kern_synch.c revision 1.166.2.15 1 /* $NetBSD: kern_synch.c,v 1.166.2.15 2007/01/28 01:34:18 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.166.2.15 2007/01/28 01:34:18 ad Exp $");
78
79 #include "opt_ddb.h"
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/proc.h>
91 #include <sys/kernel.h>
92 #include <sys/buf.h>
93 #if defined(PERFCTRS)
94 #include <sys/pmc.h>
95 #endif
96 #include <sys/signalvar.h>
97 #include <sys/resourcevar.h>
98 #include <sys/sched.h>
99 #include <sys/sa.h>
100 #include <sys/savar.h>
101 #include <sys/kauth.h>
102 #include <sys/sleepq.h>
103 #include <sys/lockdebug.h>
104
105 #include <uvm/uvm_extern.h>
106
107 #include <machine/cpu.h>
108
109 int lbolt; /* once a second sleep address */
110 int rrticks; /* number of hardclock ticks per roundrobin() */
111
112 /*
113 * The global scheduler state.
114 */
115 kmutex_t sched_mutex; /* global sched state mutex */
116 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
117 volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
118
119 void schedcpu(void *);
120 void updatepri(struct lwp *);
121 void sa_awaken(struct lwp *);
122
123 void sched_unsleep(struct lwp *);
124 void sched_changepri(struct lwp *, int);
125
126 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
127 static unsigned int schedcpu_ticks;
128
129 syncobj_t sleep_syncobj = {
130 SOBJ_SLEEPQ_SORTED,
131 sleepq_unsleep,
132 sleepq_changepri
133 };
134
135 syncobj_t sched_syncobj = {
136 SOBJ_SLEEPQ_SORTED,
137 sched_unsleep,
138 sched_changepri
139 };
140
141 /*
142 * Force switch among equal priority processes every 100ms.
143 * Called from hardclock every hz/10 == rrticks hardclock ticks.
144 */
145 /* ARGSUSED */
146 void
147 roundrobin(struct cpu_info *ci)
148 {
149 struct schedstate_percpu *spc = &ci->ci_schedstate;
150
151 spc->spc_rrticks = rrticks;
152
153 if (curlwp != NULL) {
154 if (spc->spc_flags & SPCF_SEENRR) {
155 /*
156 * The process has already been through a roundrobin
157 * without switching and may be hogging the CPU.
158 * Indicate that the process should yield.
159 */
160 spc->spc_flags |= SPCF_SHOULDYIELD;
161 } else
162 spc->spc_flags |= SPCF_SEENRR;
163 }
164 cpu_need_resched(curcpu());
165 }
166
167 #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
168 #define NICE_WEIGHT 2 /* priorities per nice level */
169
170 #define ESTCPU_SHIFT 11
171 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
172 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
173
174 /*
175 * Constants for digital decay and forget:
176 * 90% of (p_estcpu) usage in 5 * loadav time
177 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
178 * Note that, as ps(1) mentions, this can let percentages
179 * total over 100% (I've seen 137.9% for 3 processes).
180 *
181 * Note that hardclock updates p_estcpu and p_cpticks independently.
182 *
183 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
184 * That is, the system wants to compute a value of decay such
185 * that the following for loop:
186 * for (i = 0; i < (5 * loadavg); i++)
187 * p_estcpu *= decay;
188 * will compute
189 * p_estcpu *= 0.1;
190 * for all values of loadavg:
191 *
192 * Mathematically this loop can be expressed by saying:
193 * decay ** (5 * loadavg) ~= .1
194 *
195 * The system computes decay as:
196 * decay = (2 * loadavg) / (2 * loadavg + 1)
197 *
198 * We wish to prove that the system's computation of decay
199 * will always fulfill the equation:
200 * decay ** (5 * loadavg) ~= .1
201 *
202 * If we compute b as:
203 * b = 2 * loadavg
204 * then
205 * decay = b / (b + 1)
206 *
207 * We now need to prove two things:
208 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
209 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
210 *
211 * Facts:
212 * For x close to zero, exp(x) =~ 1 + x, since
213 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
214 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
215 * For x close to zero, ln(1+x) =~ x, since
216 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
217 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
218 * ln(.1) =~ -2.30
219 *
220 * Proof of (1):
221 * Solve (factor)**(power) =~ .1 given power (5*loadav):
222 * solving for factor,
223 * ln(factor) =~ (-2.30/5*loadav), or
224 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
225 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
226 *
227 * Proof of (2):
228 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
229 * solving for power,
230 * power*ln(b/(b+1)) =~ -2.30, or
231 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
232 *
233 * Actual power values for the implemented algorithm are as follows:
234 * loadav: 1 2 3 4
235 * power: 5.68 10.32 14.94 19.55
236 */
237
238 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
239 #define loadfactor(loadav) (2 * (loadav))
240
241 static fixpt_t
242 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
243 {
244
245 if (estcpu == 0) {
246 return 0;
247 }
248
249 #if !defined(_LP64)
250 /* avoid 64bit arithmetics. */
251 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
252 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
253 return estcpu * loadfac / (loadfac + FSCALE);
254 }
255 #endif /* !defined(_LP64) */
256
257 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
258 }
259
260 /*
261 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
262 * sleeping for at least seven times the loadfactor will decay p_estcpu to
263 * less than (1 << ESTCPU_SHIFT).
264 *
265 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
266 */
267 static fixpt_t
268 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
269 {
270
271 if ((n << FSHIFT) >= 7 * loadfac) {
272 return 0;
273 }
274
275 while (estcpu != 0 && n > 1) {
276 estcpu = decay_cpu(loadfac, estcpu);
277 n--;
278 }
279
280 return estcpu;
281 }
282
283 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
284 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
285
286 /*
287 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
288 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
289 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
290 *
291 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
292 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
293 *
294 * If you dont want to bother with the faster/more-accurate formula, you
295 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
296 * (more general) method of calculating the %age of CPU used by a process.
297 */
298 #define CCPU_SHIFT 11
299
300 /*
301 * schedcpu:
302 *
303 * Recompute process priorities, every hz ticks.
304 *
305 * XXXSMP This needs to be reorganised in order to reduce the locking
306 * burden.
307 */
308 /* ARGSUSED */
309 void
310 schedcpu(void *arg)
311 {
312 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
313 struct rlimit *rlim;
314 struct lwp *l;
315 struct proc *p;
316 int minslp, clkhz, sig;
317 long runtm;
318
319 schedcpu_ticks++;
320
321 mutex_enter(&proclist_mutex);
322 PROCLIST_FOREACH(p, &allproc) {
323 /*
324 * Increment time in/out of memory and sleep time (if
325 * sleeping). We ignore overflow; with 16-bit int's
326 * (remember them?) overflow takes 45 days.
327 */
328 minslp = 2;
329 mutex_enter(&p->p_smutex);
330 runtm = p->p_rtime.tv_sec;
331 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
332 lwp_lock(l);
333 runtm += l->l_rtime.tv_sec;
334 l->l_swtime++;
335 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
336 l->l_stat == LSSUSPENDED) {
337 l->l_slptime++;
338 minslp = min(minslp, l->l_slptime);
339 } else
340 minslp = 0;
341 lwp_unlock(l);
342 }
343 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
344
345 /*
346 * Check if the process exceeds its CPU resource allocation.
347 * If over max, kill it.
348 */
349 rlim = &p->p_rlimit[RLIMIT_CPU];
350 sig = 0;
351 if (runtm >= rlim->rlim_cur) {
352 if (runtm >= rlim->rlim_max)
353 sig = SIGKILL;
354 else {
355 sig = SIGXCPU;
356 if (rlim->rlim_cur < rlim->rlim_max)
357 rlim->rlim_cur += 5;
358 }
359 }
360
361 /*
362 * If the process has run for more than autonicetime, reduce
363 * priority to give others a chance.
364 */
365 if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
366 && kauth_cred_geteuid(p->p_cred)) {
367 mutex_enter(&p->p_stmutex);
368 p->p_nice = autoniceval + NZERO;
369 resetprocpriority(p);
370 mutex_exit(&p->p_stmutex);
371 }
372
373 /*
374 * If the process has slept the entire second,
375 * stop recalculating its priority until it wakes up.
376 */
377 if (minslp <= 1) {
378 /*
379 * p_pctcpu is only for ps.
380 */
381 mutex_enter(&p->p_stmutex);
382 clkhz = stathz != 0 ? stathz : hz;
383 #if (FSHIFT >= CCPU_SHIFT)
384 p->p_pctcpu += (clkhz == 100)?
385 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
386 100 * (((fixpt_t) p->p_cpticks)
387 << (FSHIFT - CCPU_SHIFT)) / clkhz;
388 #else
389 p->p_pctcpu += ((FSCALE - ccpu) *
390 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
391 #endif
392 p->p_cpticks = 0;
393 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
394
395 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
396 lwp_lock(l);
397 if (l->l_slptime <= 1)
398 resetpriority(l);
399 lwp_unlock(l);
400 }
401 mutex_exit(&p->p_stmutex);
402 }
403
404 mutex_exit(&p->p_smutex);
405 if (sig) {
406 psignal(p, sig);
407 }
408 }
409 mutex_exit(&proclist_mutex);
410 uvm_meter();
411 wakeup((caddr_t)&lbolt);
412 callout_schedule(&schedcpu_ch, hz);
413 }
414
415 /*
416 * Recalculate the priority of a process after it has slept for a while.
417 */
418 void
419 updatepri(struct lwp *l)
420 {
421 struct proc *p = l->l_proc;
422 fixpt_t loadfac;
423
424 LOCK_ASSERT(lwp_locked(l, NULL));
425 KASSERT(l->l_slptime > 1);
426
427 loadfac = loadfactor(averunnable.ldavg[0]);
428
429 l->l_slptime--; /* the first time was done in schedcpu */
430 /* XXX NJWLWP */
431 /* XXXSMP occasionally unlocked, should be per-LWP */
432 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
433 resetpriority(l);
434 }
435
436 /*
437 * During autoconfiguration or after a panic, a sleep will simply lower the
438 * priority briefly to allow interrupts, then return. The priority to be
439 * used (safepri) is machine-dependent, thus this value is initialized and
440 * maintained in the machine-dependent layers. This priority will typically
441 * be 0, or the lowest priority that is safe for use on the interrupt stack;
442 * it can be made higher to block network software interrupts after panics.
443 */
444 int safepri;
445
446 /*
447 * OBSOLETE INTERFACE
448 *
449 * General sleep call. Suspends the current process until a wakeup is
450 * performed on the specified identifier. The process will then be made
451 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
452 * means no timeout). If pri includes PCATCH flag, signals are checked
453 * before and after sleeping, else signals are not checked. Returns 0 if
454 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
455 * signal needs to be delivered, ERESTART is returned if the current system
456 * call should be restarted if possible, and EINTR is returned if the system
457 * call should be interrupted by the signal (return EINTR).
458 *
459 * The interlock is held until we are on a sleep queue. The interlock will
460 * be locked before returning back to the caller unless the PNORELOCK flag
461 * is specified, in which case the interlock will always be unlocked upon
462 * return.
463 */
464 int
465 ltsleep(wchan_t ident, int priority, const char *wmesg, int timo,
466 volatile struct simplelock *interlock)
467 {
468 struct lwp *l = curlwp;
469 sleepq_t *sq;
470 int error, catch;
471
472 if (sleepq_dontsleep(l)) {
473 (void)sleepq_abort(NULL, 0);
474 if ((priority & PNORELOCK) != 0)
475 simple_unlock(interlock);
476 return 0;
477 }
478
479 sq = sleeptab_lookup(&sleeptab, ident);
480 sleepq_enter(sq, l);
481
482 if (interlock != NULL) {
483 LOCK_ASSERT(simple_lock_held(interlock));
484 simple_unlock(interlock);
485 }
486
487 catch = priority & PCATCH;
488 sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
489 &sleep_syncobj);
490 error = sleepq_unblock(timo, catch);
491
492 if (interlock != NULL && (priority & PNORELOCK) == 0)
493 simple_lock(interlock);
494
495 return error;
496 }
497
498 /*
499 * General sleep call for situations where a wake-up is not expected.
500 */
501 int
502 kpause(const char *wmesg, boolean_t intr, int timo, kmutex_t *mtx)
503 {
504 struct lwp *l = curlwp;
505 sleepq_t *sq;
506 int error;
507
508 if (sleepq_dontsleep(l))
509 return sleepq_abort(NULL, 0);
510
511 mutex_exit(mtx);
512 sq = sleeptab_lookup(&sleeptab, l);
513 sleepq_enter(sq, l);
514 sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
515 error = sleepq_unblock(timo, intr);
516 mutex_enter(mtx);
517
518 return error;
519 }
520
521 void
522 sa_awaken(struct lwp *l)
523 {
524
525 LOCK_ASSERT(lwp_locked(l, NULL));
526
527 if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
528 l->l_flag &= ~L_SA_IDLE;
529 }
530
531 /*
532 * OBSOLETE INTERFACE
533 *
534 * Make all processes sleeping on the specified identifier runnable.
535 */
536 void
537 wakeup(wchan_t ident)
538 {
539 sleepq_t *sq;
540
541 if (cold)
542 return;
543
544 sq = sleeptab_lookup(&sleeptab, ident);
545 sleepq_wake(sq, ident, (u_int)-1);
546 }
547
548 /*
549 * OBSOLETE INTERFACE
550 *
551 * Make the highest priority process first in line on the specified
552 * identifier runnable.
553 */
554 void
555 wakeup_one(wchan_t ident)
556 {
557 sleepq_t *sq;
558
559 if (cold)
560 return;
561
562 sq = sleeptab_lookup(&sleeptab, ident);
563 sleepq_wake(sq, ident, 1);
564 }
565
566
567 /*
568 * General yield call. Puts the current process back on its run queue and
569 * performs a voluntary context switch. Should only be called when the
570 * current process explicitly requests it (eg sched_yield(2) in compat code).
571 */
572 void
573 yield(void)
574 {
575 struct lwp *l = curlwp;
576
577 lwp_lock(l);
578 if (l->l_stat == LSONPROC) {
579 KASSERT(lwp_locked(l, &sched_mutex));
580 l->l_priority = l->l_usrpri;
581 }
582 l->l_nvcsw++;
583 mi_switch(l, NULL);
584 }
585
586 /*
587 * General preemption call. Puts the current process back on its run queue
588 * and performs an involuntary context switch.
589 * The 'more' ("more work to do") argument is boolean. Returning to userspace
590 * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
591 * This will be used to indicate to the SA subsystem that the LWP is
592 * not yet finished in the kernel.
593 */
594 void
595 preempt(int more)
596 {
597 struct lwp *l = curlwp;
598 int r;
599
600 lwp_lock(l);
601 if (l->l_stat == LSONPROC) {
602 KASSERT(lwp_locked(l, &sched_mutex));
603 l->l_priority = l->l_usrpri;
604 }
605 l->l_nivcsw++;
606 r = mi_switch(l, NULL);
607
608 if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
609 sa_preempt(l);
610 }
611
612 /*
613 * The machine independent parts of context switch. Switch to "new"
614 * if non-NULL, otherwise let cpu_switch choose the next lwp.
615 *
616 * Returns 1 if another process was actually run.
617 */
618 int
619 mi_switch(struct lwp *l, struct lwp *newl)
620 {
621 struct schedstate_percpu *spc;
622 struct timeval tv;
623 #ifdef MULTIPROCESSOR
624 int hold_count;
625 #endif
626 int retval, oldspl;
627 long s, u;
628 #if PERFCTRS
629 struct proc *p = l->l_proc;
630 #endif
631
632 LOCK_ASSERT(lwp_locked(l, NULL));
633
634 /*
635 * Release the kernel_lock, as we are about to yield the CPU.
636 */
637 KERNEL_UNLOCK_ALL(l, &hold_count);
638
639 #ifdef LOCKDEBUG
640 spinlock_switchcheck();
641 simple_lock_switchcheck();
642 #endif
643 #ifdef KSTACK_CHECK_MAGIC
644 kstack_check_magic(l);
645 #endif
646
647 /*
648 * It's safe to read the per CPU schedstate unlocked here, as all we
649 * are after is the run time and that's guarenteed to have been last
650 * updated by this CPU.
651 */
652 KDASSERT(l->l_cpu == curcpu());
653 spc = &l->l_cpu->ci_schedstate;
654
655 /*
656 * Compute the amount of time during which the current
657 * process was running.
658 */
659 microtime(&tv);
660 u = l->l_rtime.tv_usec +
661 (tv.tv_usec - spc->spc_runtime.tv_usec);
662 s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
663 if (u < 0) {
664 u += 1000000;
665 s--;
666 } else if (u >= 1000000) {
667 u -= 1000000;
668 s++;
669 }
670 l->l_rtime.tv_usec = u;
671 l->l_rtime.tv_sec = s;
672
673 /*
674 * XXXSMP If we are using h/w performance counters, save context.
675 */
676 #if PERFCTRS
677 if (PMC_ENABLED(p)) {
678 pmc_save_context(p);
679 }
680 #endif
681
682 /*
683 * Acquire the sched_mutex if necessary. It will be released by
684 * cpu_switch once it has decided to idle, or picked another LWP
685 * to run.
686 */
687 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
688 if (l->l_mutex != &sched_mutex) {
689 mutex_spin_enter(&sched_mutex);
690 lwp_unlock(l);
691 }
692 #endif
693
694 /*
695 * If on the CPU and we have gotten this far, then we must yield.
696 */
697 KASSERT(l->l_stat != LSRUN);
698 if (l->l_stat == LSONPROC) {
699 KASSERT(lwp_locked(l, &sched_mutex));
700 l->l_stat = LSRUN;
701 setrunqueue(l);
702 }
703 uvmexp.swtch++;
704
705 /*
706 * Process is about to yield the CPU; clear the appropriate
707 * scheduling flags.
708 */
709 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
710
711 LOCKDEBUG_BARRIER(&sched_mutex, 1);
712
713 /*
714 * Switch to the new current LWP. When we run again, we'll
715 * return back here.
716 */
717 oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
718
719 if (newl == NULL || newl->l_back == NULL)
720 retval = cpu_switch(l, NULL);
721 else {
722 KASSERT(lwp_locked(newl, &sched_mutex));
723 remrunqueue(newl);
724 cpu_switchto(l, newl);
725 retval = 0;
726 }
727
728 /*
729 * XXXSMP If we are using h/w performance counters, restore context.
730 */
731 #if PERFCTRS
732 if (PMC_ENABLED(p)) {
733 pmc_restore_context(p);
734 }
735 #endif
736
737 /*
738 * We're running again; record our new start time. We might
739 * be running on a new CPU now, so don't use the cached
740 * schedstate_percpu pointer.
741 */
742 KDASSERT(l->l_cpu == curcpu());
743 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
744
745 /*
746 * Reacquire the kernel_lock.
747 */
748 splx(oldspl);
749 KERNEL_LOCK(hold_count, l);
750
751 return retval;
752 }
753
754 /*
755 * Initialize the (doubly-linked) run queues
756 * to be empty.
757 */
758 void
759 rqinit()
760 {
761 int i;
762
763 for (i = 0; i < RUNQUE_NQS; i++)
764 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
765 (struct lwp *)&sched_qs[i];
766
767 mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
768 }
769
770 static inline void
771 resched_lwp(struct lwp *l, u_char pri)
772 {
773 struct cpu_info *ci;
774
775 /*
776 * XXXSMP
777 * Since l->l_cpu persists across a context switch,
778 * this gives us *very weak* processor affinity, in
779 * that we notify the CPU on which the process last
780 * ran that it should try to switch.
781 *
782 * This does not guarantee that the process will run on
783 * that processor next, because another processor might
784 * grab it the next time it performs a context switch.
785 *
786 * This also does not handle the case where its last
787 * CPU is running a higher-priority process, but every
788 * other CPU is running a lower-priority process. There
789 * are ways to handle this situation, but they're not
790 * currently very pretty, and we also need to weigh the
791 * cost of moving a process from one CPU to another.
792 *
793 * XXXSMP
794 * There is also the issue of locking the other CPU's
795 * sched state, which we currently do not do.
796 */
797 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
798 if (pri < ci->ci_schedstate.spc_curpriority)
799 cpu_need_resched(ci);
800 }
801
802 /*
803 * Change process state to be runnable, placing it on the run queue if it is
804 * in memory, and awakening the swapper if it isn't in memory.
805 *
806 * Call with the process and LWP locked. Will return with the LWP unlocked.
807 */
808 void
809 setrunnable(struct lwp *l)
810 {
811 struct proc *p = l->l_proc;
812
813 LOCK_ASSERT(mutex_owned(&p->p_smutex));
814 LOCK_ASSERT(lwp_locked(l, NULL));
815
816 switch (l->l_stat) {
817 case LSSTOP:
818 /*
819 * If we're being traced (possibly because someone attached us
820 * while we were stopped), check for a signal from the debugger.
821 */
822 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
823 sigaddset(&l->l_sigpend.sp_set, p->p_xstat);
824 signotify(l);
825 }
826 p->p_nrlwps++;
827 break;
828 case LSSUSPENDED:
829 l->l_flag &= ~L_WSUSPEND;
830 p->p_nrlwps++;
831 break;
832 case LSSLEEP:
833 KASSERT(l->l_wchan != NULL);
834 break;
835 default:
836 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
837 }
838
839 /*
840 * If the LWP was sleeping interruptably, then it's OK to start it
841 * again. If not, mark it as still sleeping.
842 */
843 if (l->l_wchan != NULL) {
844 l->l_stat = LSSLEEP;
845 if ((l->l_flag & L_SINTR) != 0)
846 lwp_unsleep(l);
847 else {
848 lwp_unlock(l);
849 #ifdef DIAGNOSTIC
850 panic("setrunnable: !L_SINTR");
851 #endif
852 }
853 return;
854 }
855
856 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
857
858 if (l->l_proc->p_sa)
859 sa_awaken(l);
860
861 /*
862 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
863 * about to call mi_switch(), in which case it will yield.
864 *
865 * XXXSMP Will need to change for preemption.
866 */
867 #ifdef MULTIPROCESSOR
868 if (l->l_cpu->ci_curlwp == l) {
869 #else
870 if (l == curlwp) {
871 #endif
872 l->l_stat = LSONPROC;
873 l->l_slptime = 0;
874 lwp_unlock(l);
875 return;
876 }
877
878 /*
879 * Set the LWP runnable. If it's swapped out, we need to wake the swapper
880 * to bring it back in. Otherwise, enter it into a run queue.
881 */
882 if (l->l_slptime > 1)
883 updatepri(l);
884 l->l_stat = LSRUN;
885 l->l_slptime = 0;
886
887 if (l->l_flag & L_INMEM) {
888 setrunqueue(l);
889 resched_lwp(l, l->l_priority);
890 lwp_unlock(l);
891 } else {
892 lwp_unlock(l);
893 wakeup(&proc0);
894 }
895 }
896
897 /*
898 * Compute the priority of a process when running in user mode.
899 * Arrange to reschedule if the resulting priority is better
900 * than that of the current process.
901 */
902 void
903 resetpriority(struct lwp *l)
904 {
905 unsigned int newpriority;
906 struct proc *p = l->l_proc;
907
908 /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
909 LOCK_ASSERT(lwp_locked(l, NULL));
910
911 if ((l->l_flag & L_SYSTEM) != 0)
912 return;
913
914 newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
915 NICE_WEIGHT * (p->p_nice - NZERO);
916 newpriority = min(newpriority, MAXPRI);
917 l->l_usrpri = newpriority;
918 if (l->l_priority != newpriority)
919 lwp_changepri(l, newpriority);
920 }
921
922 /*
923 * Recompute priority for all LWPs in a process.
924 */
925 void
926 resetprocpriority(struct proc *p)
927 {
928 struct lwp *l;
929
930 LOCK_ASSERT(mutex_owned(&p->p_stmutex));
931
932 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
933 lwp_lock(l);
934 resetpriority(l);
935 lwp_unlock(l);
936 }
937 }
938
939 /*
940 * We adjust the priority of the current process. The priority of a process
941 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
942 * is increased here. The formula for computing priorities (in kern_synch.c)
943 * will compute a different value each time p_estcpu increases. This can
944 * cause a switch, but unless the priority crosses a PPQ boundary the actual
945 * queue will not change. The CPU usage estimator ramps up quite quickly
946 * when the process is running (linearly), and decays away exponentially, at
947 * a rate which is proportionally slower when the system is busy. The basic
948 * principle is that the system will 90% forget that the process used a lot
949 * of CPU time in 5 * loadav seconds. This causes the system to favor
950 * processes which haven't run much recently, and to round-robin among other
951 * processes.
952 */
953
954 void
955 schedclock(struct lwp *l)
956 {
957 struct proc *p = l->l_proc;
958
959 mutex_enter(&p->p_stmutex);
960 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
961 lwp_lock(l);
962 resetpriority(l);
963 mutex_exit(&p->p_stmutex);
964 if ((l->l_flag & L_SYSTEM) == 0 && l->l_priority >= PUSER)
965 l->l_priority = l->l_usrpri;
966 lwp_unlock(l);
967 }
968
969 /*
970 * suspendsched:
971 *
972 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
973 */
974 void
975 suspendsched(void)
976 {
977 #ifdef MULTIPROCESSOR
978 CPU_INFO_ITERATOR cii;
979 struct cpu_info *ci;
980 #endif
981 struct lwp *l;
982 struct proc *p;
983
984 /*
985 * We do this by process in order not to violate the locking rules.
986 */
987 mutex_enter(&proclist_mutex);
988 PROCLIST_FOREACH(p, &allproc) {
989 mutex_enter(&p->p_smutex);
990
991 if ((p->p_flag & P_SYSTEM) != 0) {
992 mutex_exit(&p->p_smutex);
993 continue;
994 }
995
996 p->p_stat = SSTOP;
997
998 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
999 if (l == curlwp)
1000 continue;
1001
1002 lwp_lock(l);
1003
1004 /*
1005 * Set L_WREBOOT so that the LWP will suspend itself
1006 * when it tries to return to user mode. We want to
1007 * try and get to get as many LWPs as possible to
1008 * the user / kernel boundary, so that they will
1009 * release any locks that they hold.
1010 */
1011 l->l_flag |= (L_WREBOOT | L_WSUSPEND);
1012
1013 if (l->l_stat == LSSLEEP &&
1014 (l->l_flag & L_SINTR) != 0) {
1015 /* setrunnable() will release the lock. */
1016 setrunnable(l);
1017 continue;
1018 }
1019
1020 lwp_unlock(l);
1021 }
1022
1023 mutex_exit(&p->p_smutex);
1024 }
1025 mutex_exit(&proclist_mutex);
1026
1027 /*
1028 * Kick all CPUs to make them preempt any LWPs running in user mode.
1029 * They'll trap into the kernel and suspend themselves in userret().
1030 */
1031 sched_lock(0);
1032 #ifdef MULTIPROCESSOR
1033 for (CPU_INFO_FOREACH(cii, ci))
1034 cpu_need_resched(ci);
1035 #else
1036 cpu_need_resched(curcpu());
1037 #endif
1038 sched_unlock(0);
1039 }
1040
1041 /*
1042 * scheduler_fork_hook:
1043 *
1044 * Inherit the parent's scheduler history.
1045 */
1046 void
1047 scheduler_fork_hook(struct proc *parent, struct proc *child)
1048 {
1049
1050 LOCK_ASSERT(mutex_owned(&parent->p_smutex));
1051
1052 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1053 child->p_forktime = schedcpu_ticks;
1054 }
1055
1056 /*
1057 * scheduler_wait_hook:
1058 *
1059 * Chargeback parents for the sins of their children.
1060 */
1061 void
1062 scheduler_wait_hook(struct proc *parent, struct proc *child)
1063 {
1064 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1065 fixpt_t estcpu;
1066
1067 /* XXX Only if parent != init?? */
1068
1069 mutex_enter(&parent->p_stmutex);
1070 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1071 schedcpu_ticks - child->p_forktime);
1072 if (child->p_estcpu > estcpu)
1073 parent->p_estcpu =
1074 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1075 mutex_exit(&parent->p_stmutex);
1076 }
1077
1078 /*
1079 * sched_kpri:
1080 *
1081 * Scale a priority level to a kernel priority level, usually
1082 * for an LWP that is about to sleep.
1083 */
1084 int
1085 sched_kpri(struct lwp *l)
1086 {
1087 static const uint8_t kpri_tab[] = {
1088 0, 1, 2, 3, 4, 5, 6, 7,
1089 8, 9, 10, 11, 12, 13, 14, 15,
1090 16, 17, 18, 19, 20, 21, 22, 23,
1091 24, 25, 26, 27, 28, 29, 30, 31,
1092 32, 33, 34, 35, 36, 37, 38, 39,
1093 40, 41, 42, 43, 44, 45, 46, 47,
1094 48, 49, 8, 8, 9, 9, 10, 10,
1095 11, 11, 12, 12, 13, 14, 14, 15,
1096 15, 16, 16, 17, 17, 18, 18, 19,
1097 20, 20, 21, 21, 22, 22, 23, 23,
1098 24, 24, 25, 26, 26, 27, 27, 28,
1099 28, 29, 29, 30, 30, 31, 32, 32,
1100 33, 33, 34, 34, 35, 35, 36, 36,
1101 37, 38, 38, 39, 39, 40, 40, 41,
1102 41, 42, 42, 43, 44, 44, 45, 45,
1103 46, 46, 47, 47, 48, 48, 49, 49,
1104 };
1105
1106 return kpri_tab[l->l_priority];
1107 }
1108
1109 /*
1110 * sched_unsleep:
1111 *
1112 * The is called when the LWP has not been awoken normally but instead
1113 * interrupted: for example, if the sleep timed out. Because of this,
1114 * it's not a valid action for running or idle LWPs.
1115 */
1116 void
1117 sched_unsleep(struct lwp *l)
1118 {
1119
1120 lwp_unlock(l);
1121 panic("sched_unsleep");
1122 }
1123
1124 /*
1125 * sched_changepri:
1126 *
1127 * Adjust the priority of an LWP.
1128 */
1129 void
1130 sched_changepri(struct lwp *l, int pri)
1131 {
1132
1133 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1134
1135 if (l->l_stat != LSRUN || (l->l_flag & L_INMEM) == 0 ||
1136 (l->l_priority / PPQ) == (pri / PPQ)) {
1137 l->l_priority = pri;
1138 return;
1139 }
1140
1141 remrunqueue(l);
1142 l->l_priority = pri;
1143 setrunqueue(l);
1144 resched_lwp(l, pri);
1145 }
1146
1147 /*
1148 * Low-level routines to access the run queue. Optimised assembler
1149 * routines can override these.
1150 */
1151
1152 #ifndef __HAVE_MD_RUNQUEUE
1153
1154 /*
1155 * On some architectures, it's faster to use a MSB ordering for the priorites
1156 * than the traditional LSB ordering.
1157 */
1158 #ifdef __HAVE_BIGENDIAN_BITOPS
1159 #define RQMASK(n) (0x80000000 >> (n))
1160 #else
1161 #define RQMASK(n) (0x00000001 << (n))
1162 #endif
1163
1164 /*
1165 * The primitives that manipulate the run queues. whichqs tells which
1166 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1167 * into queues, remrunqueue removes them from queues. The running process is
1168 * on no queue, other processes are on a queue related to p->p_priority,
1169 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1170 * available queues.
1171 */
1172 #ifdef RQDEBUG
1173 static void
1174 checkrunqueue(int whichq, struct lwp *l)
1175 {
1176 const struct prochd * const rq = &sched_qs[whichq];
1177 struct lwp *l2;
1178 int found = 0;
1179 int die = 0;
1180 int empty = 1;
1181 for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
1182 if (l2->l_stat != LSRUN) {
1183 printf("checkrunqueue[%d]: lwp %p state (%d) "
1184 " != LSRUN\n", whichq, l2, l2->l_stat);
1185 }
1186 if (l2->l_back->l_forw != l2) {
1187 printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1188 "corrupt %p\n", whichq, l2, l2->l_back,
1189 l2->l_back->l_forw);
1190 die = 1;
1191 }
1192 if (l2->l_forw->l_back != l2) {
1193 printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1194 "corrupt %p\n", whichq, l2, l2->l_forw,
1195 l2->l_forw->l_back);
1196 die = 1;
1197 }
1198 if (l2 == l)
1199 found = 1;
1200 empty = 0;
1201 }
1202 if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1203 printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1204 whichq, rq);
1205 die = 1;
1206 } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1207 printf("checkrunqueue[%d]: bit clear for non-empty "
1208 "run-queue %p\n", whichq, rq);
1209 die = 1;
1210 }
1211 if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1212 printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1213 whichq, l);
1214 die = 1;
1215 }
1216 if (l != NULL && empty) {
1217 printf("checkrunqueue[%d]: empty run-queue %p with "
1218 "active lwp %p\n", whichq, rq, l);
1219 die = 1;
1220 }
1221 if (l != NULL && !found) {
1222 printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1223 whichq, l, rq);
1224 die = 1;
1225 }
1226 if (die)
1227 panic("checkrunqueue: inconsistency found");
1228 }
1229 #endif /* RQDEBUG */
1230
1231 void
1232 setrunqueue(struct lwp *l)
1233 {
1234 struct prochd *rq;
1235 struct lwp *prev;
1236 const int whichq = l->l_priority / PPQ;
1237
1238 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1239
1240 #ifdef RQDEBUG
1241 checkrunqueue(whichq, NULL);
1242 #endif
1243 #ifdef DIAGNOSTIC
1244 if (l->l_back != NULL || l->l_stat != LSRUN)
1245 panic("setrunqueue");
1246 #endif
1247 sched_whichqs |= RQMASK(whichq);
1248 rq = &sched_qs[whichq];
1249 prev = rq->ph_rlink;
1250 l->l_forw = (struct lwp *)rq;
1251 rq->ph_rlink = l;
1252 prev->l_forw = l;
1253 l->l_back = prev;
1254 #ifdef RQDEBUG
1255 checkrunqueue(whichq, l);
1256 #endif
1257 }
1258
1259 void
1260 remrunqueue(struct lwp *l)
1261 {
1262 struct lwp *prev, *next;
1263 const int whichq = l->l_priority / PPQ;
1264
1265 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1266
1267 #ifdef RQDEBUG
1268 checkrunqueue(whichq, l);
1269 #endif
1270
1271 #if defined(DIAGNOSTIC)
1272 if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
1273 /* Shouldn't happen - interrupts disabled. */
1274 panic("remrunqueue: bit %d not set", whichq);
1275 }
1276 #endif
1277 prev = l->l_back;
1278 l->l_back = NULL;
1279 next = l->l_forw;
1280 prev->l_forw = next;
1281 next->l_back = prev;
1282 if (prev == next)
1283 sched_whichqs &= ~RQMASK(whichq);
1284 #ifdef RQDEBUG
1285 checkrunqueue(whichq, NULL);
1286 #endif
1287 }
1288
1289 #undef RQMASK
1290 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1291