kern_synch.c revision 1.166 1 /* $NetBSD: kern_synch.c,v 1.166 2006/09/02 06:32:09 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by Charles M. Hannum.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the NetBSD
24 * Foundation, Inc. and its contributors.
25 * 4. Neither the name of The NetBSD Foundation nor the names of its
26 * contributors may be used to endorse or promote products derived
27 * from this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*-
43 * Copyright (c) 1982, 1986, 1990, 1991, 1993
44 * The Regents of the University of California. All rights reserved.
45 * (c) UNIX System Laboratories, Inc.
46 * All or some portions of this file are derived from material licensed
47 * to the University of California by American Telephone and Telegraph
48 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
49 * the permission of UNIX System Laboratories, Inc.
50 *
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions
53 * are met:
54 * 1. Redistributions of source code must retain the above copyright
55 * notice, this list of conditions and the following disclaimer.
56 * 2. Redistributions in binary form must reproduce the above copyright
57 * notice, this list of conditions and the following disclaimer in the
58 * documentation and/or other materials provided with the distribution.
59 * 3. Neither the name of the University nor the names of its contributors
60 * may be used to endorse or promote products derived from this software
61 * without specific prior written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 * SUCH DAMAGE.
74 *
75 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
76 */
77
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.166 2006/09/02 06:32:09 christos Exp $");
80
81 #include "opt_ddb.h"
82 #include "opt_ktrace.h"
83 #include "opt_kstack.h"
84 #include "opt_lockdebug.h"
85 #include "opt_multiprocessor.h"
86 #include "opt_perfctrs.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/proc.h>
92 #include <sys/kernel.h>
93 #include <sys/buf.h>
94 #if defined(PERFCTRS)
95 #include <sys/pmc.h>
96 #endif
97 #include <sys/signalvar.h>
98 #include <sys/resourcevar.h>
99 #include <sys/sched.h>
100 #include <sys/sa.h>
101 #include <sys/savar.h>
102 #include <sys/kauth.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #ifdef KTRACE
107 #include <sys/ktrace.h>
108 #endif
109
110 #include <machine/cpu.h>
111
112 int lbolt; /* once a second sleep address */
113 int rrticks; /* number of hardclock ticks per roundrobin() */
114
115 /*
116 * Sleep queues.
117 *
118 * We're only looking at 7 bits of the address; everything is
119 * aligned to 4, lots of things are aligned to greater powers
120 * of 2. Shift right by 8, i.e. drop the bottom 256 worth.
121 */
122 #define SLPQUE_TABLESIZE 128
123 #define SLPQUE_LOOKUP(x) (((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
124
125 #define SLPQUE(ident) (&sched_slpque[SLPQUE_LOOKUP(ident)])
126
127 /*
128 * The global scheduler state.
129 */
130 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
131 volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
132 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
133
134 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
135
136 void schedcpu(void *);
137 void updatepri(struct lwp *);
138 void endtsleep(void *);
139
140 inline void sa_awaken(struct lwp *);
141 inline void awaken(struct lwp *);
142
143 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
144 static unsigned int schedcpu_ticks;
145
146
147 /*
148 * Force switch among equal priority processes every 100ms.
149 * Called from hardclock every hz/10 == rrticks hardclock ticks.
150 */
151 /* ARGSUSED */
152 void
153 roundrobin(struct cpu_info *ci)
154 {
155 struct schedstate_percpu *spc = &ci->ci_schedstate;
156
157 spc->spc_rrticks = rrticks;
158
159 if (curlwp != NULL) {
160 if (spc->spc_flags & SPCF_SEENRR) {
161 /*
162 * The process has already been through a roundrobin
163 * without switching and may be hogging the CPU.
164 * Indicate that the process should yield.
165 */
166 spc->spc_flags |= SPCF_SHOULDYIELD;
167 } else
168 spc->spc_flags |= SPCF_SEENRR;
169 }
170 need_resched(curcpu());
171 }
172
173 #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
174 #define NICE_WEIGHT 2 /* priorities per nice level */
175
176 #define ESTCPU_SHIFT 11
177 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
178 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
179
180 /*
181 * Constants for digital decay and forget:
182 * 90% of (p_estcpu) usage in 5 * loadav time
183 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
184 * Note that, as ps(1) mentions, this can let percentages
185 * total over 100% (I've seen 137.9% for 3 processes).
186 *
187 * Note that hardclock updates p_estcpu and p_cpticks independently.
188 *
189 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
190 * That is, the system wants to compute a value of decay such
191 * that the following for loop:
192 * for (i = 0; i < (5 * loadavg); i++)
193 * p_estcpu *= decay;
194 * will compute
195 * p_estcpu *= 0.1;
196 * for all values of loadavg:
197 *
198 * Mathematically this loop can be expressed by saying:
199 * decay ** (5 * loadavg) ~= .1
200 *
201 * The system computes decay as:
202 * decay = (2 * loadavg) / (2 * loadavg + 1)
203 *
204 * We wish to prove that the system's computation of decay
205 * will always fulfill the equation:
206 * decay ** (5 * loadavg) ~= .1
207 *
208 * If we compute b as:
209 * b = 2 * loadavg
210 * then
211 * decay = b / (b + 1)
212 *
213 * We now need to prove two things:
214 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
215 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
216 *
217 * Facts:
218 * For x close to zero, exp(x) =~ 1 + x, since
219 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
220 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
221 * For x close to zero, ln(1+x) =~ x, since
222 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
223 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
224 * ln(.1) =~ -2.30
225 *
226 * Proof of (1):
227 * Solve (factor)**(power) =~ .1 given power (5*loadav):
228 * solving for factor,
229 * ln(factor) =~ (-2.30/5*loadav), or
230 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
231 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
232 *
233 * Proof of (2):
234 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
235 * solving for power,
236 * power*ln(b/(b+1)) =~ -2.30, or
237 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
238 *
239 * Actual power values for the implemented algorithm are as follows:
240 * loadav: 1 2 3 4
241 * power: 5.68 10.32 14.94 19.55
242 */
243
244 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
245 #define loadfactor(loadav) (2 * (loadav))
246
247 static fixpt_t
248 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
249 {
250
251 if (estcpu == 0) {
252 return 0;
253 }
254
255 #if !defined(_LP64)
256 /* avoid 64bit arithmetics. */
257 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
258 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
259 return estcpu * loadfac / (loadfac + FSCALE);
260 }
261 #endif /* !defined(_LP64) */
262
263 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
264 }
265
266 /*
267 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
268 * sleeping for at least seven times the loadfactor will decay p_estcpu to
269 * less than (1 << ESTCPU_SHIFT).
270 *
271 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
272 */
273 static fixpt_t
274 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
275 {
276
277 if ((n << FSHIFT) >= 7 * loadfac) {
278 return 0;
279 }
280
281 while (estcpu != 0 && n > 1) {
282 estcpu = decay_cpu(loadfac, estcpu);
283 n--;
284 }
285
286 return estcpu;
287 }
288
289 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
290 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
291
292 /*
293 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
294 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
295 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
296 *
297 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
298 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
299 *
300 * If you dont want to bother with the faster/more-accurate formula, you
301 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
302 * (more general) method of calculating the %age of CPU used by a process.
303 */
304 #define CCPU_SHIFT 11
305
306 /*
307 * Recompute process priorities, every hz ticks.
308 */
309 /* ARGSUSED */
310 void
311 schedcpu(void *arg)
312 {
313 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
314 struct lwp *l;
315 struct proc *p;
316 int s, minslp;
317 int clkhz;
318
319 schedcpu_ticks++;
320
321 proclist_lock_read();
322 PROCLIST_FOREACH(p, &allproc) {
323 /*
324 * Increment time in/out of memory and sleep time
325 * (if sleeping). We ignore overflow; with 16-bit int's
326 * (remember them?) overflow takes 45 days.
327 */
328 minslp = 2;
329 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
330 l->l_swtime++;
331 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
332 l->l_stat == LSSUSPENDED) {
333 l->l_slptime++;
334 minslp = min(minslp, l->l_slptime);
335 } else
336 minslp = 0;
337 }
338 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
339 /*
340 * If the process has slept the entire second,
341 * stop recalculating its priority until it wakes up.
342 */
343 if (minslp > 1)
344 continue;
345 s = splstatclock(); /* prevent state changes */
346 /*
347 * p_pctcpu is only for ps.
348 */
349 clkhz = stathz != 0 ? stathz : hz;
350 #if (FSHIFT >= CCPU_SHIFT)
351 p->p_pctcpu += (clkhz == 100)?
352 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
353 100 * (((fixpt_t) p->p_cpticks)
354 << (FSHIFT - CCPU_SHIFT)) / clkhz;
355 #else
356 p->p_pctcpu += ((FSCALE - ccpu) *
357 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
358 #endif
359 p->p_cpticks = 0;
360 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
361 splx(s); /* Done with the process CPU ticks update */
362 SCHED_LOCK(s);
363 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
364 if (l->l_slptime > 1)
365 continue;
366 resetpriority(l);
367 if (l->l_priority >= PUSER) {
368 if (l->l_stat == LSRUN &&
369 (l->l_flag & L_INMEM) &&
370 (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
371 remrunqueue(l);
372 l->l_priority = l->l_usrpri;
373 setrunqueue(l);
374 } else
375 l->l_priority = l->l_usrpri;
376 }
377 }
378 SCHED_UNLOCK(s);
379 }
380 proclist_unlock_read();
381 uvm_meter();
382 wakeup((caddr_t)&lbolt);
383 callout_schedule(&schedcpu_ch, hz);
384 }
385
386 /*
387 * Recalculate the priority of a process after it has slept for a while.
388 */
389 void
390 updatepri(struct lwp *l)
391 {
392 struct proc *p = l->l_proc;
393 fixpt_t loadfac;
394
395 SCHED_ASSERT_LOCKED();
396 KASSERT(l->l_slptime > 1);
397
398 loadfac = loadfactor(averunnable.ldavg[0]);
399
400 l->l_slptime--; /* the first time was done in schedcpu */
401 /* XXX NJWLWP */
402 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
403 resetpriority(l);
404 }
405
406 /*
407 * During autoconfiguration or after a panic, a sleep will simply
408 * lower the priority briefly to allow interrupts, then return.
409 * The priority to be used (safepri) is machine-dependent, thus this
410 * value is initialized and maintained in the machine-dependent layers.
411 * This priority will typically be 0, or the lowest priority
412 * that is safe for use on the interrupt stack; it can be made
413 * higher to block network software interrupts after panics.
414 */
415 int safepri;
416
417 /*
418 * General sleep call. Suspends the current process until a wakeup is
419 * performed on the specified identifier. The process will then be made
420 * runnable with the specified priority. Sleeps at most timo/hz seconds
421 * (0 means no timeout). If pri includes PCATCH flag, signals are checked
422 * before and after sleeping, else signals are not checked. Returns 0 if
423 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
424 * signal needs to be delivered, ERESTART is returned if the current system
425 * call should be restarted if possible, and EINTR is returned if the system
426 * call should be interrupted by the signal (return EINTR).
427 *
428 * The interlock is held until the scheduler_slock is acquired. The
429 * interlock will be locked before returning back to the caller
430 * unless the PNORELOCK flag is specified, in which case the
431 * interlock will always be unlocked upon return.
432 */
433 int
434 ltsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
435 volatile struct simplelock *interlock)
436 {
437 struct lwp *l = curlwp;
438 struct proc *p = l ? l->l_proc : NULL;
439 struct slpque *qp;
440 struct sadata_upcall *sau;
441 int sig, s;
442 int catch = priority & PCATCH;
443 int relock = (priority & PNORELOCK) == 0;
444 int exiterr = (priority & PNOEXITERR) == 0;
445
446 /*
447 * XXXSMP
448 * This is probably bogus. Figure out what the right
449 * thing to do here really is.
450 * Note that not sleeping if ltsleep is called with curlwp == NULL
451 * in the shutdown case is disgusting but partly necessary given
452 * how shutdown (barely) works.
453 */
454 if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
455 /*
456 * After a panic, or during autoconfiguration,
457 * just give interrupts a chance, then just return;
458 * don't run any other procs or panic below,
459 * in case this is the idle process and already asleep.
460 */
461 s = splhigh();
462 splx(safepri);
463 splx(s);
464 if (interlock != NULL && relock == 0)
465 simple_unlock(interlock);
466 return (0);
467 }
468
469 KASSERT(p != NULL);
470 LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
471
472 #ifdef KTRACE
473 if (KTRPOINT(p, KTR_CSW))
474 ktrcsw(l, 1, 0);
475 #endif
476
477 /*
478 * XXX We need to allocate the sadata_upcall structure here,
479 * XXX since we can't sleep while waiting for memory inside
480 * XXX sa_upcall(). It would be nice if we could safely
481 * XXX allocate the sadata_upcall structure on the stack, here.
482 */
483 if (l->l_flag & L_SA) {
484 sau = sadata_upcall_alloc(0);
485 } else {
486 sau = NULL;
487 }
488
489 SCHED_LOCK(s);
490
491 #ifdef DIAGNOSTIC
492 if (ident == NULL)
493 panic("ltsleep: ident == NULL");
494 if (l->l_stat != LSONPROC)
495 panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
496 if (l->l_back != NULL)
497 panic("ltsleep: p_back != NULL");
498 #endif
499
500 l->l_wchan = ident;
501 l->l_wmesg = wmesg;
502 l->l_slptime = 0;
503 l->l_priority = priority & PRIMASK;
504
505 qp = SLPQUE(ident);
506 if (qp->sq_head == 0)
507 qp->sq_head = l;
508 else {
509 *qp->sq_tailp = l;
510 }
511 *(qp->sq_tailp = &l->l_forw) = 0;
512
513 if (timo)
514 callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
515
516 /*
517 * We can now release the interlock; the scheduler_slock
518 * is held, so a thread can't get in to do wakeup() before
519 * we do the switch.
520 *
521 * XXX We leave the code block here, after inserting ourselves
522 * on the sleep queue, because we might want a more clever
523 * data structure for the sleep queues at some point.
524 */
525 if (interlock != NULL)
526 simple_unlock(interlock);
527
528 /*
529 * We put ourselves on the sleep queue and start our timeout
530 * before calling CURSIG, as we could stop there, and a wakeup
531 * or a SIGCONT (or both) could occur while we were stopped.
532 * A SIGCONT would cause us to be marked as SSLEEP
533 * without resuming us, thus we must be ready for sleep
534 * when CURSIG is called. If the wakeup happens while we're
535 * stopped, p->p_wchan will be 0 upon return from CURSIG.
536 */
537 if (catch) {
538 l->l_flag |= L_SINTR;
539 if (((sig = CURSIG(l)) != 0) ||
540 ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
541 if (l->l_wchan != NULL)
542 unsleep(l);
543 l->l_stat = LSONPROC;
544 SCHED_UNLOCK(s);
545 goto resume;
546 }
547 if (l->l_wchan == NULL) {
548 catch = 0;
549 SCHED_UNLOCK(s);
550 goto resume;
551 }
552 } else
553 sig = 0;
554 l->l_stat = LSSLEEP;
555 p->p_nrlwps--;
556 p->p_stats->p_ru.ru_nvcsw++;
557 SCHED_ASSERT_LOCKED();
558 if (l->l_flag & L_SA)
559 sa_switch(l, sau, SA_UPCALL_BLOCKED);
560 else
561 mi_switch(l, NULL);
562
563 #if defined(DDB) && !defined(GPROF) && \
564 !defined(__m68k__) && !defined(__vax__)
565 /*
566 * XXX
567 * gcc4 optimizer will duplicate this asm statement on some arch
568 * and it will cause a multiple symbol definition error in gas.
569 */
570 /* handy breakpoint location after process "wakes" */
571 __asm(".globl bpendtsleep\nbpendtsleep:");
572 #endif
573 /*
574 * p->p_nrlwps is incremented by whoever made us runnable again,
575 * either setrunnable() or awaken().
576 */
577
578 SCHED_ASSERT_UNLOCKED();
579 splx(s);
580
581 resume:
582 KDASSERT(l->l_cpu != NULL);
583 KDASSERT(l->l_cpu == curcpu());
584 l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
585
586 l->l_flag &= ~L_SINTR;
587 if (l->l_flag & L_TIMEOUT) {
588 l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
589 if (sig == 0) {
590 #ifdef KTRACE
591 if (KTRPOINT(p, KTR_CSW))
592 ktrcsw(l, 0, 0);
593 #endif
594 if (relock && interlock != NULL)
595 simple_lock(interlock);
596 return (EWOULDBLOCK);
597 }
598 } else if (timo)
599 callout_stop(&l->l_tsleep_ch);
600
601 if (catch) {
602 const int cancelled = l->l_flag & L_CANCELLED;
603 l->l_flag &= ~L_CANCELLED;
604 if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
605 #ifdef KTRACE
606 if (KTRPOINT(p, KTR_CSW))
607 ktrcsw(l, 0, 0);
608 #endif
609 if (relock && interlock != NULL)
610 simple_lock(interlock);
611 /*
612 * If this sleep was canceled, don't let the syscall
613 * restart.
614 */
615 if (cancelled ||
616 (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
617 return (EINTR);
618 return (ERESTART);
619 }
620 }
621
622 #ifdef KTRACE
623 if (KTRPOINT(p, KTR_CSW))
624 ktrcsw(l, 0, 0);
625 #endif
626 if (relock && interlock != NULL)
627 simple_lock(interlock);
628
629 /* XXXNJW this is very much a kluge.
630 * revisit. a better way of preventing looping/hanging syscalls like
631 * wait4() and _lwp_wait() from wedging an exiting process
632 * would be preferred.
633 */
634 if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
635 return (EINTR);
636 return (0);
637 }
638
639 /*
640 * Implement timeout for tsleep.
641 * If process hasn't been awakened (wchan non-zero),
642 * set timeout flag and undo the sleep. If proc
643 * is stopped, just unsleep so it will remain stopped.
644 */
645 void
646 endtsleep(void *arg)
647 {
648 struct lwp *l;
649 int s;
650
651 l = (struct lwp *)arg;
652 SCHED_LOCK(s);
653 if (l->l_wchan) {
654 if (l->l_stat == LSSLEEP)
655 setrunnable(l);
656 else
657 unsleep(l);
658 l->l_flag |= L_TIMEOUT;
659 }
660 SCHED_UNLOCK(s);
661 }
662
663 /*
664 * Remove a process from its wait queue
665 */
666 void
667 unsleep(struct lwp *l)
668 {
669 struct slpque *qp;
670 struct lwp **hp;
671
672 SCHED_ASSERT_LOCKED();
673
674 if (l->l_wchan) {
675 hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
676 while (*hp != l)
677 hp = &(*hp)->l_forw;
678 *hp = l->l_forw;
679 if (qp->sq_tailp == &l->l_forw)
680 qp->sq_tailp = hp;
681 l->l_wchan = 0;
682 }
683 }
684
685 inline void
686 sa_awaken(struct lwp *l)
687 {
688
689 SCHED_ASSERT_LOCKED();
690
691 if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
692 l->l_flag &= ~L_SA_IDLE;
693 }
694
695 /*
696 * Optimized-for-wakeup() version of setrunnable().
697 */
698 inline void
699 awaken(struct lwp *l)
700 {
701
702 SCHED_ASSERT_LOCKED();
703
704 if (l->l_proc->p_sa)
705 sa_awaken(l);
706
707 if (l->l_slptime > 1)
708 updatepri(l);
709 l->l_slptime = 0;
710 l->l_stat = LSRUN;
711 l->l_proc->p_nrlwps++;
712 /*
713 * Since curpriority is a user priority, p->p_priority
714 * is always better than curpriority on the last CPU on
715 * which it ran.
716 *
717 * XXXSMP See affinity comment in resched_proc().
718 */
719 if (l->l_flag & L_INMEM) {
720 setrunqueue(l);
721 KASSERT(l->l_cpu != NULL);
722 need_resched(l->l_cpu);
723 } else
724 sched_wakeup(&proc0);
725 }
726
727 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
728 void
729 sched_unlock_idle(void)
730 {
731
732 simple_unlock(&sched_lock);
733 }
734
735 void
736 sched_lock_idle(void)
737 {
738
739 simple_lock(&sched_lock);
740 }
741 #endif /* MULTIPROCESSOR || LOCKDEBUG */
742
743 /*
744 * Make all processes sleeping on the specified identifier runnable.
745 */
746
747 void
748 wakeup(volatile const void *ident)
749 {
750 int s;
751
752 SCHED_ASSERT_UNLOCKED();
753
754 SCHED_LOCK(s);
755 sched_wakeup(ident);
756 SCHED_UNLOCK(s);
757 }
758
759 void
760 sched_wakeup(volatile const void *ident)
761 {
762 struct slpque *qp;
763 struct lwp *l, **q;
764
765 SCHED_ASSERT_LOCKED();
766
767 qp = SLPQUE(ident);
768 restart:
769 for (q = &qp->sq_head; (l = *q) != NULL; ) {
770 #ifdef DIAGNOSTIC
771 if (l->l_back || (l->l_stat != LSSLEEP &&
772 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
773 panic("wakeup");
774 #endif
775 if (l->l_wchan == ident) {
776 l->l_wchan = 0;
777 *q = l->l_forw;
778 if (qp->sq_tailp == &l->l_forw)
779 qp->sq_tailp = q;
780 if (l->l_stat == LSSLEEP) {
781 awaken(l);
782 goto restart;
783 }
784 } else
785 q = &l->l_forw;
786 }
787 }
788
789 /*
790 * Make the highest priority process first in line on the specified
791 * identifier runnable.
792 */
793 void
794 wakeup_one(volatile const void *ident)
795 {
796 struct slpque *qp;
797 struct lwp *l, **q;
798 struct lwp *best_sleepp, **best_sleepq;
799 struct lwp *best_stopp, **best_stopq;
800 int s;
801
802 best_sleepp = best_stopp = NULL;
803 best_sleepq = best_stopq = NULL;
804
805 SCHED_LOCK(s);
806
807 qp = SLPQUE(ident);
808
809 for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
810 #ifdef DIAGNOSTIC
811 if (l->l_back || (l->l_stat != LSSLEEP &&
812 l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
813 panic("wakeup_one");
814 #endif
815 if (l->l_wchan == ident) {
816 if (l->l_stat == LSSLEEP) {
817 if (best_sleepp == NULL ||
818 l->l_priority < best_sleepp->l_priority) {
819 best_sleepp = l;
820 best_sleepq = q;
821 }
822 } else {
823 if (best_stopp == NULL ||
824 l->l_priority < best_stopp->l_priority) {
825 best_stopp = l;
826 best_stopq = q;
827 }
828 }
829 }
830 }
831
832 /*
833 * Consider any SSLEEP process higher than the highest priority SSTOP
834 * process.
835 */
836 if (best_sleepp != NULL) {
837 l = best_sleepp;
838 q = best_sleepq;
839 } else {
840 l = best_stopp;
841 q = best_stopq;
842 }
843
844 if (l != NULL) {
845 l->l_wchan = NULL;
846 *q = l->l_forw;
847 if (qp->sq_tailp == &l->l_forw)
848 qp->sq_tailp = q;
849 if (l->l_stat == LSSLEEP)
850 awaken(l);
851 }
852 SCHED_UNLOCK(s);
853 }
854
855 /*
856 * General yield call. Puts the current process back on its run queue and
857 * performs a voluntary context switch. Should only be called when the
858 * current process explicitly requests it (eg sched_yield(2) in compat code).
859 */
860 void
861 yield(void)
862 {
863 struct lwp *l = curlwp;
864 int s;
865
866 SCHED_LOCK(s);
867 l->l_priority = l->l_usrpri;
868 l->l_stat = LSRUN;
869 setrunqueue(l);
870 l->l_proc->p_stats->p_ru.ru_nvcsw++;
871 mi_switch(l, NULL);
872 SCHED_ASSERT_UNLOCKED();
873 splx(s);
874 }
875
876 /*
877 * General preemption call. Puts the current process back on its run queue
878 * and performs an involuntary context switch.
879 * The 'more' ("more work to do") argument is boolean. Returning to userspace
880 * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
881 * This will be used to indicate to the SA subsystem that the LWP is
882 * not yet finished in the kernel.
883 */
884
885 void
886 preempt(int more)
887 {
888 struct lwp *l = curlwp;
889 int r, s;
890
891 SCHED_LOCK(s);
892 l->l_priority = l->l_usrpri;
893 l->l_stat = LSRUN;
894 setrunqueue(l);
895 l->l_proc->p_stats->p_ru.ru_nivcsw++;
896 r = mi_switch(l, NULL);
897 SCHED_ASSERT_UNLOCKED();
898 splx(s);
899 if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
900 sa_preempt(l);
901 }
902
903 /*
904 * The machine independent parts of context switch.
905 * Must be called at splsched() (no higher!) and with
906 * the sched_lock held.
907 * Switch to "new" if non-NULL, otherwise let cpu_switch choose
908 * the next lwp.
909 *
910 * Returns 1 if another process was actually run.
911 */
912 int
913 mi_switch(struct lwp *l, struct lwp *newl)
914 {
915 struct schedstate_percpu *spc;
916 struct rlimit *rlim;
917 long s, u;
918 struct timeval tv;
919 int hold_count;
920 struct proc *p = l->l_proc;
921 int retval;
922
923 SCHED_ASSERT_LOCKED();
924
925 /*
926 * Release the kernel_lock, as we are about to yield the CPU.
927 * The scheduler lock is still held until cpu_switch()
928 * selects a new process and removes it from the run queue.
929 */
930 hold_count = KERNEL_LOCK_RELEASE_ALL();
931
932 KDASSERT(l->l_cpu != NULL);
933 KDASSERT(l->l_cpu == curcpu());
934
935 spc = &l->l_cpu->ci_schedstate;
936
937 #ifdef LOCKDEBUG
938 spinlock_switchcheck();
939 simple_lock_switchcheck();
940 #endif
941
942 /*
943 * Compute the amount of time during which the current
944 * process was running.
945 */
946 microtime(&tv);
947 u = p->p_rtime.tv_usec +
948 (tv.tv_usec - spc->spc_runtime.tv_usec);
949 s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
950 if (u < 0) {
951 u += 1000000;
952 s--;
953 } else if (u >= 1000000) {
954 u -= 1000000;
955 s++;
956 }
957 p->p_rtime.tv_usec = u;
958 p->p_rtime.tv_sec = s;
959
960 /*
961 * Check if the process exceeds its CPU resource allocation.
962 * If over max, kill it. In any case, if it has run for more
963 * than 10 minutes, reduce priority to give others a chance.
964 */
965 rlim = &p->p_rlimit[RLIMIT_CPU];
966 if (s >= rlim->rlim_cur) {
967 /*
968 * XXXSMP: we're inside the scheduler lock perimeter;
969 * use sched_psignal.
970 */
971 if (s >= rlim->rlim_max)
972 sched_psignal(p, SIGKILL);
973 else {
974 sched_psignal(p, SIGXCPU);
975 if (rlim->rlim_cur < rlim->rlim_max)
976 rlim->rlim_cur += 5;
977 }
978 }
979 if (autonicetime && s > autonicetime &&
980 kauth_cred_geteuid(p->p_cred) && p->p_nice == NZERO) {
981 p->p_nice = autoniceval + NZERO;
982 resetpriority(l);
983 }
984
985 /*
986 * Process is about to yield the CPU; clear the appropriate
987 * scheduling flags.
988 */
989 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
990
991 #ifdef KSTACK_CHECK_MAGIC
992 kstack_check_magic(l);
993 #endif
994
995 /*
996 * If we are using h/w performance counters, save context.
997 */
998 #if PERFCTRS
999 if (PMC_ENABLED(p)) {
1000 pmc_save_context(p);
1001 }
1002 #endif
1003
1004 /*
1005 * Switch to the new current process. When we
1006 * run again, we'll return back here.
1007 */
1008 uvmexp.swtch++;
1009 if (newl == NULL) {
1010 retval = cpu_switch(l, NULL);
1011 } else {
1012 remrunqueue(newl);
1013 cpu_switchto(l, newl);
1014 retval = 0;
1015 }
1016
1017 /*
1018 * If we are using h/w performance counters, restore context.
1019 */
1020 #if PERFCTRS
1021 if (PMC_ENABLED(p)) {
1022 pmc_restore_context(p);
1023 }
1024 #endif
1025
1026 /*
1027 * Make sure that MD code released the scheduler lock before
1028 * resuming us.
1029 */
1030 SCHED_ASSERT_UNLOCKED();
1031
1032 /*
1033 * We're running again; record our new start time. We might
1034 * be running on a new CPU now, so don't use the cache'd
1035 * schedstate_percpu pointer.
1036 */
1037 KDASSERT(l->l_cpu != NULL);
1038 KDASSERT(l->l_cpu == curcpu());
1039 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
1040
1041 /*
1042 * Reacquire the kernel_lock now. We do this after we've
1043 * released the scheduler lock to avoid deadlock, and before
1044 * we reacquire the interlock.
1045 */
1046 KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
1047
1048 return retval;
1049 }
1050
1051 /*
1052 * Initialize the (doubly-linked) run queues
1053 * to be empty.
1054 */
1055 void
1056 rqinit()
1057 {
1058 int i;
1059
1060 for (i = 0; i < RUNQUE_NQS; i++)
1061 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
1062 (struct lwp *)&sched_qs[i];
1063 }
1064
1065 static inline void
1066 resched_proc(struct lwp *l, u_char pri)
1067 {
1068 struct cpu_info *ci;
1069
1070 /*
1071 * XXXSMP
1072 * Since l->l_cpu persists across a context switch,
1073 * this gives us *very weak* processor affinity, in
1074 * that we notify the CPU on which the process last
1075 * ran that it should try to switch.
1076 *
1077 * This does not guarantee that the process will run on
1078 * that processor next, because another processor might
1079 * grab it the next time it performs a context switch.
1080 *
1081 * This also does not handle the case where its last
1082 * CPU is running a higher-priority process, but every
1083 * other CPU is running a lower-priority process. There
1084 * are ways to handle this situation, but they're not
1085 * currently very pretty, and we also need to weigh the
1086 * cost of moving a process from one CPU to another.
1087 *
1088 * XXXSMP
1089 * There is also the issue of locking the other CPU's
1090 * sched state, which we currently do not do.
1091 */
1092 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
1093 if (pri < ci->ci_schedstate.spc_curpriority)
1094 need_resched(ci);
1095 }
1096
1097 /*
1098 * Change process state to be runnable,
1099 * placing it on the run queue if it is in memory,
1100 * and awakening the swapper if it isn't in memory.
1101 */
1102 void
1103 setrunnable(struct lwp *l)
1104 {
1105 struct proc *p = l->l_proc;
1106
1107 SCHED_ASSERT_LOCKED();
1108
1109 switch (l->l_stat) {
1110 case 0:
1111 case LSRUN:
1112 case LSONPROC:
1113 case LSZOMB:
1114 case LSDEAD:
1115 default:
1116 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
1117 case LSSTOP:
1118 /*
1119 * If we're being traced (possibly because someone attached us
1120 * while we were stopped), check for a signal from the debugger.
1121 */
1122 if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
1123 sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
1124 CHECKSIGS(p);
1125 }
1126 case LSSLEEP:
1127 unsleep(l); /* e.g. when sending signals */
1128 break;
1129
1130 case LSIDL:
1131 break;
1132 case LSSUSPENDED:
1133 break;
1134 }
1135
1136 if (l->l_proc->p_sa)
1137 sa_awaken(l);
1138
1139 l->l_stat = LSRUN;
1140 p->p_nrlwps++;
1141
1142 if (l->l_flag & L_INMEM)
1143 setrunqueue(l);
1144
1145 if (l->l_slptime > 1)
1146 updatepri(l);
1147 l->l_slptime = 0;
1148 if ((l->l_flag & L_INMEM) == 0)
1149 sched_wakeup((caddr_t)&proc0);
1150 else
1151 resched_proc(l, l->l_priority);
1152 }
1153
1154 /*
1155 * Compute the priority of a process when running in user mode.
1156 * Arrange to reschedule if the resulting priority is better
1157 * than that of the current process.
1158 */
1159 void
1160 resetpriority(struct lwp *l)
1161 {
1162 unsigned int newpriority;
1163 struct proc *p = l->l_proc;
1164
1165 SCHED_ASSERT_LOCKED();
1166
1167 newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
1168 NICE_WEIGHT * (p->p_nice - NZERO);
1169 newpriority = min(newpriority, MAXPRI);
1170 l->l_usrpri = newpriority;
1171 resched_proc(l, l->l_usrpri);
1172 }
1173
1174 /*
1175 * Recompute priority for all LWPs in a process.
1176 */
1177 void
1178 resetprocpriority(struct proc *p)
1179 {
1180 struct lwp *l;
1181
1182 LIST_FOREACH(l, &p->p_lwps, l_sibling)
1183 resetpriority(l);
1184 }
1185
1186 /*
1187 * We adjust the priority of the current process. The priority of a process
1188 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
1189 * is increased here. The formula for computing priorities (in kern_synch.c)
1190 * will compute a different value each time p_estcpu increases. This can
1191 * cause a switch, but unless the priority crosses a PPQ boundary the actual
1192 * queue will not change. The CPU usage estimator ramps up quite quickly
1193 * when the process is running (linearly), and decays away exponentially, at
1194 * a rate which is proportionally slower when the system is busy. The basic
1195 * principle is that the system will 90% forget that the process used a lot
1196 * of CPU time in 5 * loadav seconds. This causes the system to favor
1197 * processes which haven't run much recently, and to round-robin among other
1198 * processes.
1199 */
1200
1201 void
1202 schedclock(struct lwp *l)
1203 {
1204 struct proc *p = l->l_proc;
1205 int s;
1206
1207 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
1208 SCHED_LOCK(s);
1209 resetpriority(l);
1210 SCHED_UNLOCK(s);
1211
1212 if (l->l_priority >= PUSER)
1213 l->l_priority = l->l_usrpri;
1214 }
1215
1216 void
1217 suspendsched()
1218 {
1219 struct lwp *l;
1220 int s;
1221
1222 /*
1223 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
1224 * LSSUSPENDED.
1225 */
1226 proclist_lock_read();
1227 SCHED_LOCK(s);
1228 LIST_FOREACH(l, &alllwp, l_list) {
1229 if ((l->l_proc->p_flag & P_SYSTEM) != 0)
1230 continue;
1231
1232 switch (l->l_stat) {
1233 case LSRUN:
1234 l->l_proc->p_nrlwps--;
1235 if ((l->l_flag & L_INMEM) != 0)
1236 remrunqueue(l);
1237 /* FALLTHROUGH */
1238 case LSSLEEP:
1239 l->l_stat = LSSUSPENDED;
1240 break;
1241 case LSONPROC:
1242 /*
1243 * XXX SMP: we need to deal with processes on
1244 * others CPU !
1245 */
1246 break;
1247 default:
1248 break;
1249 }
1250 }
1251 SCHED_UNLOCK(s);
1252 proclist_unlock_read();
1253 }
1254
1255 /*
1256 * scheduler_fork_hook:
1257 *
1258 * Inherit the parent's scheduler history.
1259 */
1260 void
1261 scheduler_fork_hook(struct proc *parent, struct proc *child)
1262 {
1263
1264 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1265 child->p_forktime = schedcpu_ticks;
1266 }
1267
1268 /*
1269 * scheduler_wait_hook:
1270 *
1271 * Chargeback parents for the sins of their children.
1272 */
1273 void
1274 scheduler_wait_hook(struct proc *parent, struct proc *child)
1275 {
1276 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1277 fixpt_t estcpu;
1278
1279 /* XXX Only if parent != init?? */
1280
1281 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1282 schedcpu_ticks - child->p_forktime);
1283 if (child->p_estcpu > estcpu) {
1284 parent->p_estcpu =
1285 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1286 }
1287 }
1288
1289 /*
1290 * Low-level routines to access the run queue. Optimised assembler
1291 * routines can override these.
1292 */
1293
1294 #ifndef __HAVE_MD_RUNQUEUE
1295
1296 /*
1297 * On some architectures, it's faster to use a MSB ordering for the priorites
1298 * than the traditional LSB ordering.
1299 */
1300 #ifdef __HAVE_BIGENDIAN_BITOPS
1301 #define RQMASK(n) (0x80000000 >> (n))
1302 #else
1303 #define RQMASK(n) (0x00000001 << (n))
1304 #endif
1305
1306 /*
1307 * The primitives that manipulate the run queues. whichqs tells which
1308 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1309 * into queues, remrunqueue removes them from queues. The running process is
1310 * on no queue, other processes are on a queue related to p->p_priority,
1311 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1312 * available queues.
1313 */
1314
1315 #ifdef RQDEBUG
1316 static void
1317 checkrunqueue(int whichq, struct lwp *l)
1318 {
1319 const struct prochd * const rq = &sched_qs[whichq];
1320 struct lwp *l2;
1321 int found = 0;
1322 int die = 0;
1323 int empty = 1;
1324 for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
1325 if (l2->l_stat != LSRUN) {
1326 printf("checkrunqueue[%d]: lwp %p state (%d) "
1327 " != LSRUN\n", whichq, l2, l2->l_stat);
1328 }
1329 if (l2->l_back->l_forw != l2) {
1330 printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1331 "corrupt %p\n", whichq, l2, l2->l_back,
1332 l2->l_back->l_forw);
1333 die = 1;
1334 }
1335 if (l2->l_forw->l_back != l2) {
1336 printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1337 "corrupt %p\n", whichq, l2, l2->l_forw,
1338 l2->l_forw->l_back);
1339 die = 1;
1340 }
1341 if (l2 == l)
1342 found = 1;
1343 empty = 0;
1344 }
1345 if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1346 printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1347 whichq, rq);
1348 die = 1;
1349 } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1350 printf("checkrunqueue[%d]: bit clear for non-empty "
1351 "run-queue %p\n", whichq, rq);
1352 die = 1;
1353 }
1354 if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1355 printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1356 whichq, l);
1357 die = 1;
1358 }
1359 if (l != NULL && empty) {
1360 printf("checkrunqueue[%d]: empty run-queue %p with "
1361 "active lwp %p\n", whichq, rq, l);
1362 die = 1;
1363 }
1364 if (l != NULL && !found) {
1365 printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1366 whichq, l, rq);
1367 die = 1;
1368 }
1369 if (die)
1370 panic("checkrunqueue: inconsistency found");
1371 }
1372 #endif /* RQDEBUG */
1373
1374 void
1375 setrunqueue(struct lwp *l)
1376 {
1377 struct prochd *rq;
1378 struct lwp *prev;
1379 const int whichq = l->l_priority / PPQ;
1380
1381 #ifdef RQDEBUG
1382 checkrunqueue(whichq, NULL);
1383 #endif
1384 #ifdef DIAGNOSTIC
1385 if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
1386 panic("setrunqueue");
1387 #endif
1388 sched_whichqs |= RQMASK(whichq);
1389 rq = &sched_qs[whichq];
1390 prev = rq->ph_rlink;
1391 l->l_forw = (struct lwp *)rq;
1392 rq->ph_rlink = l;
1393 prev->l_forw = l;
1394 l->l_back = prev;
1395 #ifdef RQDEBUG
1396 checkrunqueue(whichq, l);
1397 #endif
1398 }
1399
1400 void
1401 remrunqueue(struct lwp *l)
1402 {
1403 struct lwp *prev, *next;
1404 const int whichq = l->l_priority / PPQ;
1405 #ifdef RQDEBUG
1406 checkrunqueue(whichq, l);
1407 #endif
1408 #ifdef DIAGNOSTIC
1409 if (((sched_whichqs & RQMASK(whichq)) == 0))
1410 panic("remrunqueue: bit %d not set", whichq);
1411 #endif
1412 prev = l->l_back;
1413 l->l_back = NULL;
1414 next = l->l_forw;
1415 prev->l_forw = next;
1416 next->l_back = prev;
1417 if (prev == next)
1418 sched_whichqs &= ~RQMASK(whichq);
1419 #ifdef RQDEBUG
1420 checkrunqueue(whichq, NULL);
1421 #endif
1422 }
1423
1424 #undef RQMASK
1425 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1426