kern_synch.c revision 1.160 1 /* $NetBSD: kern_synch.c,v 1.160 2005/12/27 04:06:46 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by Charles M. Hannum.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the NetBSD
24 * Foundation, Inc. and its contributors.
25 * 4. Neither the name of The NetBSD Foundation nor the names of its
26 * contributors may be used to endorse or promote products derived
27 * from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*-
43 * Copyright (c) 1982, 1986, 1990, 1991, 1993
44 * The Regents of the University of California. All rights reserved.
45 * (c) UNIX System Laboratories, Inc.
46 * All or some portions of this file are derived from material licensed
47 * to the University of California by American Telephone and Telegraph
48 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 * the permission of UNIX System Laboratories, Inc.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.160 2005/12/27 04:06:46 chs Exp $");
80
81 #include "opt_ddb.h"
82 #include "opt_ktrace.h"
83 #include "opt_kstack.h"
84 #include "opt_lockdebug.h"
85 #include "opt_multiprocessor.h"
86 #include "opt_perfctrs.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/proc.h>
92 #include <sys/kernel.h>
93 #include <sys/buf.h>
94 #if defined(PERFCTRS)
95 #include <sys/pmc.h>
96 #endif
97 #include <sys/signalvar.h>
98 #include <sys/resourcevar.h>
99 #include <sys/sched.h>
100 #include <sys/sa.h>
101 #include <sys/savar.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #ifdef KTRACE
106 #include <sys/ktrace.h>
107 #endif
108
109 #include <machine/cpu.h>
110
111 int lbolt; /* once a second sleep address */
112 int rrticks; /* number of hardclock ticks per roundrobin() */
113
114 /*
115 * Sleep queues.
116 *
117 * We're only looking at 7 bits of the address; everything is
118 * aligned to 4, lots of things are aligned to greater powers
119 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
120 */
121 #define SLPQUE_TABLESIZE 128
122 #define SLPQUE_LOOKUP(x) (((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
123
124 #define SLPQUE(ident) (&sched_slpque[SLPQUE_LOOKUP(ident)])
125
126 /*
127 * The global scheduler state.
128 */
129 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
130 volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
131 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
132
133 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
134
135 void schedcpu(void *);
136 void updatepri(struct lwp *);
137 void endtsleep(void *);
138
139 inline void sa_awaken(struct lwp *);
140 inline void awaken(struct lwp *);
141
142 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
143 static unsigned int schedcpu_ticks;
144
145
146 /*
147 * Force switch among equal priority processes every 100ms.
148 * Called from hardclock every hz/10 == rrticks hardclock ticks.
149 */
150 /* ARGSUSED */
151 void
152 roundrobin(struct cpu_info *ci)
153 {
154 struct schedstate_percpu *spc = &ci->ci_schedstate;
155
156 spc->spc_rrticks = rrticks;
157
158 if (curlwp != NULL) {
159 if (spc->spc_flags & SPCF_SEENRR) {
160 /*
161 * The process has already been through a roundrobin
162 * without switching and may be hogging the CPU.
163 * Indicate that the process should yield.
164 */
165 spc->spc_flags |= SPCF_SHOULDYIELD;
166 } else
167 spc->spc_flags |= SPCF_SEENRR;
168 }
169 need_resched(curcpu());
170 }
171
172 #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
173 #define NICE_WEIGHT 2 /* priorities per nice level */
174
175 #define ESTCPU_SHIFT 11
176 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
177 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
178
179 /*
180 * Constants for digital decay and forget:
181 * 90% of (p_estcpu) usage in 5 * loadav time
182 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
183 * Note that, as ps(1) mentions, this can let percentages
184 * total over 100% (I've seen 137.9% for 3 processes).
185 *
186 * Note that hardclock updates p_estcpu and p_cpticks independently.
187 *
188 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
189 * That is, the system wants to compute a value of decay such
190 * that the following for loop:
191 * for (i = 0; i < (5 * loadavg); i++)
192 * p_estcpu *= decay;
193 * will compute
194 * p_estcpu *= 0.1;
195 * for all values of loadavg:
196 *
197 * Mathematically this loop can be expressed by saying:
198 * decay ** (5 * loadavg) ~= .1
199 *
200 * The system computes decay as:
201 * decay = (2 * loadavg) / (2 * loadavg + 1)
202 *
203 * We wish to prove that the system's computation of decay
204 * will always fulfill the equation:
205 * decay ** (5 * loadavg) ~= .1
206 *
207 * If we compute b as:
208 * b = 2 * loadavg
209 * then
210 * decay = b / (b + 1)
211 *
212 * We now need to prove two things:
213 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
214 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
215 *
216 * Facts:
217 * For x close to zero, exp(x) =~ 1 + x, since
218 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
219 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
220 * For x close to zero, ln(1+x) =~ x, since
221 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
222 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
223 * ln(.1) =~ -2.30
224 *
225 * Proof of (1):
226 * Solve (factor)**(power) =~ .1 given power (5*loadav):
227 * solving for factor,
228 * ln(factor) =~ (-2.30/5*loadav), or
229 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
230 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
231 *
232 * Proof of (2):
233 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
234 * solving for power,
235 * power*ln(b/(b+1)) =~ -2.30, or
236 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
237 *
238 * Actual power values for the implemented algorithm are as follows:
239 * loadav: 1 2 3 4
240 * power: 5.68 10.32 14.94 19.55
241 */
242
243 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
244 #define loadfactor(loadav) (2 * (loadav))
245
246 static fixpt_t
247 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
248 {
249
250 if (estcpu == 0) {
251 return 0;
252 }
253
254 #if !defined(_LP64)
255 /* avoid 64bit arithmetics. */
256 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
257 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
258 return estcpu * loadfac / (loadfac + FSCALE);
259 }
260 #endif /* !defined(_LP64) */
261
262 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
263 }
264
265 /*
266 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
267 * sleeping for at least seven times the loadfactor will decay p_estcpu to
268 * less than (1 << ESTCPU_SHIFT).
269 *
270 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
271 */
272 static fixpt_t
273 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
274 {
275
276 if ((n << FSHIFT) >= 7 * loadfac) {
277 return 0;
278 }
279
280 while (estcpu != 0 && n > 1) {
281 estcpu = decay_cpu(loadfac, estcpu);
282 n--;
283 }
284
285 return estcpu;
286 }
287
288 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
289 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
290
291 /*
292 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
293 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
294 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
295 *
296 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
297 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
298 *
299 * If you dont want to bother with the faster/more-accurate formula, you
300 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
301 * (more general) method of calculating the %age of CPU used by a process.
302 */
303 #define CCPU_SHIFT 11
304
305 /*
306 * Recompute process priorities, every hz ticks.
307 */
308 /* ARGSUSED */
309 void
310 schedcpu(void *arg)
311 {
312 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
313 struct lwp *l;
314 struct proc *p;
315 int s, minslp;
316 int clkhz;
317
318 schedcpu_ticks++;
319
320 proclist_lock_read();
321 PROCLIST_FOREACH(p, &allproc) {
322 /*
323 * Increment time in/out of memory and sleep time
324 * (if sleeping). We ignore overflow; with 16-bit int's
325 * (remember them?) overflow takes 45 days.
326 */
327 minslp = 2;
328 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
329 l->l_swtime++;
330 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
331 l->l_stat == LSSUSPENDED) {
332 l->l_slptime++;
333 minslp = min(minslp, l->l_slptime);
334 } else
335 minslp = 0;
336 }
337 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
338 /*
339 * If the process has slept the entire second,
340 * stop recalculating its priority until it wakes up.
341 */
342 if (minslp > 1)
343 continue;
344 s = splstatclock(); /* prevent state changes */
345 /*
346 * p_pctcpu is only for ps.
347 */
348 clkhz = stathz != 0 ? stathz : hz;
349 #if (FSHIFT >= CCPU_SHIFT)
350 p->p_pctcpu += (clkhz == 100)?
351 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
352 100 * (((fixpt_t) p->p_cpticks)
353 << (FSHIFT - CCPU_SHIFT)) / clkhz;
354 #else
355 p->p_pctcpu += ((FSCALE - ccpu) *
356 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
357 #endif
358 p->p_cpticks = 0;
359 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
360 splx(s); /* Done with the process CPU ticks update */
361 SCHED_LOCK(s);
362 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
363 if (l->l_slptime > 1)
364 continue;
365 resetpriority(l);
366 if (l->l_priority >= PUSER) {
367 if (l->l_stat == LSRUN &&
368 (l->l_flag & L_INMEM) &&
369 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
370 remrunqueue(l);
371 l->l_priority = l->l_usrpri;
372 setrunqueue(l);
373 } else
374 l->l_priority = l->l_usrpri;
375 }
376 }
377 SCHED_UNLOCK(s);
378 }
379 proclist_unlock_read();
380 uvm_meter();
381 wakeup((caddr_t)&lbolt);
382 callout_schedule(&schedcpu_ch, hz);
383 }
384
385 /*
386 * Recalculate the priority of a process after it has slept for a while.
387 */
388 void
389 updatepri(struct lwp *l)
390 {
391 struct proc *p = l->l_proc;
392 fixpt_t loadfac;
393
394 SCHED_ASSERT_LOCKED();
395 KASSERT(l->l_slptime > 1);
396
397 loadfac = loadfactor(averunnable.ldavg[0]);
398
399 l->l_slptime--; /* the first time was done in schedcpu */
400 /* XXX NJWLWP */
401 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
402 resetpriority(l);
403 }
404
405 /*
406 * During autoconfiguration or after a panic, a sleep will simply
407 * lower the priority briefly to allow interrupts, then return.
408 * The priority to be used (safepri) is machine-dependent, thus this
409 * value is initialized and maintained in the machine-dependent layers.
410 * This priority will typically be 0, or the lowest priority
411 * that is safe for use on the interrupt stack; it can be made
412 * higher to block network software interrupts after panics.
413 */
414 int safepri;
415
416 /*
417 * General sleep call. Suspends the current process until a wakeup is
418 * performed on the specified identifier. The process will then be made
419 * runnable with the specified priority. Sleeps at most timo/hz seconds
420 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
421 * before and after sleeping, else signals are not checked. Returns 0 if
422 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
423 * signal needs to be delivered, ERESTART is returned if the current system
424 * call should be restarted if possible, and EINTR is returned if the system
425 * call should be interrupted by the signal (return EINTR).
426 *
427 * The interlock is held until the scheduler_slock is acquired. The
428 * interlock will be locked before returning back to the caller
429 * unless the PNORELOCK flag is specified, in which case the
430 * interlock will always be unlocked upon return.
431 */
432 int
433 ltsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
434 volatile struct simplelock *interlock)
435 {
436 struct lwp *l = curlwp;
437 struct proc *p = l ? l->l_proc : NULL;
438 struct slpque *qp;
439 struct sadata_upcall *sau;
440 int sig, s;
441 int catch = priority & PCATCH;
442 int relock = (priority & PNORELOCK) == 0;
443 int exiterr = (priority & PNOEXITERR) == 0;
444
445 /*
446 * XXXSMP
447 * This is probably bogus. Figure out what the right
448 * thing to do here really is.
449 * Note that not sleeping if ltsleep is called with curlwp == NULL
450 * in the shutdown case is disgusting but partly necessary given
451 * how shutdown (barely) works.
452 */
453 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
454 /*
455 * After a panic, or during autoconfiguration,
456 * just give interrupts a chance, then just return;
457 * don't run any other procs or panic below,
458 * in case this is the idle process and already asleep.
459 */
460 s = splhigh();
461 splx(safepri);
462 splx(s);
463 if (interlock != NULL && relock == 0)
464 simple_unlock(interlock);
465 return (0);
466 }
467
468 KASSERT(p != NULL);
469 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
470
471 #ifdef KTRACE
472 if (KTRPOINT(p, KTR_CSW))
473 ktrcsw(l, 1, 0);
474 #endif
475
476 /*
477 * XXX We need to allocate the sadata_upcall structure here,
478 * XXX since we can't sleep while waiting for memory inside
479 * XXX sa_upcall(). It would be nice if we could safely
480 * XXX allocate the sadata_upcall structure on the stack, here.
481 */
482 if (l->l_flag & L_SA) {
483 sau = sadata_upcall_alloc(0);
484 } else {
485 sau = NULL;
486 }
487
488 SCHED_LOCK(s);
489
490 #ifdef DIAGNOSTIC
491 if (ident == NULL)
492 panic("ltsleep: ident == NULL");
493 if (l->l_stat != LSONPROC)
494 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
495 if (l->l_back != NULL)
496 panic("ltsleep: p_back != NULL");
497 #endif
498
499 l->l_wchan = ident;
500 l->l_wmesg = wmesg;
501 l->l_slptime = 0;
502 l->l_priority = priority & PRIMASK;
503
504 qp = SLPQUE(ident);
505 if (qp->sq_head == 0)
506 qp->sq_head = l;
507 else {
508 *qp->sq_tailp = l;
509 }
510 *(qp->sq_tailp = &l->l_forw) = 0;
511
512 if (timo)
513 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
514
515 /*
516 * We can now release the interlock; the scheduler_slock
517 * is held, so a thread can't get in to do wakeup() before
518 * we do the switch.
519 *
520 * XXX We leave the code block here, after inserting ourselves
521 * on the sleep queue, because we might want a more clever
522 * data structure for the sleep queues at some point.
523 */
524 if (interlock != NULL)
525 simple_unlock(interlock);
526
527 /*
528 * We put ourselves on the sleep queue and start our timeout
529 * before calling CURSIG, as we could stop there, and a wakeup
530 * or a SIGCONT (or both) could occur while we were stopped.
531 * A SIGCONT would cause us to be marked as SSLEEP
532 * without resuming us, thus we must be ready for sleep
533 * when CURSIG is called. If the wakeup happens while we're
534 * stopped, p->p_wchan will be 0 upon return from CURSIG.
535 */
536 if (catch) {
537 l->l_flag |= L_SINTR;
538 if (((sig = CURSIG(l)) != 0) ||
539 ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
540 if (l->l_wchan != NULL)
541 unsleep(l);
542 l->l_stat = LSONPROC;
543 SCHED_UNLOCK(s);
544 goto resume;
545 }
546 if (l->l_wchan == NULL) {
547 catch = 0;
548 SCHED_UNLOCK(s);
549 goto resume;
550 }
551 } else
552 sig = 0;
553 l->l_stat = LSSLEEP;
554 p->p_nrlwps--;
555 p->p_stats->p_ru.ru_nvcsw++;
556 SCHED_ASSERT_LOCKED();
557 if (l->l_flag & L_SA)
558 sa_switch(l, sau, SA_UPCALL_BLOCKED);
559 else
560 mi_switch(l, NULL);
561
562 #if defined(DDB) && !defined(GPROF)
563 /* handy breakpoint location after process "wakes" */
564 __asm(".globl bpendtsleep\nbpendtsleep:");
565 #endif
566 /*
567 * p->p_nrlwps is incremented by whoever made us runnable again,
568 * either setrunnable() or awaken().
569 */
570
571 SCHED_ASSERT_UNLOCKED();
572 splx(s);
573
574 resume:
575 KDASSERT(l->l_cpu != NULL);
576 KDASSERT(l->l_cpu == curcpu());
577 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
578
579 l->l_flag &= ~L_SINTR;
580 if (l->l_flag & L_TIMEOUT) {
581 l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
582 if (sig == 0) {
583 #ifdef KTRACE
584 if (KTRPOINT(p, KTR_CSW))
585 ktrcsw(l, 0, 0);
586 #endif
587 if (relock && interlock != NULL)
588 simple_lock(interlock);
589 return (EWOULDBLOCK);
590 }
591 } else if (timo)
592 callout_stop(&l->l_tsleep_ch);
593
594 if (catch) {
595 const int cancelled = l->l_flag & L_CANCELLED;
596 l->l_flag &= ~L_CANCELLED;
597 if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
598 #ifdef KTRACE
599 if (KTRPOINT(p, KTR_CSW))
600 ktrcsw(l, 0, 0);
601 #endif
602 if (relock && interlock != NULL)
603 simple_lock(interlock);
604 /*
605 * If this sleep was canceled, don't let the syscall
606 * restart.
607 */
608 if (cancelled ||
609 (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
610 return (EINTR);
611 return (ERESTART);
612 }
613 }
614
615 #ifdef KTRACE
616 if (KTRPOINT(p, KTR_CSW))
617 ktrcsw(l, 0, 0);
618 #endif
619 if (relock && interlock != NULL)
620 simple_lock(interlock);
621
622 /* XXXNJW this is very much a kluge.
623 * revisit. a better way of preventing looping/hanging syscalls like
624 * wait4() and _lwp_wait() from wedging an exiting process
625 * would be preferred.
626 */
627 if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
628 return (EINTR);
629 return (0);
630 }
631
632 /*
633 * Implement timeout for tsleep.
634 * If process hasn't been awakened (wchan non-zero),
635 * set timeout flag and undo the sleep. If proc
636 * is stopped, just unsleep so it will remain stopped.
637 */
638 void
639 endtsleep(void *arg)
640 {
641 struct lwp *l;
642 int s;
643
644 l = (struct lwp *)arg;
645 SCHED_LOCK(s);
646 if (l->l_wchan) {
647 if (l->l_stat == LSSLEEP)
648 setrunnable(l);
649 else
650 unsleep(l);
651 l->l_flag |= L_TIMEOUT;
652 }
653 SCHED_UNLOCK(s);
654 }
655
656 /*
657 * Remove a process from its wait queue
658 */
659 void
660 unsleep(struct lwp *l)
661 {
662 struct slpque *qp;
663 struct lwp **hp;
664
665 SCHED_ASSERT_LOCKED();
666
667 if (l->l_wchan) {
668 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
669 while (*hp != l)
670 hp = &(*hp)->l_forw;
671 *hp = l->l_forw;
672 if (qp->sq_tailp == &l->l_forw)
673 qp->sq_tailp = hp;
674 l->l_wchan = 0;
675 }
676 }
677
678 inline void
679 sa_awaken(struct lwp *l)
680 {
681
682 SCHED_ASSERT_LOCKED();
683
684 if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
685 l->l_flag &= ~L_SA_IDLE;
686 }
687
688 /*
689 * Optimized-for-wakeup() version of setrunnable().
690 */
691 inline void
692 awaken(struct lwp *l)
693 {
694
695 SCHED_ASSERT_LOCKED();
696
697 if (l->l_proc->p_sa)
698 sa_awaken(l);
699
700 if (l->l_slptime > 1)
701 updatepri(l);
702 l->l_slptime = 0;
703 l->l_stat = LSRUN;
704 l->l_proc->p_nrlwps++;
705 /*
706 * Since curpriority is a user priority, p->p_priority
707 * is always better than curpriority on the last CPU on
708 * which it ran.
709 *
710 * XXXSMP See affinity comment in resched_proc().
711 */
712 if (l->l_flag & L_INMEM) {
713 setrunqueue(l);
714 KASSERT(l->l_cpu != NULL);
715 need_resched(l->l_cpu);
716 } else
717 sched_wakeup(&proc0);
718 }
719
720 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
721 void
722 sched_unlock_idle(void)
723 {
724
725 simple_unlock(&sched_lock);
726 }
727
728 void
729 sched_lock_idle(void)
730 {
731
732 simple_lock(&sched_lock);
733 }
734 #endif /* MULTIPROCESSOR || LOCKDEBUG */
735
736 /*
737 * Make all processes sleeping on the specified identifier runnable.
738 */
739
740 void
741 wakeup(volatile const void *ident)
742 {
743 int s;
744
745 SCHED_ASSERT_UNLOCKED();
746
747 SCHED_LOCK(s);
748 sched_wakeup(ident);
749 SCHED_UNLOCK(s);
750 }
751
752 void
753 sched_wakeup(volatile const void *ident)
754 {
755 struct slpque *qp;
756 struct lwp *l, **q;
757
758 SCHED_ASSERT_LOCKED();
759
760 qp = SLPQUE(ident);
761 restart:
762 for (q = &qp->sq_head; (l = *q) != NULL; ) {
763 #ifdef DIAGNOSTIC
764 if (l->l_back || (l->l_stat != LSSLEEP &&
765 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
766 panic("wakeup");
767 #endif
768 if (l->l_wchan == ident) {
769 l->l_wchan = 0;
770 *q = l->l_forw;
771 if (qp->sq_tailp == &l->l_forw)
772 qp->sq_tailp = q;
773 if (l->l_stat == LSSLEEP) {
774 awaken(l);
775 goto restart;
776 }
777 } else
778 q = &l->l_forw;
779 }
780 }
781
782 /*
783 * Make the highest priority process first in line on the specified
784 * identifier runnable.
785 */
786 void
787 wakeup_one(volatile const void *ident)
788 {
789 struct slpque *qp;
790 struct lwp *l, **q;
791 struct lwp *best_sleepp, **best_sleepq;
792 struct lwp *best_stopp, **best_stopq;
793 int s;
794
795 best_sleepp = best_stopp = NULL;
796 best_sleepq = best_stopq = NULL;
797
798 SCHED_LOCK(s);
799
800 qp = SLPQUE(ident);
801
802 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
803 #ifdef DIAGNOSTIC
804 if (l->l_back || (l->l_stat != LSSLEEP &&
805 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
806 panic("wakeup_one");
807 #endif
808 if (l->l_wchan == ident) {
809 if (l->l_stat == LSSLEEP) {
810 if (best_sleepp == NULL ||
811 l->l_priority < best_sleepp->l_priority) {
812 best_sleepp = l;
813 best_sleepq = q;
814 }
815 } else {
816 if (best_stopp == NULL ||
817 l->l_priority < best_stopp->l_priority) {
818 best_stopp = l;
819 best_stopq = q;
820 }
821 }
822 }
823 }
824
825 /*
826 * Consider any SSLEEP process higher than the highest priority SSTOP
827 * process.
828 */
829 if (best_sleepp != NULL) {
830 l = best_sleepp;
831 q = best_sleepq;
832 } else {
833 l = best_stopp;
834 q = best_stopq;
835 }
836
837 if (l != NULL) {
838 l->l_wchan = NULL;
839 *q = l->l_forw;
840 if (qp->sq_tailp == &l->l_forw)
841 qp->sq_tailp = q;
842 if (l->l_stat == LSSLEEP)
843 awaken(l);
844 }
845 SCHED_UNLOCK(s);
846 }
847
848 /*
849 * General yield call. Puts the current process back on its run queue and
850 * performs a voluntary context switch. Should only be called when the
851 * current process explicitly requests it (eg sched_yield(2) in compat code).
852 */
853 void
854 yield(void)
855 {
856 struct lwp *l = curlwp;
857 int s;
858
859 SCHED_LOCK(s);
860 l->l_priority = l->l_usrpri;
861 l->l_stat = LSRUN;
862 setrunqueue(l);
863 l->l_proc->p_stats->p_ru.ru_nvcsw++;
864 mi_switch(l, NULL);
865 SCHED_ASSERT_UNLOCKED();
866 splx(s);
867 }
868
869 /*
870 * General preemption call. Puts the current process back on its run queue
871 * and performs an involuntary context switch.
872 * The 'more' ("more work to do") argument is boolean. Returning to userspace
873 * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
874 * This will be used to indicate to the SA subsystem that the LWP is
875 * not yet finished in the kernel.
876 */
877
878 void
879 preempt(int more)
880 {
881 struct lwp *l = curlwp;
882 int r, s;
883
884 SCHED_LOCK(s);
885 l->l_priority = l->l_usrpri;
886 l->l_stat = LSRUN;
887 setrunqueue(l);
888 l->l_proc->p_stats->p_ru.ru_nivcsw++;
889 r = mi_switch(l, NULL);
890 SCHED_ASSERT_UNLOCKED();
891 splx(s);
892 if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
893 sa_preempt(l);
894 }
895
896 /*
897 * The machine independent parts of context switch.
898 * Must be called at splsched() (no higher!) and with
899 * the sched_lock held.
900 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
901 * the next lwp.
902 *
903 * Returns 1 if another process was actually run.
904 */
905 int
906 mi_switch(struct lwp *l, struct lwp *newl)
907 {
908 struct schedstate_percpu *spc;
909 struct rlimit *rlim;
910 long s, u;
911 struct timeval tv;
912 int hold_count;
913 struct proc *p = l->l_proc;
914 int retval;
915
916 SCHED_ASSERT_LOCKED();
917
918 /*
919 * Release the kernel_lock, as we are about to yield the CPU.
920 * The scheduler lock is still held until cpu_switch()
921 * selects a new process and removes it from the run queue.
922 */
923 hold_count = KERNEL_LOCK_RELEASE_ALL();
924
925 KDASSERT(l->l_cpu != NULL);
926 KDASSERT(l->l_cpu == curcpu());
927
928 spc = &l->l_cpu->ci_schedstate;
929
930 #ifdef LOCKDEBUG
931 spinlock_switchcheck();
932 simple_lock_switchcheck();
933 #endif
934
935 /*
936 * Compute the amount of time during which the current
937 * process was running.
938 */
939 microtime(&tv);
940 u = p->p_rtime.tv_usec +
941 (tv.tv_usec - spc->spc_runtime.tv_usec);
942 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
943 if (u < 0) {
944 u += 1000000;
945 s--;
946 } else if (u >= 1000000) {
947 u -= 1000000;
948 s++;
949 }
950 p->p_rtime.tv_usec = u;
951 p->p_rtime.tv_sec = s;
952
953 /*
954 * Check if the process exceeds its CPU resource allocation.
955 * If over max, kill it. In any case, if it has run for more
956 * than 10 minutes, reduce priority to give others a chance.
957 */
958 rlim = &p->p_rlimit[RLIMIT_CPU];
959 if (s >= rlim->rlim_cur) {
960 /*
961 * XXXSMP: we're inside the scheduler lock perimeter;
962 * use sched_psignal.
963 */
964 if (s >= rlim->rlim_max)
965 sched_psignal(p, SIGKILL);
966 else {
967 sched_psignal(p, SIGXCPU);
968 if (rlim->rlim_cur < rlim->rlim_max)
969 rlim->rlim_cur += 5;
970 }
971 }
972 if (autonicetime && s > autonicetime && p->p_ucred->cr_uid &&
973 p->p_nice == NZERO) {
974 p->p_nice = autoniceval + NZERO;
975 resetpriority(l);
976 }
977
978 /*
979 * Process is about to yield the CPU; clear the appropriate
980 * scheduling flags.
981 */
982 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
983
984 #ifdef KSTACK_CHECK_MAGIC
985 kstack_check_magic(l);
986 #endif
987
988 /*
989 * If we are using h/w performance counters, save context.
990 */
991 #if PERFCTRS
992 if (PMC_ENABLED(p))
993 pmc_save_context(p);
994 #endif
995
996 /*
997 * Switch to the new current process. When we
998 * run again, we'll return back here.
999 */
1000 uvmexp.swtch++;
1001 if (newl == NULL) {
1002 retval = cpu_switch(l, NULL);
1003 } else {
1004 remrunqueue(newl);
1005 cpu_switchto(l, newl);
1006 retval = 0;
1007 }
1008
1009 /*
1010 * If we are using h/w performance counters, restore context.
1011 */
1012 #if PERFCTRS
1013 if (PMC_ENABLED(p))
1014 pmc_restore_context(p);
1015 #endif
1016
1017 /*
1018 * Make sure that MD code released the scheduler lock before
1019 * resuming us.
1020 */
1021 SCHED_ASSERT_UNLOCKED();
1022
1023 /*
1024 * We're running again; record our new start time. We might
1025 * be running on a new CPU now, so don't use the cache'd
1026 * schedstate_percpu pointer.
1027 */
1028 KDASSERT(l->l_cpu != NULL);
1029 KDASSERT(l->l_cpu == curcpu());
1030 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
1031
1032 /*
1033 * Reacquire the kernel_lock now. We do this after we've
1034 * released the scheduler lock to avoid deadlock, and before
1035 * we reacquire the interlock.
1036 */
1037 KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
1038
1039 return retval;
1040 }
1041
1042 /*
1043 * Initialize the (doubly-linked) run queues
1044 * to be empty.
1045 */
1046 void
1047 rqinit()
1048 {
1049 int i;
1050
1051 for (i = 0; i < RUNQUE_NQS; i++)
1052 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
1053 (struct lwp *)&sched_qs[i];
1054 }
1055
1056 static inline void
1057 resched_proc(struct lwp *l, u_char pri)
1058 {
1059 struct cpu_info *ci;
1060
1061 /*
1062 * XXXSMP
1063 * Since l->l_cpu persists across a context switch,
1064 * this gives us *very weak* processor affinity, in
1065 * that we notify the CPU on which the process last
1066 * ran that it should try to switch.
1067 *
1068 * This does not guarantee that the process will run on
1069 * that processor next, because another processor might
1070 * grab it the next time it performs a context switch.
1071 *
1072 * This also does not handle the case where its last
1073 * CPU is running a higher-priority process, but every
1074 * other CPU is running a lower-priority process. There
1075 * are ways to handle this situation, but they're not
1076 * currently very pretty, and we also need to weigh the
1077 * cost of moving a process from one CPU to another.
1078 *
1079 * XXXSMP
1080 * There is also the issue of locking the other CPU's
1081 * sched state, which we currently do not do.
1082 */
1083 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1084 if (pri < ci->ci_schedstate.spc_curpriority)
1085 need_resched(ci);
1086 }
1087
1088 /*
1089 * Change process state to be runnable,
1090 * placing it on the run queue if it is in memory,
1091 * and awakening the swapper if it isn't in memory.
1092 */
1093 void
1094 setrunnable(struct lwp *l)
1095 {
1096 struct proc *p = l->l_proc;
1097
1098 SCHED_ASSERT_LOCKED();
1099
1100 switch (l->l_stat) {
1101 case 0:
1102 case LSRUN:
1103 case LSONPROC:
1104 case LSZOMB:
1105 case LSDEAD:
1106 default:
1107 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1108 case LSSTOP:
1109 /*
1110 * If we're being traced (possibly because someone attached us
1111 * while we were stopped), check for a signal from the debugger.
1112 */
1113 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1114 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1115 CHECKSIGS(p);
1116 }
1117 case LSSLEEP:
1118 unsleep(l); /* e.g. when sending signals */
1119 break;
1120
1121 case LSIDL:
1122 break;
1123 case LSSUSPENDED:
1124 break;
1125 }
1126
1127 if (l->l_proc->p_sa)
1128 sa_awaken(l);
1129
1130 l->l_stat = LSRUN;
1131 p->p_nrlwps++;
1132
1133 if (l->l_flag & L_INMEM)
1134 setrunqueue(l);
1135
1136 if (l->l_slptime > 1)
1137 updatepri(l);
1138 l->l_slptime = 0;
1139 if ((l->l_flag & L_INMEM) == 0)
1140 sched_wakeup((caddr_t)&proc0);
1141 else
1142 resched_proc(l, l->l_priority);
1143 }
1144
1145 /*
1146 * Compute the priority of a process when running in user mode.
1147 * Arrange to reschedule if the resulting priority is better
1148 * than that of the current process.
1149 */
1150 void
1151 resetpriority(struct lwp *l)
1152 {
1153 unsigned int newpriority;
1154 struct proc *p = l->l_proc;
1155
1156 SCHED_ASSERT_LOCKED();
1157
1158 newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
1159 NICE_WEIGHT * (p->p_nice - NZERO);
1160 newpriority = min(newpriority, MAXPRI);
1161 l->l_usrpri = newpriority;
1162 resched_proc(l, l->l_usrpri);
1163 }
1164
1165 /*
1166 * Recompute priority for all LWPs in a process.
1167 */
1168 void
1169 resetprocpriority(struct proc *p)
1170 {
1171 struct lwp *l;
1172
1173 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1174 resetpriority(l);
1175 }
1176
1177 /*
1178 * We adjust the priority of the current process. The priority of a process
1179 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
1180 * is increased here. The formula for computing priorities (in kern_synch.c)
1181 * will compute a different value each time p_estcpu increases. This can
1182 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1183 * queue will not change. The CPU usage estimator ramps up quite quickly
1184 * when the process is running (linearly), and decays away exponentially, at
1185 * a rate which is proportionally slower when the system is busy. The basic
1186 * principle is that the system will 90% forget that the process used a lot
1187 * of CPU time in 5 * loadav seconds. This causes the system to favor
1188 * processes which haven't run much recently, and to round-robin among other
1189 * processes.
1190 */
1191
1192 void
1193 schedclock(struct lwp *l)
1194 {
1195 struct proc *p = l->l_proc;
1196 int s;
1197
1198 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
1199 SCHED_LOCK(s);
1200 resetpriority(l);
1201 SCHED_UNLOCK(s);
1202
1203 if (l->l_priority >= PUSER)
1204 l->l_priority = l->l_usrpri;
1205 }
1206
1207 void
1208 suspendsched()
1209 {
1210 struct lwp *l;
1211 int s;
1212
1213 /*
1214 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1215 * LSSUSPENDED.
1216 */
1217 proclist_lock_read();
1218 SCHED_LOCK(s);
1219 LIST_FOREACH(l, &alllwp, l_list) {
1220 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1221 continue;
1222
1223 switch (l->l_stat) {
1224 case LSRUN:
1225 l->l_proc->p_nrlwps--;
1226 if ((l->l_flag & L_INMEM) != 0)
1227 remrunqueue(l);
1228 /* FALLTHROUGH */
1229 case LSSLEEP:
1230 l->l_stat = LSSUSPENDED;
1231 break;
1232 case LSONPROC:
1233 /*
1234 * XXX SMP: we need to deal with processes on
1235 * others CPU !
1236 */
1237 break;
1238 default:
1239 break;
1240 }
1241 }
1242 SCHED_UNLOCK(s);
1243 proclist_unlock_read();
1244 }
1245
1246 /*
1247 * scheduler_fork_hook:
1248 *
1249 * Inherit the parent's scheduler history.
1250 */
1251 void
1252 scheduler_fork_hook(struct proc *parent, struct proc *child)
1253 {
1254
1255 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1256 child->p_forktime = schedcpu_ticks;
1257 }
1258
1259 /*
1260 * scheduler_wait_hook:
1261 *
1262 * Chargeback parents for the sins of their children.
1263 */
1264 void
1265 scheduler_wait_hook(struct proc *parent, struct proc *child)
1266 {
1267 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1268 fixpt_t estcpu;
1269
1270 /* XXX Only if parent != init?? */
1271
1272 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1273 schedcpu_ticks - child->p_forktime);
1274 if (child->p_estcpu > estcpu) {
1275 parent->p_estcpu =
1276 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1277 }
1278 }
1279
1280 /*
1281 * Low-level routines to access the run queue. Optimised assembler
1282 * routines can override these.
1283 */
1284
1285 #ifndef __HAVE_MD_RUNQUEUE
1286
1287 /*
1288 * On some architectures, it's faster to use a MSB ordering for the priorites
1289 * than the traditional LSB ordering.
1290 */
1291 #ifdef __HAVE_BIGENDIAN_BITOPS
1292 #define RQMASK(n) (0x80000000 >> (n))
1293 #else
1294 #define RQMASK(n) (0x00000001 << (n))
1295 #endif
1296
1297 /*
1298 * The primitives that manipulate the run queues. whichqs tells which
1299 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1300 * into queues, remrunqueue removes them from queues. The running process is
1301 * on no queue, other processes are on a queue related to p->p_priority,
1302 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1303 * available queues.
1304 */
1305
1306 #ifdef RQDEBUG
1307 static void
1308 checkrunqueue(int whichq, struct lwp *l)
1309 {
1310 const struct prochd * const rq = &sched_qs[whichq];
1311 struct lwp *l2;
1312 int found = 0;
1313 int die = 0;
1314 int empty = 1;
1315 for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
1316 if (l2->l_stat != LSRUN) {
1317 printf("checkrunqueue[%d]: lwp %p state (%d) "
1318 " != LSRUN\n", whichq, l2, l2->l_stat);
1319 }
1320 if (l2->l_back->l_forw != l2) {
1321 printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1322 "corrupt %p\n", whichq, l2, l2->l_back,
1323 l2->l_back->l_forw);
1324 die = 1;
1325 }
1326 if (l2->l_forw->l_back != l2) {
1327 printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1328 "corrupt %p\n", whichq, l2, l2->l_forw,
1329 l2->l_forw->l_back);
1330 die = 1;
1331 }
1332 if (l2 == l)
1333 found = 1;
1334 empty = 0;
1335 }
1336 if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1337 printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1338 whichq, rq);
1339 die = 1;
1340 } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1341 printf("checkrunqueue[%d]: bit clear for non-empty "
1342 "run-queue %p\n", whichq, rq);
1343 die = 1;
1344 }
1345 if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1346 printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1347 whichq, l);
1348 die = 1;
1349 }
1350 if (l != NULL && empty) {
1351 printf("checkrunqueue[%d]: empty run-queue %p with "
1352 "active lwp %p\n", whichq, rq, l);
1353 die = 1;
1354 }
1355 if (l != NULL && !found) {
1356 printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1357 whichq, l, rq);
1358 die = 1;
1359 }
1360 if (die)
1361 panic("checkrunqueue: inconsistency found");
1362 }
1363 #endif /* RQDEBUG */
1364
1365 void
1366 setrunqueue(struct lwp *l)
1367 {
1368 struct prochd *rq;
1369 struct lwp *prev;
1370 const int whichq = l->l_priority / PPQ;
1371
1372 #ifdef RQDEBUG
1373 checkrunqueue(whichq, NULL);
1374 #endif
1375 #ifdef DIAGNOSTIC
1376 if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1377 panic("setrunqueue");
1378 #endif
1379 sched_whichqs |= RQMASK(whichq);
1380 rq = &sched_qs[whichq];
1381 prev = rq->ph_rlink;
1382 l->l_forw = (struct lwp *)rq;
1383 rq->ph_rlink = l;
1384 prev->l_forw = l;
1385 l->l_back = prev;
1386 #ifdef RQDEBUG
1387 checkrunqueue(whichq, l);
1388 #endif
1389 }
1390
1391 void
1392 remrunqueue(struct lwp *l)
1393 {
1394 struct lwp *prev, *next;
1395 const int whichq = l->l_priority / PPQ;
1396 #ifdef RQDEBUG
1397 checkrunqueue(whichq, l);
1398 #endif
1399 #ifdef DIAGNOSTIC
1400 if (((sched_whichqs & RQMASK(whichq)) == 0))
1401 panic("remrunqueue: bit %d not set", whichq);
1402 #endif
1403 prev = l->l_back;
1404 l->l_back = NULL;
1405 next = l->l_forw;
1406 prev->l_forw = next;
1407 next->l_back = prev;
1408 if (prev == next)
1409 sched_whichqs &= ~RQMASK(whichq);
1410 #ifdef RQDEBUG
1411 checkrunqueue(whichq, NULL);
1412 #endif
1413 }
1414
1415 #undef RQMASK
1416 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1417