kern_synch.c revision 1.161 1 /* $NetBSD: kern_synch.c,v 1.161 2006/05/14 21:15:11 elad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by Charles M. Hannum.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the NetBSD
24 * Foundation, Inc. and its contributors.
25 * 4. Neither the name of The NetBSD Foundation nor the names of its
26 * contributors may be used to endorse or promote products derived
27 * from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*-
43 * Copyright (c) 1982, 1986, 1990, 1991, 1993
44 * The Regents of the University of California. All rights reserved.
45 * (c) UNIX System Laboratories, Inc.
46 * All or some portions of this file are derived from material licensed
47 * to the University of California by American Telephone and Telegraph
48 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 * the permission of UNIX System Laboratories, Inc.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.161 2006/05/14 21:15:11 elad Exp $");
80
81 #include "opt_ddb.h"
82 #include "opt_ktrace.h"
83 #include "opt_kstack.h"
84 #include "opt_lockdebug.h"
85 #include "opt_multiprocessor.h"
86 #include "opt_perfctrs.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/proc.h>
92 #include <sys/kernel.h>
93 #include <sys/buf.h>
94 #if defined(PERFCTRS)
95 #include <sys/pmc.h>
96 #endif
97 #include <sys/signalvar.h>
98 #include <sys/resourcevar.h>
99 #include <sys/sched.h>
100 #include <sys/sa.h>
101 #include <sys/savar.h>
102 #include <sys/kauth.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #ifdef KTRACE
107 #include <sys/ktrace.h>
108 #endif
109
110 #include <machine/cpu.h>
111
112 int lbolt; /* once a second sleep address */
113 int rrticks; /* number of hardclock ticks per roundrobin() */
114
115 /*
116 * Sleep queues.
117 *
118 * We're only looking at 7 bits of the address; everything is
119 * aligned to 4, lots of things are aligned to greater powers
120 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
121 */
122 #define SLPQUE_TABLESIZE 128
123 #define SLPQUE_LOOKUP(x) (((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
124
125 #define SLPQUE(ident) (&sched_slpque[SLPQUE_LOOKUP(ident)])
126
127 /*
128 * The global scheduler state.
129 */
130 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
131 volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
132 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
133
134 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
135
136 void schedcpu(void *);
137 void updatepri(struct lwp *);
138 void endtsleep(void *);
139
140 inline void sa_awaken(struct lwp *);
141 inline void awaken(struct lwp *);
142
143 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
144 static unsigned int schedcpu_ticks;
145
146
147 /*
148 * Force switch among equal priority processes every 100ms.
149 * Called from hardclock every hz/10 == rrticks hardclock ticks.
150 */
151 /* ARGSUSED */
152 void
153 roundrobin(struct cpu_info *ci)
154 {
155 struct schedstate_percpu *spc = &ci->ci_schedstate;
156
157 spc->spc_rrticks = rrticks;
158
159 if (curlwp != NULL) {
160 if (spc->spc_flags & SPCF_SEENRR) {
161 /*
162 * The process has already been through a roundrobin
163 * without switching and may be hogging the CPU.
164 * Indicate that the process should yield.
165 */
166 spc->spc_flags |= SPCF_SHOULDYIELD;
167 } else
168 spc->spc_flags |= SPCF_SEENRR;
169 }
170 need_resched(curcpu());
171 }
172
173 #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
174 #define NICE_WEIGHT 2 /* priorities per nice level */
175
176 #define ESTCPU_SHIFT 11
177 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
178 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
179
180 /*
181 * Constants for digital decay and forget:
182 * 90% of (p_estcpu) usage in 5 * loadav time
183 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
184 * Note that, as ps(1) mentions, this can let percentages
185 * total over 100% (I've seen 137.9% for 3 processes).
186 *
187 * Note that hardclock updates p_estcpu and p_cpticks independently.
188 *
189 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
190 * That is, the system wants to compute a value of decay such
191 * that the following for loop:
192 * for (i = 0; i < (5 * loadavg); i++)
193 * p_estcpu *= decay;
194 * will compute
195 * p_estcpu *= 0.1;
196 * for all values of loadavg:
197 *
198 * Mathematically this loop can be expressed by saying:
199 * decay ** (5 * loadavg) ~= .1
200 *
201 * The system computes decay as:
202 * decay = (2 * loadavg) / (2 * loadavg + 1)
203 *
204 * We wish to prove that the system's computation of decay
205 * will always fulfill the equation:
206 * decay ** (5 * loadavg) ~= .1
207 *
208 * If we compute b as:
209 * b = 2 * loadavg
210 * then
211 * decay = b / (b + 1)
212 *
213 * We now need to prove two things:
214 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
215 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
216 *
217 * Facts:
218 * For x close to zero, exp(x) =~ 1 + x, since
219 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
220 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
221 * For x close to zero, ln(1+x) =~ x, since
222 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
223 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
224 * ln(.1) =~ -2.30
225 *
226 * Proof of (1):
227 * Solve (factor)**(power) =~ .1 given power (5*loadav):
228 * solving for factor,
229 * ln(factor) =~ (-2.30/5*loadav), or
230 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
231 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
232 *
233 * Proof of (2):
234 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
235 * solving for power,
236 * power*ln(b/(b+1)) =~ -2.30, or
237 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
238 *
239 * Actual power values for the implemented algorithm are as follows:
240 * loadav: 1 2 3 4
241 * power: 5.68 10.32 14.94 19.55
242 */
243
244 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
245 #define loadfactor(loadav) (2 * (loadav))
246
247 static fixpt_t
248 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
249 {
250
251 if (estcpu == 0) {
252 return 0;
253 }
254
255 #if !defined(_LP64)
256 /* avoid 64bit arithmetics. */
257 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
258 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
259 return estcpu * loadfac / (loadfac + FSCALE);
260 }
261 #endif /* !defined(_LP64) */
262
263 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
264 }
265
266 /*
267 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
268 * sleeping for at least seven times the loadfactor will decay p_estcpu to
269 * less than (1 << ESTCPU_SHIFT).
270 *
271 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
272 */
273 static fixpt_t
274 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
275 {
276
277 if ((n << FSHIFT) >= 7 * loadfac) {
278 return 0;
279 }
280
281 while (estcpu != 0 && n > 1) {
282 estcpu = decay_cpu(loadfac, estcpu);
283 n--;
284 }
285
286 return estcpu;
287 }
288
289 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
290 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
291
292 /*
293 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
294 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
295 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
296 *
297 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
298 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
299 *
300 * If you dont want to bother with the faster/more-accurate formula, you
301 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
302 * (more general) method of calculating the %age of CPU used by a process.
303 */
304 #define CCPU_SHIFT 11
305
306 /*
307 * Recompute process priorities, every hz ticks.
308 */
309 /* ARGSUSED */
310 void
311 schedcpu(void *arg)
312 {
313 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
314 struct lwp *l;
315 struct proc *p;
316 int s, minslp;
317 int clkhz;
318
319 schedcpu_ticks++;
320
321 proclist_lock_read();
322 PROCLIST_FOREACH(p, &allproc) {
323 /*
324 * Increment time in/out of memory and sleep time
325 * (if sleeping). We ignore overflow; with 16-bit int's
326 * (remember them?) overflow takes 45 days.
327 */
328 minslp = 2;
329 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
330 l->l_swtime++;
331 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
332 l->l_stat == LSSUSPENDED) {
333 l->l_slptime++;
334 minslp = min(minslp, l->l_slptime);
335 } else
336 minslp = 0;
337 }
338 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
339 /*
340 * If the process has slept the entire second,
341 * stop recalculating its priority until it wakes up.
342 */
343 if (minslp > 1)
344 continue;
345 s = splstatclock(); /* prevent state changes */
346 /*
347 * p_pctcpu is only for ps.
348 */
349 clkhz = stathz != 0 ? stathz : hz;
350 #if (FSHIFT >= CCPU_SHIFT)
351 p->p_pctcpu += (clkhz == 100)?
352 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
353 100 * (((fixpt_t) p->p_cpticks)
354 << (FSHIFT - CCPU_SHIFT)) / clkhz;
355 #else
356 p->p_pctcpu += ((FSCALE - ccpu) *
357 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
358 #endif
359 p->p_cpticks = 0;
360 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
361 splx(s); /* Done with the process CPU ticks update */
362 SCHED_LOCK(s);
363 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
364 if (l->l_slptime > 1)
365 continue;
366 resetpriority(l);
367 if (l->l_priority >= PUSER) {
368 if (l->l_stat == LSRUN &&
369 (l->l_flag & L_INMEM) &&
370 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
371 remrunqueue(l);
372 l->l_priority = l->l_usrpri;
373 setrunqueue(l);
374 } else
375 l->l_priority = l->l_usrpri;
376 }
377 }
378 SCHED_UNLOCK(s);
379 }
380 proclist_unlock_read();
381 uvm_meter();
382 wakeup((caddr_t)&lbolt);
383 callout_schedule(&schedcpu_ch, hz);
384 }
385
386 /*
387 * Recalculate the priority of a process after it has slept for a while.
388 */
389 void
390 updatepri(struct lwp *l)
391 {
392 struct proc *p = l->l_proc;
393 fixpt_t loadfac;
394
395 SCHED_ASSERT_LOCKED();
396 KASSERT(l->l_slptime > 1);
397
398 loadfac = loadfactor(averunnable.ldavg[0]);
399
400 l->l_slptime--; /* the first time was done in schedcpu */
401 /* XXX NJWLWP */
402 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
403 resetpriority(l);
404 }
405
406 /*
407 * During autoconfiguration or after a panic, a sleep will simply
408 * lower the priority briefly to allow interrupts, then return.
409 * The priority to be used (safepri) is machine-dependent, thus this
410 * value is initialized and maintained in the machine-dependent layers.
411 * This priority will typically be 0, or the lowest priority
412 * that is safe for use on the interrupt stack; it can be made
413 * higher to block network software interrupts after panics.
414 */
415 int safepri;
416
417 /*
418 * General sleep call. Suspends the current process until a wakeup is
419 * performed on the specified identifier. The process will then be made
420 * runnable with the specified priority. Sleeps at most timo/hz seconds
421 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
422 * before and after sleeping, else signals are not checked. Returns 0 if
423 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
424 * signal needs to be delivered, ERESTART is returned if the current system
425 * call should be restarted if possible, and EINTR is returned if the system
426 * call should be interrupted by the signal (return EINTR).
427 *
428 * The interlock is held until the scheduler_slock is acquired. The
429 * interlock will be locked before returning back to the caller
430 * unless the PNORELOCK flag is specified, in which case the
431 * interlock will always be unlocked upon return.
432 */
433 int
434 ltsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
435 volatile struct simplelock *interlock)
436 {
437 struct lwp *l = curlwp;
438 struct proc *p = l ? l->l_proc : NULL;
439 struct slpque *qp;
440 struct sadata_upcall *sau;
441 int sig, s;
442 int catch = priority & PCATCH;
443 int relock = (priority & PNORELOCK) == 0;
444 int exiterr = (priority & PNOEXITERR) == 0;
445
446 /*
447 * XXXSMP
448 * This is probably bogus. Figure out what the right
449 * thing to do here really is.
450 * Note that not sleeping if ltsleep is called with curlwp == NULL
451 * in the shutdown case is disgusting but partly necessary given
452 * how shutdown (barely) works.
453 */
454 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
455 /*
456 * After a panic, or during autoconfiguration,
457 * just give interrupts a chance, then just return;
458 * don't run any other procs or panic below,
459 * in case this is the idle process and already asleep.
460 */
461 s = splhigh();
462 splx(safepri);
463 splx(s);
464 if (interlock != NULL && relock == 0)
465 simple_unlock(interlock);
466 return (0);
467 }
468
469 KASSERT(p != NULL);
470 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
471
472 #ifdef KTRACE
473 if (KTRPOINT(p, KTR_CSW))
474 ktrcsw(l, 1, 0);
475 #endif
476
477 /*
478 * XXX We need to allocate the sadata_upcall structure here,
479 * XXX since we can't sleep while waiting for memory inside
480 * XXX sa_upcall(). It would be nice if we could safely
481 * XXX allocate the sadata_upcall structure on the stack, here.
482 */
483 if (l->l_flag & L_SA) {
484 sau = sadata_upcall_alloc(0);
485 } else {
486 sau = NULL;
487 }
488
489 SCHED_LOCK(s);
490
491 #ifdef DIAGNOSTIC
492 if (ident == NULL)
493 panic("ltsleep: ident == NULL");
494 if (l->l_stat != LSONPROC)
495 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
496 if (l->l_back != NULL)
497 panic("ltsleep: p_back != NULL");
498 #endif
499
500 l->l_wchan = ident;
501 l->l_wmesg = wmesg;
502 l->l_slptime = 0;
503 l->l_priority = priority & PRIMASK;
504
505 qp = SLPQUE(ident);
506 if (qp->sq_head == 0)
507 qp->sq_head = l;
508 else {
509 *qp->sq_tailp = l;
510 }
511 *(qp->sq_tailp = &l->l_forw) = 0;
512
513 if (timo)
514 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
515
516 /*
517 * We can now release the interlock; the scheduler_slock
518 * is held, so a thread can't get in to do wakeup() before
519 * we do the switch.
520 *
521 * XXX We leave the code block here, after inserting ourselves
522 * on the sleep queue, because we might want a more clever
523 * data structure for the sleep queues at some point.
524 */
525 if (interlock != NULL)
526 simple_unlock(interlock);
527
528 /*
529 * We put ourselves on the sleep queue and start our timeout
530 * before calling CURSIG, as we could stop there, and a wakeup
531 * or a SIGCONT (or both) could occur while we were stopped.
532 * A SIGCONT would cause us to be marked as SSLEEP
533 * without resuming us, thus we must be ready for sleep
534 * when CURSIG is called. If the wakeup happens while we're
535 * stopped, p->p_wchan will be 0 upon return from CURSIG.
536 */
537 if (catch) {
538 l->l_flag |= L_SINTR;
539 if (((sig = CURSIG(l)) != 0) ||
540 ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
541 if (l->l_wchan != NULL)
542 unsleep(l);
543 l->l_stat = LSONPROC;
544 SCHED_UNLOCK(s);
545 goto resume;
546 }
547 if (l->l_wchan == NULL) {
548 catch = 0;
549 SCHED_UNLOCK(s);
550 goto resume;
551 }
552 } else
553 sig = 0;
554 l->l_stat = LSSLEEP;
555 p->p_nrlwps--;
556 p->p_stats->p_ru.ru_nvcsw++;
557 SCHED_ASSERT_LOCKED();
558 if (l->l_flag & L_SA)
559 sa_switch(l, sau, SA_UPCALL_BLOCKED);
560 else
561 mi_switch(l, NULL);
562
563 #if defined(DDB) && !defined(GPROF)
564 /* handy breakpoint location after process "wakes" */
565 __asm(".globl bpendtsleep\nbpendtsleep:");
566 #endif
567 /*
568 * p->p_nrlwps is incremented by whoever made us runnable again,
569 * either setrunnable() or awaken().
570 */
571
572 SCHED_ASSERT_UNLOCKED();
573 splx(s);
574
575 resume:
576 KDASSERT(l->l_cpu != NULL);
577 KDASSERT(l->l_cpu == curcpu());
578 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
579
580 l->l_flag &= ~L_SINTR;
581 if (l->l_flag & L_TIMEOUT) {
582 l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
583 if (sig == 0) {
584 #ifdef KTRACE
585 if (KTRPOINT(p, KTR_CSW))
586 ktrcsw(l, 0, 0);
587 #endif
588 if (relock && interlock != NULL)
589 simple_lock(interlock);
590 return (EWOULDBLOCK);
591 }
592 } else if (timo)
593 callout_stop(&l->l_tsleep_ch);
594
595 if (catch) {
596 const int cancelled = l->l_flag & L_CANCELLED;
597 l->l_flag &= ~L_CANCELLED;
598 if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
599 #ifdef KTRACE
600 if (KTRPOINT(p, KTR_CSW))
601 ktrcsw(l, 0, 0);
602 #endif
603 if (relock && interlock != NULL)
604 simple_lock(interlock);
605 /*
606 * If this sleep was canceled, don't let the syscall
607 * restart.
608 */
609 if (cancelled ||
610 (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
611 return (EINTR);
612 return (ERESTART);
613 }
614 }
615
616 #ifdef KTRACE
617 if (KTRPOINT(p, KTR_CSW))
618 ktrcsw(l, 0, 0);
619 #endif
620 if (relock && interlock != NULL)
621 simple_lock(interlock);
622
623 /* XXXNJW this is very much a kluge.
624 * revisit. a better way of preventing looping/hanging syscalls like
625 * wait4() and _lwp_wait() from wedging an exiting process
626 * would be preferred.
627 */
628 if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
629 return (EINTR);
630 return (0);
631 }
632
633 /*
634 * Implement timeout for tsleep.
635 * If process hasn't been awakened (wchan non-zero),
636 * set timeout flag and undo the sleep. If proc
637 * is stopped, just unsleep so it will remain stopped.
638 */
639 void
640 endtsleep(void *arg)
641 {
642 struct lwp *l;
643 int s;
644
645 l = (struct lwp *)arg;
646 SCHED_LOCK(s);
647 if (l->l_wchan) {
648 if (l->l_stat == LSSLEEP)
649 setrunnable(l);
650 else
651 unsleep(l);
652 l->l_flag |= L_TIMEOUT;
653 }
654 SCHED_UNLOCK(s);
655 }
656
657 /*
658 * Remove a process from its wait queue
659 */
660 void
661 unsleep(struct lwp *l)
662 {
663 struct slpque *qp;
664 struct lwp **hp;
665
666 SCHED_ASSERT_LOCKED();
667
668 if (l->l_wchan) {
669 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
670 while (*hp != l)
671 hp = &(*hp)->l_forw;
672 *hp = l->l_forw;
673 if (qp->sq_tailp == &l->l_forw)
674 qp->sq_tailp = hp;
675 l->l_wchan = 0;
676 }
677 }
678
679 inline void
680 sa_awaken(struct lwp *l)
681 {
682
683 SCHED_ASSERT_LOCKED();
684
685 if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
686 l->l_flag &= ~L_SA_IDLE;
687 }
688
689 /*
690 * Optimized-for-wakeup() version of setrunnable().
691 */
692 inline void
693 awaken(struct lwp *l)
694 {
695
696 SCHED_ASSERT_LOCKED();
697
698 if (l->l_proc->p_sa)
699 sa_awaken(l);
700
701 if (l->l_slptime > 1)
702 updatepri(l);
703 l->l_slptime = 0;
704 l->l_stat = LSRUN;
705 l->l_proc->p_nrlwps++;
706 /*
707 * Since curpriority is a user priority, p->p_priority
708 * is always better than curpriority on the last CPU on
709 * which it ran.
710 *
711 * XXXSMP See affinity comment in resched_proc().
712 */
713 if (l->l_flag & L_INMEM) {
714 setrunqueue(l);
715 KASSERT(l->l_cpu != NULL);
716 need_resched(l->l_cpu);
717 } else
718 sched_wakeup(&proc0);
719 }
720
721 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
722 void
723 sched_unlock_idle(void)
724 {
725
726 simple_unlock(&sched_lock);
727 }
728
729 void
730 sched_lock_idle(void)
731 {
732
733 simple_lock(&sched_lock);
734 }
735 #endif /* MULTIPROCESSOR || LOCKDEBUG */
736
737 /*
738 * Make all processes sleeping on the specified identifier runnable.
739 */
740
741 void
742 wakeup(volatile const void *ident)
743 {
744 int s;
745
746 SCHED_ASSERT_UNLOCKED();
747
748 SCHED_LOCK(s);
749 sched_wakeup(ident);
750 SCHED_UNLOCK(s);
751 }
752
753 void
754 sched_wakeup(volatile const void *ident)
755 {
756 struct slpque *qp;
757 struct lwp *l, **q;
758
759 SCHED_ASSERT_LOCKED();
760
761 qp = SLPQUE(ident);
762 restart:
763 for (q = &qp->sq_head; (l = *q) != NULL; ) {
764 #ifdef DIAGNOSTIC
765 if (l->l_back || (l->l_stat != LSSLEEP &&
766 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
767 panic("wakeup");
768 #endif
769 if (l->l_wchan == ident) {
770 l->l_wchan = 0;
771 *q = l->l_forw;
772 if (qp->sq_tailp == &l->l_forw)
773 qp->sq_tailp = q;
774 if (l->l_stat == LSSLEEP) {
775 awaken(l);
776 goto restart;
777 }
778 } else
779 q = &l->l_forw;
780 }
781 }
782
783 /*
784 * Make the highest priority process first in line on the specified
785 * identifier runnable.
786 */
787 void
788 wakeup_one(volatile const void *ident)
789 {
790 struct slpque *qp;
791 struct lwp *l, **q;
792 struct lwp *best_sleepp, **best_sleepq;
793 struct lwp *best_stopp, **best_stopq;
794 int s;
795
796 best_sleepp = best_stopp = NULL;
797 best_sleepq = best_stopq = NULL;
798
799 SCHED_LOCK(s);
800
801 qp = SLPQUE(ident);
802
803 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
804 #ifdef DIAGNOSTIC
805 if (l->l_back || (l->l_stat != LSSLEEP &&
806 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
807 panic("wakeup_one");
808 #endif
809 if (l->l_wchan == ident) {
810 if (l->l_stat == LSSLEEP) {
811 if (best_sleepp == NULL ||
812 l->l_priority < best_sleepp->l_priority) {
813 best_sleepp = l;
814 best_sleepq = q;
815 }
816 } else {
817 if (best_stopp == NULL ||
818 l->l_priority < best_stopp->l_priority) {
819 best_stopp = l;
820 best_stopq = q;
821 }
822 }
823 }
824 }
825
826 /*
827 * Consider any SSLEEP process higher than the highest priority SSTOP
828 * process.
829 */
830 if (best_sleepp != NULL) {
831 l = best_sleepp;
832 q = best_sleepq;
833 } else {
834 l = best_stopp;
835 q = best_stopq;
836 }
837
838 if (l != NULL) {
839 l->l_wchan = NULL;
840 *q = l->l_forw;
841 if (qp->sq_tailp == &l->l_forw)
842 qp->sq_tailp = q;
843 if (l->l_stat == LSSLEEP)
844 awaken(l);
845 }
846 SCHED_UNLOCK(s);
847 }
848
849 /*
850 * General yield call. Puts the current process back on its run queue and
851 * performs a voluntary context switch. Should only be called when the
852 * current process explicitly requests it (eg sched_yield(2) in compat code).
853 */
854 void
855 yield(void)
856 {
857 struct lwp *l = curlwp;
858 int s;
859
860 SCHED_LOCK(s);
861 l->l_priority = l->l_usrpri;
862 l->l_stat = LSRUN;
863 setrunqueue(l);
864 l->l_proc->p_stats->p_ru.ru_nvcsw++;
865 mi_switch(l, NULL);
866 SCHED_ASSERT_UNLOCKED();
867 splx(s);
868 }
869
870 /*
871 * General preemption call. Puts the current process back on its run queue
872 * and performs an involuntary context switch.
873 * The 'more' ("more work to do") argument is boolean. Returning to userspace
874 * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
875 * This will be used to indicate to the SA subsystem that the LWP is
876 * not yet finished in the kernel.
877 */
878
879 void
880 preempt(int more)
881 {
882 struct lwp *l = curlwp;
883 int r, s;
884
885 SCHED_LOCK(s);
886 l->l_priority = l->l_usrpri;
887 l->l_stat = LSRUN;
888 setrunqueue(l);
889 l->l_proc->p_stats->p_ru.ru_nivcsw++;
890 r = mi_switch(l, NULL);
891 SCHED_ASSERT_UNLOCKED();
892 splx(s);
893 if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
894 sa_preempt(l);
895 }
896
897 /*
898 * The machine independent parts of context switch.
899 * Must be called at splsched() (no higher!) and with
900 * the sched_lock held.
901 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
902 * the next lwp.
903 *
904 * Returns 1 if another process was actually run.
905 */
906 int
907 mi_switch(struct lwp *l, struct lwp *newl)
908 {
909 struct schedstate_percpu *spc;
910 struct rlimit *rlim;
911 long s, u;
912 struct timeval tv;
913 int hold_count;
914 struct proc *p = l->l_proc;
915 int retval;
916
917 SCHED_ASSERT_LOCKED();
918
919 /*
920 * Release the kernel_lock, as we are about to yield the CPU.
921 * The scheduler lock is still held until cpu_switch()
922 * selects a new process and removes it from the run queue.
923 */
924 hold_count = KERNEL_LOCK_RELEASE_ALL();
925
926 KDASSERT(l->l_cpu != NULL);
927 KDASSERT(l->l_cpu == curcpu());
928
929 spc = &l->l_cpu->ci_schedstate;
930
931 #ifdef LOCKDEBUG
932 spinlock_switchcheck();
933 simple_lock_switchcheck();
934 #endif
935
936 /*
937 * Compute the amount of time during which the current
938 * process was running.
939 */
940 microtime(&tv);
941 u = p->p_rtime.tv_usec +
942 (tv.tv_usec - spc->spc_runtime.tv_usec);
943 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
944 if (u < 0) {
945 u += 1000000;
946 s--;
947 } else if (u >= 1000000) {
948 u -= 1000000;
949 s++;
950 }
951 p->p_rtime.tv_usec = u;
952 p->p_rtime.tv_sec = s;
953
954 /*
955 * Check if the process exceeds its CPU resource allocation.
956 * If over max, kill it. In any case, if it has run for more
957 * than 10 minutes, reduce priority to give others a chance.
958 */
959 rlim = &p->p_rlimit[RLIMIT_CPU];
960 if (s >= rlim->rlim_cur) {
961 /*
962 * XXXSMP: we're inside the scheduler lock perimeter;
963 * use sched_psignal.
964 */
965 if (s >= rlim->rlim_max)
966 sched_psignal(p, SIGKILL);
967 else {
968 sched_psignal(p, SIGXCPU);
969 if (rlim->rlim_cur < rlim->rlim_max)
970 rlim->rlim_cur += 5;
971 }
972 }
973 if (autonicetime && s > autonicetime &&
974 kauth_cred_geteuid(p->p_cred) && p->p_nice == NZERO) {
975 p->p_nice = autoniceval + NZERO;
976 resetpriority(l);
977 }
978
979 /*
980 * Process is about to yield the CPU; clear the appropriate
981 * scheduling flags.
982 */
983 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
984
985 #ifdef KSTACK_CHECK_MAGIC
986 kstack_check_magic(l);
987 #endif
988
989 /*
990 * If we are using h/w performance counters, save context.
991 */
992 #if PERFCTRS
993 if (PMC_ENABLED(p))
994 pmc_save_context(p);
995 #endif
996
997 /*
998 * Switch to the new current process. When we
999 * run again, we'll return back here.
1000 */
1001 uvmexp.swtch++;
1002 if (newl == NULL) {
1003 retval = cpu_switch(l, NULL);
1004 } else {
1005 remrunqueue(newl);
1006 cpu_switchto(l, newl);
1007 retval = 0;
1008 }
1009
1010 /*
1011 * If we are using h/w performance counters, restore context.
1012 */
1013 #if PERFCTRS
1014 if (PMC_ENABLED(p))
1015 pmc_restore_context(p);
1016 #endif
1017
1018 /*
1019 * Make sure that MD code released the scheduler lock before
1020 * resuming us.
1021 */
1022 SCHED_ASSERT_UNLOCKED();
1023
1024 /*
1025 * We're running again; record our new start time. We might
1026 * be running on a new CPU now, so don't use the cache'd
1027 * schedstate_percpu pointer.
1028 */
1029 KDASSERT(l->l_cpu != NULL);
1030 KDASSERT(l->l_cpu == curcpu());
1031 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
1032
1033 /*
1034 * Reacquire the kernel_lock now. We do this after we've
1035 * released the scheduler lock to avoid deadlock, and before
1036 * we reacquire the interlock.
1037 */
1038 KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
1039
1040 return retval;
1041 }
1042
1043 /*
1044 * Initialize the (doubly-linked) run queues
1045 * to be empty.
1046 */
1047 void
1048 rqinit()
1049 {
1050 int i;
1051
1052 for (i = 0; i < RUNQUE_NQS; i++)
1053 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
1054 (struct lwp *)&sched_qs[i];
1055 }
1056
1057 static inline void
1058 resched_proc(struct lwp *l, u_char pri)
1059 {
1060 struct cpu_info *ci;
1061
1062 /*
1063 * XXXSMP
1064 * Since l->l_cpu persists across a context switch,
1065 * this gives us *very weak* processor affinity, in
1066 * that we notify the CPU on which the process last
1067 * ran that it should try to switch.
1068 *
1069 * This does not guarantee that the process will run on
1070 * that processor next, because another processor might
1071 * grab it the next time it performs a context switch.
1072 *
1073 * This also does not handle the case where its last
1074 * CPU is running a higher-priority process, but every
1075 * other CPU is running a lower-priority process. There
1076 * are ways to handle this situation, but they're not
1077 * currently very pretty, and we also need to weigh the
1078 * cost of moving a process from one CPU to another.
1079 *
1080 * XXXSMP
1081 * There is also the issue of locking the other CPU's
1082 * sched state, which we currently do not do.
1083 */
1084 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1085 if (pri < ci->ci_schedstate.spc_curpriority)
1086 need_resched(ci);
1087 }
1088
1089 /*
1090 * Change process state to be runnable,
1091 * placing it on the run queue if it is in memory,
1092 * and awakening the swapper if it isn't in memory.
1093 */
1094 void
1095 setrunnable(struct lwp *l)
1096 {
1097 struct proc *p = l->l_proc;
1098
1099 SCHED_ASSERT_LOCKED();
1100
1101 switch (l->l_stat) {
1102 case 0:
1103 case LSRUN:
1104 case LSONPROC:
1105 case LSZOMB:
1106 case LSDEAD:
1107 default:
1108 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1109 case LSSTOP:
1110 /*
1111 * If we're being traced (possibly because someone attached us
1112 * while we were stopped), check for a signal from the debugger.
1113 */
1114 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1115 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1116 CHECKSIGS(p);
1117 }
1118 case LSSLEEP:
1119 unsleep(l); /* e.g. when sending signals */
1120 break;
1121
1122 case LSIDL:
1123 break;
1124 case LSSUSPENDED:
1125 break;
1126 }
1127
1128 if (l->l_proc->p_sa)
1129 sa_awaken(l);
1130
1131 l->l_stat = LSRUN;
1132 p->p_nrlwps++;
1133
1134 if (l->l_flag & L_INMEM)
1135 setrunqueue(l);
1136
1137 if (l->l_slptime > 1)
1138 updatepri(l);
1139 l->l_slptime = 0;
1140 if ((l->l_flag & L_INMEM) == 0)
1141 sched_wakeup((caddr_t)&proc0);
1142 else
1143 resched_proc(l, l->l_priority);
1144 }
1145
1146 /*
1147 * Compute the priority of a process when running in user mode.
1148 * Arrange to reschedule if the resulting priority is better
1149 * than that of the current process.
1150 */
1151 void
1152 resetpriority(struct lwp *l)
1153 {
1154 unsigned int newpriority;
1155 struct proc *p = l->l_proc;
1156
1157 SCHED_ASSERT_LOCKED();
1158
1159 newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
1160 NICE_WEIGHT * (p->p_nice - NZERO);
1161 newpriority = min(newpriority, MAXPRI);
1162 l->l_usrpri = newpriority;
1163 resched_proc(l, l->l_usrpri);
1164 }
1165
1166 /*
1167 * Recompute priority for all LWPs in a process.
1168 */
1169 void
1170 resetprocpriority(struct proc *p)
1171 {
1172 struct lwp *l;
1173
1174 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1175 resetpriority(l);
1176 }
1177
1178 /*
1179 * We adjust the priority of the current process. The priority of a process
1180 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
1181 * is increased here. The formula for computing priorities (in kern_synch.c)
1182 * will compute a different value each time p_estcpu increases. This can
1183 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1184 * queue will not change. The CPU usage estimator ramps up quite quickly
1185 * when the process is running (linearly), and decays away exponentially, at
1186 * a rate which is proportionally slower when the system is busy. The basic
1187 * principle is that the system will 90% forget that the process used a lot
1188 * of CPU time in 5 * loadav seconds. This causes the system to favor
1189 * processes which haven't run much recently, and to round-robin among other
1190 * processes.
1191 */
1192
1193 void
1194 schedclock(struct lwp *l)
1195 {
1196 struct proc *p = l->l_proc;
1197 int s;
1198
1199 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
1200 SCHED_LOCK(s);
1201 resetpriority(l);
1202 SCHED_UNLOCK(s);
1203
1204 if (l->l_priority >= PUSER)
1205 l->l_priority = l->l_usrpri;
1206 }
1207
1208 void
1209 suspendsched()
1210 {
1211 struct lwp *l;
1212 int s;
1213
1214 /*
1215 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1216 * LSSUSPENDED.
1217 */
1218 proclist_lock_read();
1219 SCHED_LOCK(s);
1220 LIST_FOREACH(l, &alllwp, l_list) {
1221 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1222 continue;
1223
1224 switch (l->l_stat) {
1225 case LSRUN:
1226 l->l_proc->p_nrlwps--;
1227 if ((l->l_flag & L_INMEM) != 0)
1228 remrunqueue(l);
1229 /* FALLTHROUGH */
1230 case LSSLEEP:
1231 l->l_stat = LSSUSPENDED;
1232 break;
1233 case LSONPROC:
1234 /*
1235 * XXX SMP: we need to deal with processes on
1236 * others CPU !
1237 */
1238 break;
1239 default:
1240 break;
1241 }
1242 }
1243 SCHED_UNLOCK(s);
1244 proclist_unlock_read();
1245 }
1246
1247 /*
1248 * scheduler_fork_hook:
1249 *
1250 * Inherit the parent's scheduler history.
1251 */
1252 void
1253 scheduler_fork_hook(struct proc *parent, struct proc *child)
1254 {
1255
1256 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1257 child->p_forktime = schedcpu_ticks;
1258 }
1259
1260 /*
1261 * scheduler_wait_hook:
1262 *
1263 * Chargeback parents for the sins of their children.
1264 */
1265 void
1266 scheduler_wait_hook(struct proc *parent, struct proc *child)
1267 {
1268 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1269 fixpt_t estcpu;
1270
1271 /* XXX Only if parent != init?? */
1272
1273 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1274 schedcpu_ticks - child->p_forktime);
1275 if (child->p_estcpu > estcpu) {
1276 parent->p_estcpu =
1277 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1278 }
1279 }
1280
1281 /*
1282 * Low-level routines to access the run queue. Optimised assembler
1283 * routines can override these.
1284 */
1285
1286 #ifndef __HAVE_MD_RUNQUEUE
1287
1288 /*
1289 * On some architectures, it's faster to use a MSB ordering for the priorites
1290 * than the traditional LSB ordering.
1291 */
1292 #ifdef __HAVE_BIGENDIAN_BITOPS
1293 #define RQMASK(n) (0x80000000 >> (n))
1294 #else
1295 #define RQMASK(n) (0x00000001 << (n))
1296 #endif
1297
1298 /*
1299 * The primitives that manipulate the run queues. whichqs tells which
1300 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1301 * into queues, remrunqueue removes them from queues. The running process is
1302 * on no queue, other processes are on a queue related to p->p_priority,
1303 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1304 * available queues.
1305 */
1306
1307 #ifdef RQDEBUG
1308 static void
1309 checkrunqueue(int whichq, struct lwp *l)
1310 {
1311 const struct prochd * const rq = &sched_qs[whichq];
1312 struct lwp *l2;
1313 int found = 0;
1314 int die = 0;
1315 int empty = 1;
1316 for (l2 = rq->ph_link; l2 != (void*) rq; l2 = l2->l_forw) {
1317 if (l2->l_stat != LSRUN) {
1318 printf("checkrunqueue[%d]: lwp %p state (%d) "
1319 " != LSRUN\n", whichq, l2, l2->l_stat);
1320 }
1321 if (l2->l_back->l_forw != l2) {
1322 printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1323 "corrupt %p\n", whichq, l2, l2->l_back,
1324 l2->l_back->l_forw);
1325 die = 1;
1326 }
1327 if (l2->l_forw->l_back != l2) {
1328 printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1329 "corrupt %p\n", whichq, l2, l2->l_forw,
1330 l2->l_forw->l_back);
1331 die = 1;
1332 }
1333 if (l2 == l)
1334 found = 1;
1335 empty = 0;
1336 }
1337 if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1338 printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1339 whichq, rq);
1340 die = 1;
1341 } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1342 printf("checkrunqueue[%d]: bit clear for non-empty "
1343 "run-queue %p\n", whichq, rq);
1344 die = 1;
1345 }
1346 if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1347 printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1348 whichq, l);
1349 die = 1;
1350 }
1351 if (l != NULL && empty) {
1352 printf("checkrunqueue[%d]: empty run-queue %p with "
1353 "active lwp %p\n", whichq, rq, l);
1354 die = 1;
1355 }
1356 if (l != NULL && !found) {
1357 printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1358 whichq, l, rq);
1359 die = 1;
1360 }
1361 if (die)
1362 panic("checkrunqueue: inconsistency found");
1363 }
1364 #endif /* RQDEBUG */
1365
1366 void
1367 setrunqueue(struct lwp *l)
1368 {
1369 struct prochd *rq;
1370 struct lwp *prev;
1371 const int whichq = l->l_priority / PPQ;
1372
1373 #ifdef RQDEBUG
1374 checkrunqueue(whichq, NULL);
1375 #endif
1376 #ifdef DIAGNOSTIC
1377 if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1378 panic("setrunqueue");
1379 #endif
1380 sched_whichqs |= RQMASK(whichq);
1381 rq = &sched_qs[whichq];
1382 prev = rq->ph_rlink;
1383 l->l_forw = (struct lwp *)rq;
1384 rq->ph_rlink = l;
1385 prev->l_forw = l;
1386 l->l_back = prev;
1387 #ifdef RQDEBUG
1388 checkrunqueue(whichq, l);
1389 #endif
1390 }
1391
1392 void
1393 remrunqueue(struct lwp *l)
1394 {
1395 struct lwp *prev, *next;
1396 const int whichq = l->l_priority / PPQ;
1397 #ifdef RQDEBUG
1398 checkrunqueue(whichq, l);
1399 #endif
1400 #ifdef DIAGNOSTIC
1401 if (((sched_whichqs & RQMASK(whichq)) == 0))
1402 panic("remrunqueue: bit %d not set", whichq);
1403 #endif
1404 prev = l->l_back;
1405 l->l_back = NULL;
1406 next = l->l_forw;
1407 prev->l_forw = next;
1408 next->l_back = prev;
1409 if (prev == next)
1410 sched_whichqs &= ~RQMASK(whichq);
1411 #ifdef RQDEBUG
1412 checkrunqueue(whichq, NULL);
1413 #endif
1414 }
1415
1416 #undef RQMASK
1417 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1418