5 * loadavg); i++)
192 * p_estcpu *= decay;
193 * will compute
194 * p_estcpu *= 0.1;
195 * for all values of loadavg:
196 *
197 * Mathematically this loop can be expressed by saying:
198 * decay ** (5 * loadavg) ~= .1
199 *
200 * The system computes decay as:
201 * decay = (2 * loadavg) / (2 * loadavg + 1)
202 *
203 * We wish to prove that the system's computation of decay
204 * will always fulfill the equation:
205 * decay ** (5 * loadavg) ~= .1
206 *
207 * If we compute b as:
208 * b = 2 * loadavg
209 * then
210 * decay = b / (b + 1)
211 *
212 * We now need to prove two things:
213 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
214 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
215 *
216 * Facts:
217 * For x close to zero, exp(x) =~ 1 + x, since
218 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
219 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
220 * For x close to zero, ln(1+x) =~ x, since
221 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
222 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
223 * ln(.1) =~ -2.30
224 *
225 * Proof of (1):
226 * Solve (factor)**(power) =~ .1 given power (5*loadav):
227 * solving for factor,
228 * ln(factor) =~ (-2.30/5*loadav), or
229 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
230 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
231 *
232 * Proof of (2):
233 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
234 * solving for power,
235 * power*ln(b/(b+1)) =~ -2.30, or
236 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
237 *
238 * Actual power values for the implemented algorithm are as follows:
239 * loadav: 1 2 3 4
240 * power: 5.68 10.32 14.94 19.55
241 */
242
243 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
244 #define loadfactor(loadav) (2 * (loadav))
245
246 static fixpt_t
247 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
248 {
249
250 if (estcpu == 0) {
251 return 0;
252 }
253
254 #if !defined(_LP64)
255 /* avoid 64bit arithmetics. */
256 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
257 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
258 return estcpu * loadfac / (loadfac + FSCALE);
259 }
260 #endif /* !defined(_LP64) */
261
262 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
263 }
264
265 /*
266 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
267 * sleeping for at least seven times the loadfactor will decay p_estcpu to
268 * less than (1 << ESTCPU_SHIFT).
269 *
270 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
271 */
272 static fixpt_t
273 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
274 {
275
276 if ((n << FSHIFT) >= 7 * loadfac) {
277 return 0;
278 }
279
280 while (estcpu != 0 && n > 1) {
281 estcpu = decay_cpu(loadfac, estcpu);
282 n--;
283 }
284
285 return estcpu;
286 }
287
288 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
289 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
290
291 /*
292 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
293 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
294 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
295 *
296 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
297 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
298 *
299 * If you dont want to bother with the faster/more-accurate formula, you
300 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
301 * (more general) method of calculating the %age of CPU used by a process.
302 */
303 #define CCPU_SHIFT 11
304
305 /*
306 * Recompute process priorities, every hz ticks.
307 */
308 /* ARGSUSED */
309 void
310 schedcpu(void *arg)
311 {
312 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
313 struct lwp *l;
314 struct proc *p;
315 int s, minslp;
316 int clkhz;
317
318 schedcpu_ticks++;
319
320 proclist_lock_read();
321 PROCLIST_FOREACH(p, &allproc) {
322 /*
323 * Increment time in/out of memory and sleep time
324 * (if sleeping). We ignore overflow; with 16-bit int's
325 * (remember them?) overflow takes 45 days.
326 */
327 minslp = 2;
328 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
329 l->l_swtime++;
330 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
331 l->l_stat == LSSUSPENDED) {
332 l->l_slptime++;
333 minslp = min(minslp, l->l_slptime);
334 } else
335 minslp = 0;
336 }
337 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
338 /*
339 * If the process has slept the entire second,
340 * stop recalculating its priority until it wakes up.
341 */
342 if (minslp > 1)
343 continue;
344 s = splstatclock(); /* prevent state changes */
345 /*
346 * p_pctcpu is only for ps.
347 */
348 clkhz = stathz != 0 ? stathz : hz;
349 #if (FSHIFT >= CCPU_SHIFT)
350 p->p_pctcpu += (clkhz == 100)?
351 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
352 100 * (((fixpt_t) p->p_cpticks)
353 << (FSHIFT - CCPU_SHIFT)) / clkhz;
354 #else
355 p->p_pctcpu += ((FSCALE - ccpu) *
356 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
357 #endif
358 p->p_cpticks = 0;
359 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
360 splx(s); /* Done with the process CPU ticks update */
361 SCHED_LOCK(s);
362 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
363 if (l->l_slptime > 1)
364 continue;
365 resetpriority(l);
366 if (l->l_priority >= PUSER) {
367 if (l->l_stat == LSRUN &&
368 (l->l_flag & L_INMEM) &&
369 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
370 remrunqueue(l);
371 l->l_priority = l->l_usrpri;
372 setrunqueue(l);
373 } else
374 l->l_priority = l->l_usrpri;
375 }
376 }
377 SCHED_UNLOCK(s);
378 }
379 proclist_unlock_read();
380 uvm_meter();
381 wakeup((caddr_t)&lbolt);
382 callout_schedule(&schedcpu_ch, hz);
383 }
384
385 /*
386 * Recalculate the priority of a process after it has slept for a while.
387 */
388 void
389 updatepri(struct lwp *l)
390 {
391 struct proc *p = l->l_proc;
392 fixpt_t loadfac;
393
394 SCHED_ASSERT_LOCKED();
395 KASSERT(l->l_slptime > 1);
396
397 loadfac = loadfactor(averunnable.ldavg[0]);
398
399 l->l_slptime--; /* the first time was done in schedcpu */
400 /* XXX NJWLWP */
401 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
402 resetpriority(l);
403 }
404
405 /*
406 * During autoconfiguration or after a panic, a sleep will simply
407 * lower the priority briefly to allow interrupts, then return.
408 * The priority to be used (safepri) is machine-dependent, thus this
409 * value is initialized and maintained in the machine-dependent layers.
410 * This priority will typically be 0, or the lowest priority
411 * that is safe for use on the interrupt stack; it can be made
412 * higher to block network software interrupts after panics.
413 */
414 int safepri;
415
416 /*
417 * General sleep call. Suspends the current process until a wakeup is
418 * performed on the specified identifier. The process will then be made
419 * runnable with the specified priority. Sleeps at most timo/hz seconds
420 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
421 * before and after sleeping, else signals are not checked. Returns 0 if
422 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
423 * signal needs to be delivered, ERESTART is returned if the current system
424 * call should be restarted if possible, and EINTR is returned if the system
425 * call should be interrupted by the signal (return EINTR).
426 *
427 * The interlock is held until the scheduler_slock is acquired. The
428 * interlock will be locked before returning back to the caller
429 * unless the PNORELOCK flag is specified, in which case the
430 * interlock will always be unlocked upon return.
431 */
432 int
433 ltsleep(__volatile const void *ident, int priority, const char *wmesg, int timo,
434 __volatile struct simplelock *interlock)
435 {
436 struct lwp *l = curlwp;
437 struct proc *p = l ? l->l_proc : NULL;
438 struct slpque *qp;
439 struct sadata_upcall *sau;
440 int sig, s;
441 int catch = priority & PCATCH;
442 int relock = (priority & PNORELOCK) == 0;
443 int exiterr = (priority & PNOEXITERR) == 0;
444
445 /*
446 * XXXSMP
447 * This is probably bogus. Figure out what the right
448 * thing to do here really is.
449 * Note that not sleeping if ltsleep is called with curlwp == NULL
450 * in the shutdown case is disgusting but partly necessary given
451 * how shutdown (barely) works.
452 */
453 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
454 /*
455 * After a panic, or during autoconfiguration,
456 * just give interrupts a chance, then just return;
457 * don't run any other procs or panic below,
458 * in case this is the idle process and already asleep.
459 */
460 s = splhigh();
461 splx(safepri);
462 splx(s);
463 if (interlock != NULL && relock == 0)
464 simple_unlock(interlock);
465 return (0);
466 }
467
468 KASSERT(p != NULL);
469 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
470
471 #ifdef KTRACE
472 if (KTRPOINT(p, KTR_CSW))
473 ktrcsw(l, 1, 0);
474 #endif
475
476 /*
477 * XXX We need to allocate the sadata_upcall structure here,
478 * XXX since we can't sleep while waiting for memory inside
479 * XXX sa_upcall(). It would be nice if we could safely
480 * XXX allocate the sadata_upcall structure on the stack, here.
481 */
482 if (l->l_flag & L_SA) {
483 sau = sadata_upcall_alloc(0);
484 } else {
485 sau = NULL;
486 }
487
488 SCHED_LOCK(s);
489
490 #ifdef DIAGNOSTIC
491 if (ident == NULL)
492 panic("ltsleep: ident == NULL");
493 if (l->l_stat != LSONPROC)
494 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
495 if (l->l_back != NULL)
496 panic("ltsleep: p_back != NULL");
497 #endif
498
499 l->l_wchan = ident;
500 l->l_wmesg = wmesg;
501 l->l_slptime = 0;
502 l->l_priority = priority & PRIMASK;
503
504 qp = SLPQUE(ident);
505 if (qp->sq_head == 0)
506 qp->sq_head = l;
507 else {
508 *qp->sq_tailp = l;
509 }
510 *(qp->sq_tailp = &l->l_forw) = 0;
511
512 if (timo)
513 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
514
515 /*
516 * We can now release the interlock; the scheduler_slock
517 * is held, so a thread can't get in to do wakeup() before
518 * we do the switch.
519 *
520 * XXX We leave the code block here, after inserting ourselves
521 * on the sleep queue, because we might want a more clever
522 * data structure for the sleep queues at some point.
523 */
524 if (interlock != NULL)
525 simple_unlock(interlock);
526
527 /*
528 * We put ourselves on the sleep queue and start our timeout
529 * before calling CURSIG, as we could stop there, and a wakeup
530 * or a SIGCONT (or both) could occur while we were stopped.
531 * A SIGCONT would cause us to be marked as SSLEEP
532 * without resuming us, thus we must be ready for sleep
533 * when CURSIG is called. If the wakeup happens while we're
534 * stopped, p->p_wchan will be 0 upon return from CURSIG.
535 */
536 if (catch) {
537 l->l_flag |= L_SINTR;
538 if (((sig = CURSIG(l)) != 0) ||
539 ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
540 if (l->l_wchan != NULL)
541 unsleep(l);
542 l->l_stat = LSONPROC;
543 SCHED_UNLOCK(s);
544 goto resume;
545 }
546 if (l->l_wchan == NULL) {
547 catch = 0;
548 SCHED_UNLOCK(s);
549 goto resume;
550 }
551 } else
552 sig = 0;
553 l->l_stat = LSSLEEP;
554 p->p_nrlwps--;
555 p->p_stats->p_ru.ru_nvcsw++;
556 SCHED_ASSERT_LOCKED();
557 if (l->l_flag & L_SA)
558 sa_switch(l, sau, SA_UPCALL_BLOCKED);
559 else
560 mi_switch(l, NULL);
561
562 #if defined(DDB) && !defined(GPROF)
563 /* handy breakpoint location after process "wakes" */
564 __asm(".globl bpendtsleep\nbpendtsleep:");
565 #endif
566 /*
567 * p->p_nrlwps is incremented by whoever made us runnable again,
568 * either setrunnable() or awaken().
569 */
570
571 SCHED_ASSERT_UNLOCKED();
572 splx(s);
573
574 resume:
575 KDASSERT(l->l_cpu != NULL);
576 KDASSERT(l->l_cpu == curcpu());
577 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
578
579 l->l_flag &= ~L_SINTR;
580 if (l->l_flag & L_TIMEOUT) {
581 l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
582 if (sig == 0) {
583 #ifdef KTRACE
584 if (KTRPOINT(p, KTR_CSW))
585 ktrcsw(l, 0, 0);
586 #endif
587 if (relock && interlock != NULL)
588 simple_lock(interlock);
589 return (EWOULDBLOCK);
590 }
591 } else if (timo)
592 callout_stop(&l->l_tsleep_ch);
593
594 if (catch) {
595 const int cancelled = l->l_flag & L_CANCELLED;
596 l->l_flag &= ~L_CANCELLED;
597 if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
598 #ifdef KTRACE
599 if (KTRPOINT(p, KTR_CSW))
600 ktrcsw(l, 0, 0);
601 #endif
602 if (relock && interlock != NULL)
603 simple_lock(interlock);
604 /*
605 * If this sleep was canceled, don't let the syscall
606 * restart.
607 */
608 if (cancelled ||
609 (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
610 return (EINTR);
611 return (ERESTART);
612 }
613 }
614
615 #ifdef KTRACE
616 if (KTRPOINT(p, KTR_CSW))
617 ktrcsw(l, 0, 0);
618 #endif
619 if (relock && interlock != NULL)
620 simple_lock(interlock);
621
622 /* XXXNJW this is very much a kluge.
623 * revisit. a better way of preventing looping/hanging syscalls like
624 * wait4() and _lwp_wait() from wedging an exiting process
625 * would be preferred.
626 */
627 if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
628 return (EINTR);
629 return (0);
630 }
631
632 /*
633 * Implement timeout for tsleep.
634 * If process hasn't been awakened (wchan non-zero),
635 * set timeout flag and undo the sleep. If proc
636 * is stopped, just unsleep so it will remain stopped.
637 */
638 void
639 endtsleep(void *arg)
640 {
641 struct lwp *l;
642 int s;
643
644 l = (struct lwp *)arg;
645 SCHED_LOCK(s);
646 if (l->l_wchan) {
647 if (l->l_stat == LSSLEEP)
648 setrunnable(l);
649 else
650 unsleep(l);
651 l->l_flag |= L_TIMEOUT;
652 }
653 SCHED_UNLOCK(s);
654 }
655
656 /*
657 * Remove a process from its wait queue
658 */
659 void
660 unsleep(struct lwp *l)
661 {
662 struct slpque *qp;
663 struct lwp **hp;
664
665 SCHED_ASSERT_LOCKED();
666
667 if (l->l_wchan) {
668 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
669 while (*hp != l)
670 hp = &(*hp)->l_forw;
671 *hp = l->l_forw;
672 if (qp->sq_tailp == &l->l_forw)
673 qp->sq_tailp = hp;
674 l->l_wchan = 0;
675 }
676 }
677
678 __inline void
679 sa_awaken(struct lwp *l)
680 {
681
682 SCHED_ASSERT_LOCKED();
683
684 if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
685 l->l_flag &= ~L_SA_IDLE;
686 }
687
688 /*
689 * Optimized-for-wakeup() version of setrunnable().
690 */
691 __inline void
692 awaken(struct lwp *l)
693 {
694
695 SCHED_ASSERT_LOCKED();
696
697 if (l->l_proc->p_sa)
698 sa_awaken(l);
699
700 if (l->l_slptime > 1)
701 updatepri(l);
702 l->l_slptime = 0;
703 l->l_stat = LSRUN;
704 l->l_proc->p_nrlwps++;
705 /*
706 * Since curpriority is a user priority, p->p_priority
707 * is always better than curpriority on the last CPU on
708 * which it ran.
709 *
710 * XXXSMP See affinity comment in resched_proc().
711 */
712 if (l->l_flag & L_INMEM) {
713 setrunqueue(l);
714 KASSERT(l->l_cpu != NULL);
715 need_resched(l->l_cpu);
716 } else
717 sched_wakeup(&proc0);
718 }
719
720 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
721 void
722 sched_unlock_idle(void)
723 {
724
725 simple_unlock(&sched_lock);
726 }
727
728 void
729 sched_lock_idle(void)
730 {
731
732 simple_lock(&sched_lock);
733 }
734 #endif /* MULTIPROCESSOR || LOCKDEBUG */
735
736 /*
737 * Make all processes sleeping on the specified identifier runnable.
738 */
739
740 void
741 wakeup(__volatile const void *ident)
742 {
743 int s;
744
745 SCHED_ASSERT_UNLOCKED();
746
747 SCHED_LOCK(s);
748 sched_wakeup(ident);
749 SCHED_UNLOCK(s);
750 }
751
752 void
753 sched_wakeup(__volatile const void *ident)
754 {
755 struct slpque *qp;
756 struct lwp *l, **q;
757
758 SCHED_ASSERT_LOCKED();
759
760 qp = SLPQUE(ident);
761 restart:
762 for (q = &qp->sq_head; (l = *q) != NULL; ) {
763 #ifdef DIAGNOSTIC
764 if (l->l_back || (l->l_stat != LSSLEEP &&
765 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
766 panic("wakeup");
767 #endif
768 if (l->l_wchan == ident) {
769 l->l_wchan = 0;
770 *q = l->l_forw;
771 if (qp->sq_tailp == &l->l_forw)
772 qp->sq_tailp = q;
773 if (l->l_stat == LSSLEEP) {
774 awaken(l);
775 goto restart;
776 }
777 } else
778 q = &l->l_forw;
779 }
780 }
781
782 /*
783 * Make the highest priority process first in line on the specified
784 * identifier runnable.
785 */
786 void
787 wakeup_one(__volatile const void *ident)
788 {
789 struct slpque *qp;
790 struct lwp *l, **q;
791 struct lwp *best_sleepp, **best_sleepq;
792 struct lwp *best_stopp, **best_stopq;
793 int s;
794
795 best_sleepp = best_stopp = NULL;
796 best_sleepq = best_stopq = NULL;
797
798 SCHED_LOCK(s);
799
800 qp = SLPQUE(ident);
801
802 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
803 #ifdef DIAGNOSTIC
804 if (l->l_back || (l->l_stat != LSSLEEP &&
805 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
806 panic("wakeup_one");
807 #endif
808 if (l->l_wchan == ident) {
809 if (l->l_stat == LSSLEEP) {
810 if (best_sleepp == NULL ||
811 l->l_priority < best_sleepp->l_priority) {
812 best_sleepp = l;
813 best_sleepq = q;
814 }
815 } else {
816 if (best_stopp == NULL ||
817 l->l_priority < best_stopp->l_priority) {
818 best_stopp = l;
819 best_stopq = q;
820 }
821 }
822 }
823 }
824
825 /*
826 * Consider any SSLEEP process higher than the highest priority SSTOP
827 * process.
828 */
829 if (best_sleepp != NULL) {
830 l = best_sleepp;
831 q = best_sleepq;
832 } else {
833 l = best_stopp;
834 q = best_stopq;
835 }
836
837 if (l != NULL) {
838 l->l_wchan = NULL;
839 *q = l->l_forw;
840 if (qp->sq_tailp == &l->l_forw)
841 qp->sq_tailp = q;
842 if (l->l_stat == LSSLEEP)
843 awaken(l);
844 }
845 SCHED_UNLOCK(s);
846 }
847
848 /*
849 * General yield call. Puts the current process back on its run queue and
850 * performs a voluntary context switch. Should only be called when the
851 * current process explicitly requests it (eg sched_yield(2) in compat code).
852 */
853 void
854 yield(void)
855 {
856 struct lwp *l = curlwp;
857 int s;
858
859 SCHED_LOCK(s);
860 l->l_priority = l->l_usrpri;
861 l->l_stat = LSRUN;
862 setrunqueue(l);
863 l->l_proc->p_stats->p_ru.ru_nvcsw++;
864 mi_switch(l, NULL);
865 SCHED_ASSERT_UNLOCKED();
866 splx(s);
867 }
868
869 /*
870 * General preemption call. Puts the current process back on its run queue
871 * and performs an involuntary context switch.
872 * The 'more' ("more work to do") argument is boolean. Returning to userspace
873 * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
874 * This will be used to indicate to the SA subsystem that the LWP is
875 * not yet finished in the kernel.
876 */
877
878 void
879 preempt(int more)
880 {
881 struct lwp *l = curlwp;
882 int r, s;
883
884 SCHED_LOCK(s);
885 l->l_priority = l->l_usrpri;
886 l->l_stat = LSRUN;
887 setrunqueue(l);
888 l->l_proc->p_stats->p_ru.ru_nivcsw++;
889 r = mi_switch(l, NULL);
890 SCHED_ASSERT_UNLOCKED();
891 splx(s);
892 if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
893 sa_preempt(l);
894 }
895
896 /*
897 * The machine independent parts of context switch.
898 * Must be called at splsched() (no higher!) and with
899 * the sched_lock held.
900 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
901 * the next lwp.
902 *
903 * Returns 1 if another process was actually run.
904 */
905 int
906 mi_switch(struct lwp *l, struct lwp *newl)
907 {
908 struct schedstate_percpu *spc;
909 struct rlimit *rlim;
910 long s, u;
911 struct timeval tv;
912 int hold_count;
913 struct proc *p = l->l_proc;
914 int retval;
915
916 SCHED_ASSERT_LOCKED();
917
918 /*
919 * Release the kernel_lock, as we are about to yield the CPU.
920 * The scheduler lock is still held until cpu_switch()
921 * selects a new process and removes it from the run queue.
922 */
923 hold_count = KERNEL_LOCK_RELEASE_ALL();
924
925 KDASSERT(l->l_cpu != NULL);
926 KDASSERT(l->l_cpu == curcpu());
927
928 spc = &l->l_cpu->ci_schedstate;
929
930 #if defined(LOCKDEBUG) || defined(DIAGNOSTIC)
931 spinlock_switchcheck();
932 #endif
933 #ifdef LOCKDEBUG
934 simple_lock_switchcheck();
935 #endif
936
937 /*
938 * Compute the amount of time during which the current
939 * process was running.
940 */
941 microtime(&tv);
942 u = p->p_rtime.tv_usec +
943 (tv.tv_usec - spc->spc_runtime.tv_usec);
944 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
945 if (u < 0) {
946 u += 1000000;
947 s--;
948 } else if (u >= 1000000) {
949 u -= 1000000;
950 s++;
951 }
952 p->p_rtime.tv_usec = u;
953 p->p_rtime.tv_sec = s;
954
955 /*
956 * Check if the process exceeds its CPU resource allocation.
957 * If over max, kill it. In any case, if it has run for more
958 * than 10 minutes, reduce priority to give others a chance.
959 */
960 rlim = &p->p_rlimit[RLIMIT_CPU];
961 if (s >= rlim->rlim_cur) {
962 /*
963 * XXXSMP: we're inside the scheduler lock perimeter;
964 * use sched_psignal.
965 */
966 if (s >= rlim->rlim_max)
967 sched_psignal(p, SIGKILL);
968 else {
969 sched_psignal(p, SIGXCPU);
970 if (rlim->rlim_cur < rlim->rlim_max)
971 rlim->rlim_cur += 5;
972 }
973 }
974 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
975 p->p_nice == NZERO) {
976 p->p_nice = autoniceval + NZERO;
977 resetpriority(l);
978 }
979
980 /*
981 * Process is about to yield the CPU; clear the appropriate
982 * scheduling flags.
983 */
984 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
985
986 #ifdef KSTACK_CHECK_MAGIC
987 kstack_check_magic(l);
988 #endif
989
990 /*
991 * If we are using h/w performance counters, save context.
992 */
993 #if PERFCTRS
994 if (PMC_ENABLED(p))
995 pmc_save_context(p);
996 #endif
997
998 /*
999 * Switch to the new current process. When we
1000 * run again, we'll return back here.
1001 */
1002 uvmexp.swtch++;
1003 if (newl == NULL) {
1004 retval = cpu_switch(l, NULL);
1005 } else {
1006 remrunqueue(newl);
1007 cpu_switchto(l, newl);
1008 retval = 0;
1009 }
1010
1011 /*
1012 * If we are using h/w performance counters, restore context.
1013 */
1014 #if PERFCTRS
1015 if (PMC_ENABLED(p))
1016 pmc_restore_context(p);
1017 #endif
1018
1019 /*
1020 * Make sure that MD code released the scheduler lock before
1021 * resuming us.
1022 */
1023 SCHED_ASSERT_UNLOCKED();
1024
1025 /*
1026 * We're running again; record our new start time. We might
1027 * be running on a new CPU now, so don't use the cache'd
1028 * schedstate_percpu pointer.
1029 */
1030 KDASSERT(l->l_cpu != NULL);
1031 KDASSERT(l->l_cpu == curcpu());
1032 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
1033
1034 /*
1035 * Reacquire the kernel_lock now. We do this after we've
1036 * released the scheduler lock to avoid deadlock, and before
1037 * we reacquire the interlock.
1038 */
1039 KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
1040
1041 return retval;
1042 }
1043
1044 /*
1045 * Initialize the (doubly-linked) run queues
1046 * to be empty.
1047 */
1048 void
1049 rqinit()
1050 {
1051 int i;
1052
1053 for (i = 0; i < RUNQUE_NQS; i++)
1054 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
1055 (struct lwp *)&sched_qs[i];
1056 }
1057
1058 static __inline void
1059 resched_proc(struct lwp *l, u_char pri)
1060 {
1061 struct cpu_info *ci;
1062
1063 /*
1064 * XXXSMP
1065 * Since l->l_cpu persists across a context switch,
1066 * this gives us *very weak* processor affinity, in
1067 * that we notify the CPU on which the process last
1068 * ran that it should try to switch.
1069 *
1070 * This does not guarantee that the process will run on
1071 * that processor next, because another processor might
1072 * grab it the next time it performs a context switch.
1073 *
1074 * This also does not handle the case where its last
1075 * CPU is running a higher-priority process, but every
1076 * other CPU is running a lower-priority process. There
1077 * are ways to handle this situation, but they're not
1078 * currently very pretty, and we also need to weigh the
1079 * cost of moving a process from one CPU to another.
1080 *
1081 * XXXSMP
1082 * There is also the issue of locking the other CPU's
1083 * sched state, which we currently do not do.
1084 */
1085 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1086 if (pri < ci->ci_schedstate.spc_curpriority)
1087 need_resched(ci);
1088 }
1089
1090 /*
1091 * Change process state to be runnable,
1092 * placing it on the run queue if it is in memory,
1093 * and awakening the swapper if it isn't in memory.
1094 */
1095 void
1096 setrunnable(struct lwp *l)
1097 {
1098 struct proc *p = l->l_proc;
1099
1100 SCHED_ASSERT_LOCKED();
1101
1102 switch (l->l_stat) {
1103 case 0:
1104 case LSRUN:
1105 case LSONPROC:
1106 case LSZOMB:
1107 case LSDEAD:
1108 default:
1109 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1110 case LSSTOP:
1111 /*
1112 * If we're being traced (possibly because someone attached us
1113 * while we were stopped), check for a signal from the debugger.
1114 */
1115 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1116 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1117 CHECKSIGS(p);
1118 }
1119 case LSSLEEP:
1120 unsleep(l); /* e.g. when sending signals */
1121 break;
1122
1123 case LSIDL:
1124 break;
1125 case LSSUSPENDED:
1126 break;
1127 }
1128
1129 if (l->l_proc->p_sa)
1130 sa_awaken(l);
1131
1132 l->l_stat = LSRUN;
1133 p->p_nrlwps++;
1134
1135 if (l->l_flag & L_INMEM)
1136 setrunqueue(l);
1137
1138 if (l->l_slptime > 1)
1139 updatepri(l);
1140 l->l_slptime = 0;
1141 if ((l->l_flag & L_INMEM) == 0)
1142 sched_wakeup((caddr_t)&proc0);
1143 else
1144 resched_proc(l, l->l_priority);
1145 }
1146
1147 /*
1148 * Compute the priority of a process when running in user mode.
1149 * Arrange to reschedule if the resulting priority is better
1150 * than that of the current process.
1151 */
1152 void
1153 resetpriority(struct lwp *l)
1154 {
1155 unsigned int newpriority;
1156 struct proc *p = l->l_proc;
1157
1158 SCHED_ASSERT_LOCKED();
1159
1160 newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
1161 NICE_WEIGHT * (p->p_nice - NZERO);
1162 newpriority = min(newpriority, MAXPRI);
1163 l->l_usrpri = newpriority;
1164 resched_proc(l, l->l_usrpri);
1165 }
1166
1167 /*
1168 * Recompute priority for all LWPs in a process.
1169 */
1170 void
1171 resetprocpriority(struct proc *p)
1172 {
1173 struct lwp *l;
1174
1175 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1176 resetpriority(l);
1177 }
1178
1179 /*
1180 * We adjust the priority of the current process. The priority of a process
1181 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
1182 * is increased here. The formula for computing priorities (in kern_synch.c)
1183 * will compute a different value each time p_estcpu increases. This can
1184 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1185 * queue will not change. The CPU usage estimator ramps up quite quickly
1186 * when the process is running (linearly), and decays away exponentially, at
1187 * a rate which is proportionally slower when the system is busy. The basic
1188 * principle is that the system will 90% forget that the process used a lot
1189 * of CPU time in 5 * loadav seconds. This causes the system to favor
1190 * processes which haven't run much recently, and to round-robin among other
1191 * processes.
1192 */
1193
1194 void
1195 schedclock(struct lwp *l)
1196 {
1197 struct proc *p = l->l_proc;
1198 int s;
1199
1200 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
1201 SCHED_LOCK(s);
1202 resetpriority(l);
1203 SCHED_UNLOCK(s);
1204
1205 if (l->l_priority >= PUSER)
1206 l->l_priority = l->l_usrpri;
1207 }
1208
1209 void
1210 suspendsched()
1211 {
1212 struct lwp *l;
1213 int s;
1214
1215 /*
1216 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1217 * LSSUSPENDED.
1218 */
1219 proclist_lock_read();
1220 SCHED_LOCK(s);
1221 LIST_FOREACH(l, &alllwp, l_list) {
1222 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1223 continue;
1224
1225 switch (l->l_stat) {
1226 case LSRUN:
1227 l->l_proc->p_nrlwps--;
1228 if ((l->l_flag & L_INMEM) != 0)
1229 remrunqueue(l);
1230 /* FALLTHROUGH */
1231 case LSSLEEP:
1232 l->l_stat = LSSUSPENDED;
1233 break;
1234 case LSONPROC:
1235 /*
1236 * XXX SMP: we need to deal with processes on
1237 * others CPU !
1238 */
1239 break;
1240 default:
1241 break;
1242 }
1243 }
1244 SCHED_UNLOCK(s);
1245 proclist_unlock_read();
1246 }
1247
1248 /*
1249 * scheduler_fork_hook:
1250 *
1251 * Inherit the parent's scheduler history.
1252 */
1253 void
1254 scheduler_fork_hook(struct proc *parent, struct proc *child)
1255 {
1256
1257 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1258 child->p_forktime = schedcpu_ticks;
1259 }
1260
1261 /*
1262 * scheduler_wait_hook:
1263 *
1264 * Chargeback parents for the sins of their children.
1265 */
1266 void
1267 scheduler_wait_hook(struct proc *parent, struct proc *child)
1268 {
1269 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1270 fixpt_t estcpu;
1271
1272 /* XXX Only if parent != init?? */
1273
1274 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1275 schedcpu_ticks - child->p_forktime);
1276 if (child->p_estcpu > estcpu) {
1277 parent->p_estcpu =
1278 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1279 }
1280 }
1281
1282 /*
1283 * Low-level routines to access the run queue. Optimised assembler
1284 * routines can override these.
1285 */
1286
1287 #ifndef __HAVE_MD_RUNQUEUE
1288
1289 /*
1290 * On some architectures, it's faster to use a MSB ordering for the priorites
1291 * than the traditional LSB ordering.
1292 */
1293 #ifdef __HAVE_BIGENDIAN_BITOPS
1294 #define RQMASK(n) (0x80000000 >> (n))
1295 #else
1296 #define RQMASK(n) (0x00000001 << (n))
1297 #endif
1298
1299 /*
1300 * The primitives that manipulate the run queues. whichqs tells which
1301 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1302 * into queues, remrunqueue removes them from queues. The running process is
1303 * on no queue, other processes are on a queue related to p->p_priority,
1304 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1305 * available queues.
1306 */
1307
1308 #ifdef RQDEBUG
1309 static void
1310 checkrunqueue(int whichq, struct lwp *l)
1311 {
1312 const struct prochd * const rq = &sched_qs[whichq];
1313 struct lwp *l2;
1314 int found = 0;
1315 int die = 0;
1316 int empty = 1;
1317 for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
1318 if (l2->l_stat != LSRUN) {
1319 printf("checkrunqueue[%d]: lwp %p state (%d) "
1320 " != LSRUN\n", whichq, l2, l2->l_stat);
1321 }
1322 if (l2->l_back->l_forw != l2) {
1323 printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1324 "corrupt %p\n", whichq, l2, l2->l_back,
1325 l2->l_back->l_forw);
1326 die = 1;
1327 }
1328 if (l2->l_forw->l_back != l2) {
1329 printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1330 "corrupt %p\n", whichq, l2, l2->l_forw,
1331 l2->l_forw->l_back);
1332 die = 1;
1333 }
1334 if (l2 == l)
1335 found = 1;
1336 empty = 0;
1337 }
1338 if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1339 printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1340 whichq, rq);
1341 die = 1;
1342 } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1343 printf("checkrunqueue[%d]: bit clear for non-empty "
1344 "run-queue %p\n", whichq, rq);
1345 die = 1;
1346 }
1347 if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1348 printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1349 whichq, l);
1350 die = 1;
1351 }
1352 if (l != NULL && empty) {
1353 printf("checkrunqueue[%d]: empty run-queue %p with "
1354 "active lwp %p\n", whichq, rq, l);
1355 die = 1;
1356 }
1357 if (l != NULL && !found) {
1358 printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1359 whichq, l, rq);
1360 die = 1;
1361 }
1362 if (die)
1363 panic("checkrunqueue: inconsistency found");
1364 }
1365 #endif /* RQDEBUG */
1366
1367 void
1368 setrunqueue(struct lwp *l)
1369 {
1370 struct prochd *rq;
1371 struct lwp *prev;
1372 const int whichq = l->l_priority / PPQ;
1373
1374 #ifdef RQDEBUG
1375 checkrunqueue(whichq, NULL);
1376 #endif
1377 #ifdef DIAGNOSTIC
1378 if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1379 panic("setrunqueue");
1380 #endif
1381 sched_whichqs |= RQMASK(whichq);
1382 rq = &sched_qs[whichq];
1383 prev = rq->ph_rlink;
1384 l->l_forw = (struct lwp *)rq;
1385 rq->ph_rlink = l;
1386 prev->l_forw = l;
1387 l->l_back = prev;
1388 #ifdef RQDEBUG
1389 checkrunqueue(whichq, l);
1390 #endif
1391 }
1392
1393 void
1394 remrunqueue(struct lwp *l)
1395 {
1396 struct lwp *prev, *next;
1397 const int whichq = l->l_priority / PPQ;
1398 #ifdef RQDEBUG
1399 checkrunqueue(whichq, l);
1400 #endif
1401 #ifdef DIAGNOSTIC
1402 if (((sched_whichqs & RQMASK(whichq)) == 0))
1403 panic("remrunqueue: bit %d not set", whichq);
1404 #endif
1405 prev = l->l_back;
1406 l->l_back = NULL;
1407 next = l->l_forw;
1408 prev->l_forw = next;
1409 next->l_back = prev;
1410 if (prev == next)
1411 sched_whichqs &= ~RQMASK(whichq);
1412 #ifdef RQDEBUG
1413 checkrunqueue(whichq, NULL);
1414 #endif
1415 }
1416
1417 #undef RQMASK
1418 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1419