Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.166.2.15
      1 /*	$NetBSD: kern_synch.c,v 1.166.2.15 2007/01/28 01:34:18 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. Neither the name of the University nor the names of its contributors
     58  *    may be used to endorse or promote products derived from this software
     59  *    without specific prior written permission.
     60  *
     61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71  * SUCH DAMAGE.
     72  *
     73  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.166.2.15 2007/01/28 01:34:18 ad Exp $");
     78 
     79 #include "opt_ddb.h"
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/proc.h>
     91 #include <sys/kernel.h>
     92 #include <sys/buf.h>
     93 #if defined(PERFCTRS)
     94 #include <sys/pmc.h>
     95 #endif
     96 #include <sys/signalvar.h>
     97 #include <sys/resourcevar.h>
     98 #include <sys/sched.h>
     99 #include <sys/sa.h>
    100 #include <sys/savar.h>
    101 #include <sys/kauth.h>
    102 #include <sys/sleepq.h>
    103 #include <sys/lockdebug.h>
    104 
    105 #include <uvm/uvm_extern.h>
    106 
    107 #include <machine/cpu.h>
    108 
    109 int	lbolt;			/* once a second sleep address */
    110 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    111 
    112 /*
    113  * The global scheduler state.
    114  */
    115 kmutex_t	sched_mutex;		/* global sched state mutex */
    116 struct prochd	sched_qs[RUNQUE_NQS];	/* run queues */
    117 volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    118 
    119 void	schedcpu(void *);
    120 void	updatepri(struct lwp *);
    121 void	sa_awaken(struct lwp *);
    122 
    123 void	sched_unsleep(struct lwp *);
    124 void	sched_changepri(struct lwp *, int);
    125 
    126 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    127 static unsigned int schedcpu_ticks;
    128 
    129 syncobj_t sleep_syncobj = {
    130 	SOBJ_SLEEPQ_SORTED,
    131 	sleepq_unsleep,
    132 	sleepq_changepri
    133 };
    134 
    135 syncobj_t sched_syncobj = {
    136 	SOBJ_SLEEPQ_SORTED,
    137 	sched_unsleep,
    138 	sched_changepri
    139 };
    140 
    141 /*
    142  * Force switch among equal priority processes every 100ms.
    143  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    144  */
    145 /* ARGSUSED */
    146 void
    147 roundrobin(struct cpu_info *ci)
    148 {
    149 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    150 
    151 	spc->spc_rrticks = rrticks;
    152 
    153 	if (curlwp != NULL) {
    154 		if (spc->spc_flags & SPCF_SEENRR) {
    155 			/*
    156 			 * The process has already been through a roundrobin
    157 			 * without switching and may be hogging the CPU.
    158 			 * Indicate that the process should yield.
    159 			 */
    160 			spc->spc_flags |= SPCF_SHOULDYIELD;
    161 		} else
    162 			spc->spc_flags |= SPCF_SEENRR;
    163 	}
    164 	cpu_need_resched(curcpu());
    165 }
    166 
    167 #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    168 #define	NICE_WEIGHT 2			/* priorities per nice level */
    169 
    170 #define	ESTCPU_SHIFT	11
    171 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    172 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    173 
    174 /*
    175  * Constants for digital decay and forget:
    176  *	90% of (p_estcpu) usage in 5 * loadav time
    177  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    178  *          Note that, as ps(1) mentions, this can let percentages
    179  *          total over 100% (I've seen 137.9% for 3 processes).
    180  *
    181  * Note that hardclock updates p_estcpu and p_cpticks independently.
    182  *
    183  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    184  * That is, the system wants to compute a value of decay such
    185  * that the following for loop:
    186  * 	for (i = 0; i < (5 * loadavg); i++)
    187  * 		p_estcpu *= decay;
    188  * will compute
    189  * 	p_estcpu *= 0.1;
    190  * for all values of loadavg:
    191  *
    192  * Mathematically this loop can be expressed by saying:
    193  * 	decay ** (5 * loadavg) ~= .1
    194  *
    195  * The system computes decay as:
    196  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    197  *
    198  * We wish to prove that the system's computation of decay
    199  * will always fulfill the equation:
    200  * 	decay ** (5 * loadavg) ~= .1
    201  *
    202  * If we compute b as:
    203  * 	b = 2 * loadavg
    204  * then
    205  * 	decay = b / (b + 1)
    206  *
    207  * We now need to prove two things:
    208  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    209  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    210  *
    211  * Facts:
    212  *         For x close to zero, exp(x) =~ 1 + x, since
    213  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    214  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    215  *         For x close to zero, ln(1+x) =~ x, since
    216  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    217  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    218  *         ln(.1) =~ -2.30
    219  *
    220  * Proof of (1):
    221  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    222  *	solving for factor,
    223  *      ln(factor) =~ (-2.30/5*loadav), or
    224  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    225  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    226  *
    227  * Proof of (2):
    228  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    229  *	solving for power,
    230  *      power*ln(b/(b+1)) =~ -2.30, or
    231  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    232  *
    233  * Actual power values for the implemented algorithm are as follows:
    234  *      loadav: 1       2       3       4
    235  *      power:  5.68    10.32   14.94   19.55
    236  */
    237 
    238 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    239 #define	loadfactor(loadav)	(2 * (loadav))
    240 
    241 static fixpt_t
    242 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    243 {
    244 
    245 	if (estcpu == 0) {
    246 		return 0;
    247 	}
    248 
    249 #if !defined(_LP64)
    250 	/* avoid 64bit arithmetics. */
    251 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    252 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    253 		return estcpu * loadfac / (loadfac + FSCALE);
    254 	}
    255 #endif /* !defined(_LP64) */
    256 
    257 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    258 }
    259 
    260 /*
    261  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    262  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    263  * less than (1 << ESTCPU_SHIFT).
    264  *
    265  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    266  */
    267 static fixpt_t
    268 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    269 {
    270 
    271 	if ((n << FSHIFT) >= 7 * loadfac) {
    272 		return 0;
    273 	}
    274 
    275 	while (estcpu != 0 && n > 1) {
    276 		estcpu = decay_cpu(loadfac, estcpu);
    277 		n--;
    278 	}
    279 
    280 	return estcpu;
    281 }
    282 
    283 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    284 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    285 
    286 /*
    287  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    288  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    289  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    290  *
    291  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    292  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    293  *
    294  * If you dont want to bother with the faster/more-accurate formula, you
    295  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    296  * (more general) method of calculating the %age of CPU used by a process.
    297  */
    298 #define	CCPU_SHIFT	11
    299 
    300 /*
    301  * schedcpu:
    302  *
    303  *	Recompute process priorities, every hz ticks.
    304  *
    305  *	XXXSMP This needs to be reorganised in order to reduce the locking
    306  *	burden.
    307  */
    308 /* ARGSUSED */
    309 void
    310 schedcpu(void *arg)
    311 {
    312 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    313 	struct rlimit *rlim;
    314 	struct lwp *l;
    315 	struct proc *p;
    316 	int minslp, clkhz, sig;
    317 	long runtm;
    318 
    319 	schedcpu_ticks++;
    320 
    321 	mutex_enter(&proclist_mutex);
    322 	PROCLIST_FOREACH(p, &allproc) {
    323 		/*
    324 		 * Increment time in/out of memory and sleep time (if
    325 		 * sleeping).  We ignore overflow; with 16-bit int's
    326 		 * (remember them?) overflow takes 45 days.
    327 		 */
    328 		minslp = 2;
    329 		mutex_enter(&p->p_smutex);
    330 		runtm = p->p_rtime.tv_sec;
    331 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    332 			lwp_lock(l);
    333 			runtm += l->l_rtime.tv_sec;
    334 			l->l_swtime++;
    335 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    336 			    l->l_stat == LSSUSPENDED) {
    337 				l->l_slptime++;
    338 				minslp = min(minslp, l->l_slptime);
    339 			} else
    340 				minslp = 0;
    341 			lwp_unlock(l);
    342 		}
    343 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    344 
    345 		/*
    346 		 * Check if the process exceeds its CPU resource allocation.
    347 		 * If over max, kill it.
    348 		 */
    349 		rlim = &p->p_rlimit[RLIMIT_CPU];
    350 		sig = 0;
    351 		if (runtm >= rlim->rlim_cur) {
    352 			if (runtm >= rlim->rlim_max)
    353 				sig = SIGKILL;
    354 			else {
    355 				sig = SIGXCPU;
    356 				if (rlim->rlim_cur < rlim->rlim_max)
    357 					rlim->rlim_cur += 5;
    358 			}
    359 		}
    360 
    361 		/*
    362 		 * If the process has run for more than autonicetime, reduce
    363 		 * priority to give others a chance.
    364 		 */
    365 		if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
    366 		    && kauth_cred_geteuid(p->p_cred)) {
    367 			mutex_enter(&p->p_stmutex);
    368 			p->p_nice = autoniceval + NZERO;
    369 			resetprocpriority(p);
    370 			mutex_exit(&p->p_stmutex);
    371 		}
    372 
    373 		/*
    374 		 * If the process has slept the entire second,
    375 		 * stop recalculating its priority until it wakes up.
    376 		 */
    377 		if (minslp <= 1) {
    378 			/*
    379 			 * p_pctcpu is only for ps.
    380 			 */
    381 			mutex_enter(&p->p_stmutex);
    382 			clkhz = stathz != 0 ? stathz : hz;
    383 #if	(FSHIFT >= CCPU_SHIFT)
    384 			p->p_pctcpu += (clkhz == 100)?
    385 			    ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    386 			    100 * (((fixpt_t) p->p_cpticks)
    387 			    << (FSHIFT - CCPU_SHIFT)) / clkhz;
    388 #else
    389 			p->p_pctcpu += ((FSCALE - ccpu) *
    390 			    (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    391 #endif
    392 			p->p_cpticks = 0;
    393 			p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    394 
    395 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    396 				lwp_lock(l);
    397 				if (l->l_slptime <= 1)
    398 					resetpriority(l);
    399 				lwp_unlock(l);
    400 			}
    401 			mutex_exit(&p->p_stmutex);
    402 		}
    403 
    404 		mutex_exit(&p->p_smutex);
    405 		if (sig) {
    406 			psignal(p, sig);
    407 		}
    408 	}
    409 	mutex_exit(&proclist_mutex);
    410 	uvm_meter();
    411 	wakeup((caddr_t)&lbolt);
    412 	callout_schedule(&schedcpu_ch, hz);
    413 }
    414 
    415 /*
    416  * Recalculate the priority of a process after it has slept for a while.
    417  */
    418 void
    419 updatepri(struct lwp *l)
    420 {
    421 	struct proc *p = l->l_proc;
    422 	fixpt_t loadfac;
    423 
    424 	LOCK_ASSERT(lwp_locked(l, NULL));
    425 	KASSERT(l->l_slptime > 1);
    426 
    427 	loadfac = loadfactor(averunnable.ldavg[0]);
    428 
    429 	l->l_slptime--; /* the first time was done in schedcpu */
    430 	/* XXX NJWLWP */
    431 	/* XXXSMP occasionally unlocked, should be per-LWP */
    432 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    433 	resetpriority(l);
    434 }
    435 
    436 /*
    437  * During autoconfiguration or after a panic, a sleep will simply lower the
    438  * priority briefly to allow interrupts, then return.  The priority to be
    439  * used (safepri) is machine-dependent, thus this value is initialized and
    440  * maintained in the machine-dependent layers.  This priority will typically
    441  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    442  * it can be made higher to block network software interrupts after panics.
    443  */
    444 int	safepri;
    445 
    446 /*
    447  * OBSOLETE INTERFACE
    448  *
    449  * General sleep call.  Suspends the current process until a wakeup is
    450  * performed on the specified identifier.  The process will then be made
    451  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    452  * means no timeout).  If pri includes PCATCH flag, signals are checked
    453  * before and after sleeping, else signals are not checked.  Returns 0 if
    454  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    455  * signal needs to be delivered, ERESTART is returned if the current system
    456  * call should be restarted if possible, and EINTR is returned if the system
    457  * call should be interrupted by the signal (return EINTR).
    458  *
    459  * The interlock is held until we are on a sleep queue. The interlock will
    460  * be locked before returning back to the caller unless the PNORELOCK flag
    461  * is specified, in which case the interlock will always be unlocked upon
    462  * return.
    463  */
    464 int
    465 ltsleep(wchan_t ident, int priority, const char *wmesg, int timo,
    466 	volatile struct simplelock *interlock)
    467 {
    468 	struct lwp *l = curlwp;
    469 	sleepq_t *sq;
    470 	int error, catch;
    471 
    472 	if (sleepq_dontsleep(l)) {
    473 		(void)sleepq_abort(NULL, 0);
    474 		if ((priority & PNORELOCK) != 0)
    475 			simple_unlock(interlock);
    476 		return 0;
    477 	}
    478 
    479 	sq = sleeptab_lookup(&sleeptab, ident);
    480 	sleepq_enter(sq, l);
    481 
    482 	if (interlock != NULL) {
    483 		LOCK_ASSERT(simple_lock_held(interlock));
    484 		simple_unlock(interlock);
    485 	}
    486 
    487 	catch = priority & PCATCH;
    488 	sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
    489 	    &sleep_syncobj);
    490 	error = sleepq_unblock(timo, catch);
    491 
    492 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    493 		simple_lock(interlock);
    494 
    495 	return error;
    496 }
    497 
    498 /*
    499  * General sleep call for situations where a wake-up is not expected.
    500  */
    501 int
    502 kpause(const char *wmesg, boolean_t intr, int timo, kmutex_t *mtx)
    503 {
    504 	struct lwp *l = curlwp;
    505 	sleepq_t *sq;
    506 	int error;
    507 
    508 	if (sleepq_dontsleep(l))
    509 		return sleepq_abort(NULL, 0);
    510 
    511 	mutex_exit(mtx);
    512 	sq = sleeptab_lookup(&sleeptab, l);
    513 	sleepq_enter(sq, l);
    514 	sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
    515 	error = sleepq_unblock(timo, intr);
    516 	mutex_enter(mtx);
    517 
    518 	return error;
    519 }
    520 
    521 void
    522 sa_awaken(struct lwp *l)
    523 {
    524 
    525 	LOCK_ASSERT(lwp_locked(l, NULL));
    526 
    527 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    528 		l->l_flag &= ~L_SA_IDLE;
    529 }
    530 
    531 /*
    532  * OBSOLETE INTERFACE
    533  *
    534  * Make all processes sleeping on the specified identifier runnable.
    535  */
    536 void
    537 wakeup(wchan_t ident)
    538 {
    539 	sleepq_t *sq;
    540 
    541 	if (cold)
    542 		return;
    543 
    544 	sq = sleeptab_lookup(&sleeptab, ident);
    545 	sleepq_wake(sq, ident, (u_int)-1);
    546 }
    547 
    548 /*
    549  * OBSOLETE INTERFACE
    550  *
    551  * Make the highest priority process first in line on the specified
    552  * identifier runnable.
    553  */
    554 void
    555 wakeup_one(wchan_t ident)
    556 {
    557 	sleepq_t *sq;
    558 
    559 	if (cold)
    560 		return;
    561 
    562 	sq = sleeptab_lookup(&sleeptab, ident);
    563 	sleepq_wake(sq, ident, 1);
    564 }
    565 
    566 
    567 /*
    568  * General yield call.  Puts the current process back on its run queue and
    569  * performs a voluntary context switch.  Should only be called when the
    570  * current process explicitly requests it (eg sched_yield(2) in compat code).
    571  */
    572 void
    573 yield(void)
    574 {
    575 	struct lwp *l = curlwp;
    576 
    577 	lwp_lock(l);
    578 	if (l->l_stat == LSONPROC) {
    579 		KASSERT(lwp_locked(l, &sched_mutex));
    580 		l->l_priority = l->l_usrpri;
    581 	}
    582 	l->l_nvcsw++;
    583 	mi_switch(l, NULL);
    584 }
    585 
    586 /*
    587  * General preemption call.  Puts the current process back on its run queue
    588  * and performs an involuntary context switch.
    589  * The 'more' ("more work to do") argument is boolean. Returning to userspace
    590  * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
    591  * This will be used to indicate to the SA subsystem that the LWP is
    592  * not yet finished in the kernel.
    593  */
    594 void
    595 preempt(int more)
    596 {
    597 	struct lwp *l = curlwp;
    598 	int r;
    599 
    600 	lwp_lock(l);
    601 	if (l->l_stat == LSONPROC) {
    602 		KASSERT(lwp_locked(l, &sched_mutex));
    603 		l->l_priority = l->l_usrpri;
    604 	}
    605 	l->l_nivcsw++;
    606 	r = mi_switch(l, NULL);
    607 
    608 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    609 		sa_preempt(l);
    610 }
    611 
    612 /*
    613  * The machine independent parts of context switch.  Switch to "new"
    614  * if non-NULL, otherwise let cpu_switch choose the next lwp.
    615  *
    616  * Returns 1 if another process was actually run.
    617  */
    618 int
    619 mi_switch(struct lwp *l, struct lwp *newl)
    620 {
    621 	struct schedstate_percpu *spc;
    622 	struct timeval tv;
    623 #ifdef MULTIPROCESSOR
    624 	int hold_count;
    625 #endif
    626 	int retval, oldspl;
    627 	long s, u;
    628 #if PERFCTRS
    629 	struct proc *p = l->l_proc;
    630 #endif
    631 
    632 	LOCK_ASSERT(lwp_locked(l, NULL));
    633 
    634 	/*
    635 	 * Release the kernel_lock, as we are about to yield the CPU.
    636 	 */
    637 	KERNEL_UNLOCK_ALL(l, &hold_count);
    638 
    639 #ifdef LOCKDEBUG
    640 	spinlock_switchcheck();
    641 	simple_lock_switchcheck();
    642 #endif
    643 #ifdef KSTACK_CHECK_MAGIC
    644 	kstack_check_magic(l);
    645 #endif
    646 
    647 	/*
    648 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    649 	 * are after is the run time and that's guarenteed to have been last
    650 	 * updated by this CPU.
    651 	 */
    652 	KDASSERT(l->l_cpu == curcpu());
    653 	spc = &l->l_cpu->ci_schedstate;
    654 
    655 	/*
    656 	 * Compute the amount of time during which the current
    657 	 * process was running.
    658 	 */
    659 	microtime(&tv);
    660 	u = l->l_rtime.tv_usec +
    661 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    662 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    663 	if (u < 0) {
    664 		u += 1000000;
    665 		s--;
    666 	} else if (u >= 1000000) {
    667 		u -= 1000000;
    668 		s++;
    669 	}
    670 	l->l_rtime.tv_usec = u;
    671 	l->l_rtime.tv_sec = s;
    672 
    673 	/*
    674 	 * XXXSMP If we are using h/w performance counters, save context.
    675 	 */
    676 #if PERFCTRS
    677 	if (PMC_ENABLED(p)) {
    678 		pmc_save_context(p);
    679 	}
    680 #endif
    681 
    682 	/*
    683 	 * Acquire the sched_mutex if necessary.  It will be released by
    684 	 * cpu_switch once it has decided to idle, or picked another LWP
    685 	 * to run.
    686 	 */
    687 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    688 	if (l->l_mutex != &sched_mutex) {
    689 		mutex_spin_enter(&sched_mutex);
    690 		lwp_unlock(l);
    691 	}
    692 #endif
    693 
    694 	/*
    695 	 * If on the CPU and we have gotten this far, then we must yield.
    696 	 */
    697 	KASSERT(l->l_stat != LSRUN);
    698 	if (l->l_stat == LSONPROC) {
    699 		KASSERT(lwp_locked(l, &sched_mutex));
    700 		l->l_stat = LSRUN;
    701 		setrunqueue(l);
    702 	}
    703 	uvmexp.swtch++;
    704 
    705 	/*
    706 	 * Process is about to yield the CPU; clear the appropriate
    707 	 * scheduling flags.
    708 	 */
    709 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    710 
    711 	LOCKDEBUG_BARRIER(&sched_mutex, 1);
    712 
    713 	/*
    714 	 * Switch to the new current LWP.  When we run again, we'll
    715 	 * return back here.
    716 	 */
    717 	oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    718 
    719 	if (newl == NULL || newl->l_back == NULL)
    720 		retval = cpu_switch(l, NULL);
    721 	else {
    722 		KASSERT(lwp_locked(newl, &sched_mutex));
    723 		remrunqueue(newl);
    724 		cpu_switchto(l, newl);
    725 		retval = 0;
    726 	}
    727 
    728 	/*
    729 	 * XXXSMP If we are using h/w performance counters, restore context.
    730 	 */
    731 #if PERFCTRS
    732 	if (PMC_ENABLED(p)) {
    733 		pmc_restore_context(p);
    734 	}
    735 #endif
    736 
    737 	/*
    738 	 * We're running again; record our new start time.  We might
    739 	 * be running on a new CPU now, so don't use the cached
    740 	 * schedstate_percpu pointer.
    741 	 */
    742 	KDASSERT(l->l_cpu == curcpu());
    743 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    744 
    745 	/*
    746 	 * Reacquire the kernel_lock.
    747 	 */
    748 	splx(oldspl);
    749 	KERNEL_LOCK(hold_count, l);
    750 
    751 	return retval;
    752 }
    753 
    754 /*
    755  * Initialize the (doubly-linked) run queues
    756  * to be empty.
    757  */
    758 void
    759 rqinit()
    760 {
    761 	int i;
    762 
    763 	for (i = 0; i < RUNQUE_NQS; i++)
    764 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    765 		    (struct lwp *)&sched_qs[i];
    766 
    767 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    768 }
    769 
    770 static inline void
    771 resched_lwp(struct lwp *l, u_char pri)
    772 {
    773 	struct cpu_info *ci;
    774 
    775 	/*
    776 	 * XXXSMP
    777 	 * Since l->l_cpu persists across a context switch,
    778 	 * this gives us *very weak* processor affinity, in
    779 	 * that we notify the CPU on which the process last
    780 	 * ran that it should try to switch.
    781 	 *
    782 	 * This does not guarantee that the process will run on
    783 	 * that processor next, because another processor might
    784 	 * grab it the next time it performs a context switch.
    785 	 *
    786 	 * This also does not handle the case where its last
    787 	 * CPU is running a higher-priority process, but every
    788 	 * other CPU is running a lower-priority process.  There
    789 	 * are ways to handle this situation, but they're not
    790 	 * currently very pretty, and we also need to weigh the
    791 	 * cost of moving a process from one CPU to another.
    792 	 *
    793 	 * XXXSMP
    794 	 * There is also the issue of locking the other CPU's
    795 	 * sched state, which we currently do not do.
    796 	 */
    797 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    798 	if (pri < ci->ci_schedstate.spc_curpriority)
    799 		cpu_need_resched(ci);
    800 }
    801 
    802 /*
    803  * Change process state to be runnable, placing it on the run queue if it is
    804  * in memory, and awakening the swapper if it isn't in memory.
    805  *
    806  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    807  */
    808 void
    809 setrunnable(struct lwp *l)
    810 {
    811 	struct proc *p = l->l_proc;
    812 
    813 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    814 	LOCK_ASSERT(lwp_locked(l, NULL));
    815 
    816 	switch (l->l_stat) {
    817 	case LSSTOP:
    818 		/*
    819 		 * If we're being traced (possibly because someone attached us
    820 		 * while we were stopped), check for a signal from the debugger.
    821 		 */
    822 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    823 			sigaddset(&l->l_sigpend.sp_set, p->p_xstat);
    824 			signotify(l);
    825 		}
    826 		p->p_nrlwps++;
    827 		break;
    828 	case LSSUSPENDED:
    829 		l->l_flag &= ~L_WSUSPEND;
    830 		p->p_nrlwps++;
    831 		break;
    832 	case LSSLEEP:
    833 		KASSERT(l->l_wchan != NULL);
    834 		break;
    835 	default:
    836 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    837 	}
    838 
    839 	/*
    840 	 * If the LWP was sleeping interruptably, then it's OK to start it
    841 	 * again.  If not, mark it as still sleeping.
    842 	 */
    843 	if (l->l_wchan != NULL) {
    844 		l->l_stat = LSSLEEP;
    845 		if ((l->l_flag & L_SINTR) != 0)
    846 			lwp_unsleep(l);
    847 		else {
    848 			lwp_unlock(l);
    849 #ifdef DIAGNOSTIC
    850 			panic("setrunnable: !L_SINTR");
    851 #endif
    852 		}
    853 		return;
    854 	}
    855 
    856 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
    857 
    858 	if (l->l_proc->p_sa)
    859 		sa_awaken(l);
    860 
    861 	/*
    862 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    863 	 * about to call mi_switch(), in which case it will yield.
    864 	 *
    865 	 * XXXSMP Will need to change for preemption.
    866 	 */
    867 #ifdef MULTIPROCESSOR
    868 	if (l->l_cpu->ci_curlwp == l) {
    869 #else
    870 	if (l == curlwp) {
    871 #endif
    872 		l->l_stat = LSONPROC;
    873 		l->l_slptime = 0;
    874 		lwp_unlock(l);
    875 		return;
    876 	}
    877 
    878 	/*
    879 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    880 	 * to bring it back in.  Otherwise, enter it into a run queue.
    881 	 */
    882 	if (l->l_slptime > 1)
    883 		updatepri(l);
    884 	l->l_stat = LSRUN;
    885 	l->l_slptime = 0;
    886 
    887 	if (l->l_flag & L_INMEM) {
    888 		setrunqueue(l);
    889 		resched_lwp(l, l->l_priority);
    890 		lwp_unlock(l);
    891 	} else {
    892 		lwp_unlock(l);
    893 		wakeup(&proc0);
    894 	}
    895 }
    896 
    897 /*
    898  * Compute the priority of a process when running in user mode.
    899  * Arrange to reschedule if the resulting priority is better
    900  * than that of the current process.
    901  */
    902 void
    903 resetpriority(struct lwp *l)
    904 {
    905 	unsigned int newpriority;
    906 	struct proc *p = l->l_proc;
    907 
    908 	/* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
    909 	LOCK_ASSERT(lwp_locked(l, NULL));
    910 
    911 	if ((l->l_flag & L_SYSTEM) != 0)
    912 		return;
    913 
    914 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
    915 	    NICE_WEIGHT * (p->p_nice - NZERO);
    916 	newpriority = min(newpriority, MAXPRI);
    917 	l->l_usrpri = newpriority;
    918 	if (l->l_priority != newpriority)
    919 		lwp_changepri(l, newpriority);
    920 }
    921 
    922 /*
    923  * Recompute priority for all LWPs in a process.
    924  */
    925 void
    926 resetprocpriority(struct proc *p)
    927 {
    928 	struct lwp *l;
    929 
    930 	LOCK_ASSERT(mutex_owned(&p->p_stmutex));
    931 
    932 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    933 		lwp_lock(l);
    934 		resetpriority(l);
    935 		lwp_unlock(l);
    936 	}
    937 }
    938 
    939 /*
    940  * We adjust the priority of the current process.  The priority of a process
    941  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    942  * is increased here.  The formula for computing priorities (in kern_synch.c)
    943  * will compute a different value each time p_estcpu increases. This can
    944  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    945  * queue will not change.  The CPU usage estimator ramps up quite quickly
    946  * when the process is running (linearly), and decays away exponentially, at
    947  * a rate which is proportionally slower when the system is busy.  The basic
    948  * principle is that the system will 90% forget that the process used a lot
    949  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    950  * processes which haven't run much recently, and to round-robin among other
    951  * processes.
    952  */
    953 
    954 void
    955 schedclock(struct lwp *l)
    956 {
    957 	struct proc *p = l->l_proc;
    958 
    959 	mutex_enter(&p->p_stmutex);
    960 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    961 	lwp_lock(l);
    962 	resetpriority(l);
    963 	mutex_exit(&p->p_stmutex);
    964 	if ((l->l_flag & L_SYSTEM) == 0 && l->l_priority >= PUSER)
    965 		l->l_priority = l->l_usrpri;
    966 	lwp_unlock(l);
    967 }
    968 
    969 /*
    970  * suspendsched:
    971  *
    972  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    973  */
    974 void
    975 suspendsched(void)
    976 {
    977 #ifdef MULTIPROCESSOR
    978 	CPU_INFO_ITERATOR cii;
    979 	struct cpu_info *ci;
    980 #endif
    981 	struct lwp *l;
    982 	struct proc *p;
    983 
    984 	/*
    985 	 * We do this by process in order not to violate the locking rules.
    986 	 */
    987 	mutex_enter(&proclist_mutex);
    988 	PROCLIST_FOREACH(p, &allproc) {
    989 		mutex_enter(&p->p_smutex);
    990 
    991 		if ((p->p_flag & P_SYSTEM) != 0) {
    992 			mutex_exit(&p->p_smutex);
    993 			continue;
    994 		}
    995 
    996 		p->p_stat = SSTOP;
    997 
    998 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    999 			if (l == curlwp)
   1000 				continue;
   1001 
   1002 			lwp_lock(l);
   1003 
   1004 			/*
   1005 			 * Set L_WREBOOT so that the LWP will suspend itself
   1006 			 * when it tries to return to user mode.  We want to
   1007 			 * try and get to get as many LWPs as possible to
   1008 			 * the user / kernel boundary, so that they will
   1009 			 * release any locks that they hold.
   1010 			 */
   1011 			l->l_flag |= (L_WREBOOT | L_WSUSPEND);
   1012 
   1013 			if (l->l_stat == LSSLEEP &&
   1014 			    (l->l_flag & L_SINTR) != 0) {
   1015 				/* setrunnable() will release the lock. */
   1016 				setrunnable(l);
   1017 				continue;
   1018 			}
   1019 
   1020 			lwp_unlock(l);
   1021 		}
   1022 
   1023 		mutex_exit(&p->p_smutex);
   1024 	}
   1025 	mutex_exit(&proclist_mutex);
   1026 
   1027 	/*
   1028 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1029 	 * They'll trap into the kernel and suspend themselves in userret().
   1030 	 */
   1031 	sched_lock(0);
   1032 #ifdef MULTIPROCESSOR
   1033 	for (CPU_INFO_FOREACH(cii, ci))
   1034 		cpu_need_resched(ci);
   1035 #else
   1036 	cpu_need_resched(curcpu());
   1037 #endif
   1038 	sched_unlock(0);
   1039 }
   1040 
   1041 /*
   1042  * scheduler_fork_hook:
   1043  *
   1044  *	Inherit the parent's scheduler history.
   1045  */
   1046 void
   1047 scheduler_fork_hook(struct proc *parent, struct proc *child)
   1048 {
   1049 
   1050 	LOCK_ASSERT(mutex_owned(&parent->p_smutex));
   1051 
   1052 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1053 	child->p_forktime = schedcpu_ticks;
   1054 }
   1055 
   1056 /*
   1057  * scheduler_wait_hook:
   1058  *
   1059  *	Chargeback parents for the sins of their children.
   1060  */
   1061 void
   1062 scheduler_wait_hook(struct proc *parent, struct proc *child)
   1063 {
   1064 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1065 	fixpt_t estcpu;
   1066 
   1067 	/* XXX Only if parent != init?? */
   1068 
   1069 	mutex_enter(&parent->p_stmutex);
   1070 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1071 	    schedcpu_ticks - child->p_forktime);
   1072 	if (child->p_estcpu > estcpu)
   1073 		parent->p_estcpu =
   1074 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1075 	mutex_exit(&parent->p_stmutex);
   1076 }
   1077 
   1078 /*
   1079  * sched_kpri:
   1080  *
   1081  *	Scale a priority level to a kernel priority level, usually
   1082  *	for an LWP that is about to sleep.
   1083  */
   1084 int
   1085 sched_kpri(struct lwp *l)
   1086 {
   1087 	static const uint8_t kpri_tab[] = {
   1088 		 0,   1,   2,   3,   4,   5,   6,   7,
   1089 		 8,   9,  10,  11,  12,  13,  14,  15,
   1090 		16,  17,  18,  19,  20,  21,  22,  23,
   1091 		24,  25,  26,  27,  28,  29,  30,  31,
   1092 		32,  33,  34,  35,  36,  37,  38,  39,
   1093 		40,  41,  42,  43,  44,  45,  46,  47,
   1094 		48,  49,   8,   8,   9,   9,  10,  10,
   1095 		11,  11,  12,  12,  13,  14,  14,  15,
   1096 		15,  16,  16,  17,  17,  18,  18,  19,
   1097 		20,  20,  21,  21,  22,  22,  23,  23,
   1098 		24,  24,  25,  26,  26,  27,  27,  28,
   1099 		28,  29,  29,  30,  30,  31,  32,  32,
   1100 		33,  33,  34,  34,  35,  35,  36,  36,
   1101 		37,  38,  38,  39,  39,  40,  40,  41,
   1102 		41,  42,  42,  43,  44,  44,  45,  45,
   1103 		46,  46,  47,  47,  48,  48,  49,  49,
   1104 	};
   1105 
   1106 	return kpri_tab[l->l_priority];
   1107 }
   1108 
   1109 /*
   1110  * sched_unsleep:
   1111  *
   1112  *	The is called when the LWP has not been awoken normally but instead
   1113  *	interrupted: for example, if the sleep timed out.  Because of this,
   1114  *	it's not a valid action for running or idle LWPs.
   1115  */
   1116 void
   1117 sched_unsleep(struct lwp *l)
   1118 {
   1119 
   1120 	lwp_unlock(l);
   1121 	panic("sched_unsleep");
   1122 }
   1123 
   1124 /*
   1125  * sched_changepri:
   1126  *
   1127  *	Adjust the priority of an LWP.
   1128  */
   1129 void
   1130 sched_changepri(struct lwp *l, int pri)
   1131 {
   1132 
   1133 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1134 
   1135 	if (l->l_stat != LSRUN || (l->l_flag & L_INMEM) == 0 ||
   1136 	    (l->l_priority / PPQ) == (pri / PPQ)) {
   1137 		l->l_priority = pri;
   1138 		return;
   1139 	}
   1140 
   1141 	remrunqueue(l);
   1142 	l->l_priority = pri;
   1143 	setrunqueue(l);
   1144 	resched_lwp(l, pri);
   1145 }
   1146 
   1147 /*
   1148  * Low-level routines to access the run queue.  Optimised assembler
   1149  * routines can override these.
   1150  */
   1151 
   1152 #ifndef __HAVE_MD_RUNQUEUE
   1153 
   1154 /*
   1155  * On some architectures, it's faster to use a MSB ordering for the priorites
   1156  * than the traditional LSB ordering.
   1157  */
   1158 #ifdef __HAVE_BIGENDIAN_BITOPS
   1159 #define	RQMASK(n) (0x80000000 >> (n))
   1160 #else
   1161 #define	RQMASK(n) (0x00000001 << (n))
   1162 #endif
   1163 
   1164 /*
   1165  * The primitives that manipulate the run queues.  whichqs tells which
   1166  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1167  * into queues, remrunqueue removes them from queues.  The running process is
   1168  * on no queue, other processes are on a queue related to p->p_priority,
   1169  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1170  * available queues.
   1171  */
   1172 #ifdef RQDEBUG
   1173 static void
   1174 checkrunqueue(int whichq, struct lwp *l)
   1175 {
   1176 	const struct prochd * const rq = &sched_qs[whichq];
   1177 	struct lwp *l2;
   1178 	int found = 0;
   1179 	int die = 0;
   1180 	int empty = 1;
   1181 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
   1182 		if (l2->l_stat != LSRUN) {
   1183 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1184 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1185 		}
   1186 		if (l2->l_back->l_forw != l2) {
   1187 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1188 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1189 			    l2->l_back->l_forw);
   1190 			die = 1;
   1191 		}
   1192 		if (l2->l_forw->l_back != l2) {
   1193 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1194 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1195 			    l2->l_forw->l_back);
   1196 			die = 1;
   1197 		}
   1198 		if (l2 == l)
   1199 			found = 1;
   1200 		empty = 0;
   1201 	}
   1202 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1203 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1204 		    whichq, rq);
   1205 		die = 1;
   1206 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1207 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1208 		    "run-queue %p\n", whichq, rq);
   1209 		die = 1;
   1210 	}
   1211 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1212 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1213 		    whichq, l);
   1214 		die = 1;
   1215 	}
   1216 	if (l != NULL && empty) {
   1217 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1218 		    "active lwp %p\n", whichq, rq, l);
   1219 		die = 1;
   1220 	}
   1221 	if (l != NULL && !found) {
   1222 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1223 		    whichq, l, rq);
   1224 		die = 1;
   1225 	}
   1226 	if (die)
   1227 		panic("checkrunqueue: inconsistency found");
   1228 }
   1229 #endif /* RQDEBUG */
   1230 
   1231 void
   1232 setrunqueue(struct lwp *l)
   1233 {
   1234 	struct prochd *rq;
   1235 	struct lwp *prev;
   1236 	const int whichq = l->l_priority / PPQ;
   1237 
   1238 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1239 
   1240 #ifdef RQDEBUG
   1241 	checkrunqueue(whichq, NULL);
   1242 #endif
   1243 #ifdef DIAGNOSTIC
   1244 	if (l->l_back != NULL || l->l_stat != LSRUN)
   1245 		panic("setrunqueue");
   1246 #endif
   1247 	sched_whichqs |= RQMASK(whichq);
   1248 	rq = &sched_qs[whichq];
   1249 	prev = rq->ph_rlink;
   1250 	l->l_forw = (struct lwp *)rq;
   1251 	rq->ph_rlink = l;
   1252 	prev->l_forw = l;
   1253 	l->l_back = prev;
   1254 #ifdef RQDEBUG
   1255 	checkrunqueue(whichq, l);
   1256 #endif
   1257 }
   1258 
   1259 void
   1260 remrunqueue(struct lwp *l)
   1261 {
   1262 	struct lwp *prev, *next;
   1263 	const int whichq = l->l_priority / PPQ;
   1264 
   1265 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1266 
   1267 #ifdef RQDEBUG
   1268 	checkrunqueue(whichq, l);
   1269 #endif
   1270 
   1271 #if defined(DIAGNOSTIC)
   1272 	if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
   1273 		/* Shouldn't happen - interrupts disabled. */
   1274 		panic("remrunqueue: bit %d not set", whichq);
   1275 	}
   1276 #endif
   1277 	prev = l->l_back;
   1278 	l->l_back = NULL;
   1279 	next = l->l_forw;
   1280 	prev->l_forw = next;
   1281 	next->l_back = prev;
   1282 	if (prev == next)
   1283 		sched_whichqs &= ~RQMASK(whichq);
   1284 #ifdef RQDEBUG
   1285 	checkrunqueue(whichq, NULL);
   1286 #endif
   1287 }
   1288 
   1289 #undef RQMASK
   1290 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1291