Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.166.2.16
      1 /*	$NetBSD: kern_synch.c,v 1.166.2.16 2007/01/28 07:20:39 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. Neither the name of the University nor the names of its contributors
     58  *    may be used to endorse or promote products derived from this software
     59  *    without specific prior written permission.
     60  *
     61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71  * SUCH DAMAGE.
     72  *
     73  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.166.2.16 2007/01/28 07:20:39 ad Exp $");
     78 
     79 #include "opt_ddb.h"
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/proc.h>
     91 #include <sys/kernel.h>
     92 #include <sys/buf.h>
     93 #if defined(PERFCTRS)
     94 #include <sys/pmc.h>
     95 #endif
     96 #include <sys/signalvar.h>
     97 #include <sys/resourcevar.h>
     98 #include <sys/sched.h>
     99 #include <sys/sa.h>
    100 #include <sys/savar.h>
    101 #include <sys/kauth.h>
    102 #include <sys/sleepq.h>
    103 #include <sys/lockdebug.h>
    104 
    105 #include <uvm/uvm_extern.h>
    106 
    107 #include <machine/cpu.h>
    108 
    109 int	lbolt;			/* once a second sleep address */
    110 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    111 
    112 /*
    113  * The global scheduler state.
    114  */
    115 kmutex_t	sched_mutex;		/* global sched state mutex */
    116 struct prochd	sched_qs[RUNQUE_NQS];	/* run queues */
    117 volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    118 
    119 void	schedcpu(void *);
    120 void	updatepri(struct lwp *);
    121 void	sa_awaken(struct lwp *);
    122 
    123 void	sched_unsleep(struct lwp *);
    124 void	sched_changepri(struct lwp *, int);
    125 
    126 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    127 static unsigned int schedcpu_ticks;
    128 
    129 syncobj_t sleep_syncobj = {
    130 	SOBJ_SLEEPQ_SORTED,
    131 	sleepq_unsleep,
    132 	sleepq_changepri
    133 };
    134 
    135 syncobj_t sched_syncobj = {
    136 	SOBJ_SLEEPQ_SORTED,
    137 	sched_unsleep,
    138 	sched_changepri
    139 };
    140 
    141 /*
    142  * Force switch among equal priority processes every 100ms.
    143  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    144  */
    145 /* ARGSUSED */
    146 void
    147 roundrobin(struct cpu_info *ci)
    148 {
    149 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    150 
    151 	spc->spc_rrticks = rrticks;
    152 
    153 	if (curlwp != NULL) {
    154 		if (spc->spc_flags & SPCF_SEENRR) {
    155 			/*
    156 			 * The process has already been through a roundrobin
    157 			 * without switching and may be hogging the CPU.
    158 			 * Indicate that the process should yield.
    159 			 */
    160 			spc->spc_flags |= SPCF_SHOULDYIELD;
    161 		} else
    162 			spc->spc_flags |= SPCF_SEENRR;
    163 	}
    164 	cpu_need_resched(curcpu());
    165 }
    166 
    167 #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    168 #define	NICE_WEIGHT 2			/* priorities per nice level */
    169 
    170 #define	ESTCPU_SHIFT	11
    171 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    172 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    173 
    174 /*
    175  * Constants for digital decay and forget:
    176  *	90% of (p_estcpu) usage in 5 * loadav time
    177  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    178  *          Note that, as ps(1) mentions, this can let percentages
    179  *          total over 100% (I've seen 137.9% for 3 processes).
    180  *
    181  * Note that hardclock updates p_estcpu and p_cpticks independently.
    182  *
    183  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    184  * That is, the system wants to compute a value of decay such
    185  * that the following for loop:
    186  * 	for (i = 0; i < (5 * loadavg); i++)
    187  * 		p_estcpu *= decay;
    188  * will compute
    189  * 	p_estcpu *= 0.1;
    190  * for all values of loadavg:
    191  *
    192  * Mathematically this loop can be expressed by saying:
    193  * 	decay ** (5 * loadavg) ~= .1
    194  *
    195  * The system computes decay as:
    196  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    197  *
    198  * We wish to prove that the system's computation of decay
    199  * will always fulfill the equation:
    200  * 	decay ** (5 * loadavg) ~= .1
    201  *
    202  * If we compute b as:
    203  * 	b = 2 * loadavg
    204  * then
    205  * 	decay = b / (b + 1)
    206  *
    207  * We now need to prove two things:
    208  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    209  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    210  *
    211  * Facts:
    212  *         For x close to zero, exp(x) =~ 1 + x, since
    213  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    214  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    215  *         For x close to zero, ln(1+x) =~ x, since
    216  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    217  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    218  *         ln(.1) =~ -2.30
    219  *
    220  * Proof of (1):
    221  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    222  *	solving for factor,
    223  *      ln(factor) =~ (-2.30/5*loadav), or
    224  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    225  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    226  *
    227  * Proof of (2):
    228  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    229  *	solving for power,
    230  *      power*ln(b/(b+1)) =~ -2.30, or
    231  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    232  *
    233  * Actual power values for the implemented algorithm are as follows:
    234  *      loadav: 1       2       3       4
    235  *      power:  5.68    10.32   14.94   19.55
    236  */
    237 
    238 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    239 #define	loadfactor(loadav)	(2 * (loadav))
    240 
    241 static fixpt_t
    242 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    243 {
    244 
    245 	if (estcpu == 0) {
    246 		return 0;
    247 	}
    248 
    249 #if !defined(_LP64)
    250 	/* avoid 64bit arithmetics. */
    251 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    252 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    253 		return estcpu * loadfac / (loadfac + FSCALE);
    254 	}
    255 #endif /* !defined(_LP64) */
    256 
    257 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    258 }
    259 
    260 /*
    261  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    262  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    263  * less than (1 << ESTCPU_SHIFT).
    264  *
    265  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    266  */
    267 static fixpt_t
    268 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    269 {
    270 
    271 	if ((n << FSHIFT) >= 7 * loadfac) {
    272 		return 0;
    273 	}
    274 
    275 	while (estcpu != 0 && n > 1) {
    276 		estcpu = decay_cpu(loadfac, estcpu);
    277 		n--;
    278 	}
    279 
    280 	return estcpu;
    281 }
    282 
    283 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    284 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    285 
    286 /*
    287  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    288  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    289  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    290  *
    291  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    292  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    293  *
    294  * If you dont want to bother with the faster/more-accurate formula, you
    295  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    296  * (more general) method of calculating the %age of CPU used by a process.
    297  */
    298 #define	CCPU_SHIFT	11
    299 
    300 /*
    301  * schedcpu:
    302  *
    303  *	Recompute process priorities, every hz ticks.
    304  *
    305  *	XXXSMP This needs to be reorganised in order to reduce the locking
    306  *	burden.
    307  */
    308 /* ARGSUSED */
    309 void
    310 schedcpu(void *arg)
    311 {
    312 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    313 	struct rlimit *rlim;
    314 	struct lwp *l;
    315 	struct proc *p;
    316 	int minslp, clkhz, sig;
    317 	long runtm;
    318 
    319 	schedcpu_ticks++;
    320 
    321 	mutex_enter(&proclist_mutex);
    322 	PROCLIST_FOREACH(p, &allproc) {
    323 		/*
    324 		 * Increment time in/out of memory and sleep time (if
    325 		 * sleeping).  We ignore overflow; with 16-bit int's
    326 		 * (remember them?) overflow takes 45 days.
    327 		 */
    328 		minslp = 2;
    329 		mutex_enter(&p->p_smutex);
    330 		runtm = p->p_rtime.tv_sec;
    331 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    332 			lwp_lock(l);
    333 			runtm += l->l_rtime.tv_sec;
    334 			l->l_swtime++;
    335 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    336 			    l->l_stat == LSSUSPENDED) {
    337 				l->l_slptime++;
    338 				minslp = min(minslp, l->l_slptime);
    339 			} else
    340 				minslp = 0;
    341 			lwp_unlock(l);
    342 		}
    343 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    344 
    345 		/*
    346 		 * Check if the process exceeds its CPU resource allocation.
    347 		 * If over max, kill it.
    348 		 */
    349 		rlim = &p->p_rlimit[RLIMIT_CPU];
    350 		sig = 0;
    351 		if (runtm >= rlim->rlim_cur) {
    352 			if (runtm >= rlim->rlim_max)
    353 				sig = SIGKILL;
    354 			else {
    355 				sig = SIGXCPU;
    356 				if (rlim->rlim_cur < rlim->rlim_max)
    357 					rlim->rlim_cur += 5;
    358 			}
    359 		}
    360 
    361 		/*
    362 		 * If the process has run for more than autonicetime, reduce
    363 		 * priority to give others a chance.
    364 		 */
    365 		if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
    366 		    && kauth_cred_geteuid(p->p_cred)) {
    367 			mutex_enter(&p->p_stmutex);
    368 			p->p_nice = autoniceval + NZERO;
    369 			resetprocpriority(p);
    370 			mutex_exit(&p->p_stmutex);
    371 		}
    372 
    373 		/*
    374 		 * If the process has slept the entire second,
    375 		 * stop recalculating its priority until it wakes up.
    376 		 */
    377 		if (minslp <= 1) {
    378 			/*
    379 			 * p_pctcpu is only for ps.
    380 			 */
    381 			mutex_enter(&p->p_stmutex);
    382 			clkhz = stathz != 0 ? stathz : hz;
    383 #if	(FSHIFT >= CCPU_SHIFT)
    384 			p->p_pctcpu += (clkhz == 100)?
    385 			    ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    386 			    100 * (((fixpt_t) p->p_cpticks)
    387 			    << (FSHIFT - CCPU_SHIFT)) / clkhz;
    388 #else
    389 			p->p_pctcpu += ((FSCALE - ccpu) *
    390 			    (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    391 #endif
    392 			p->p_cpticks = 0;
    393 			p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    394 
    395 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    396 				lwp_lock(l);
    397 				if (l->l_slptime <= 1)
    398 					resetpriority(l);
    399 				lwp_unlock(l);
    400 			}
    401 			mutex_exit(&p->p_stmutex);
    402 		}
    403 
    404 		mutex_exit(&p->p_smutex);
    405 		if (sig) {
    406 			psignal(p, sig);
    407 		}
    408 	}
    409 	mutex_exit(&proclist_mutex);
    410 	uvm_meter();
    411 	wakeup((caddr_t)&lbolt);
    412 	callout_schedule(&schedcpu_ch, hz);
    413 }
    414 
    415 /*
    416  * Recalculate the priority of a process after it has slept for a while.
    417  */
    418 void
    419 updatepri(struct lwp *l)
    420 {
    421 	struct proc *p = l->l_proc;
    422 	fixpt_t loadfac;
    423 
    424 	LOCK_ASSERT(lwp_locked(l, NULL));
    425 	KASSERT(l->l_slptime > 1);
    426 
    427 	loadfac = loadfactor(averunnable.ldavg[0]);
    428 
    429 	l->l_slptime--; /* the first time was done in schedcpu */
    430 	/* XXX NJWLWP */
    431 	/* XXXSMP occasionally unlocked, should be per-LWP */
    432 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    433 	resetpriority(l);
    434 }
    435 
    436 /*
    437  * During autoconfiguration or after a panic, a sleep will simply lower the
    438  * priority briefly to allow interrupts, then return.  The priority to be
    439  * used (safepri) is machine-dependent, thus this value is initialized and
    440  * maintained in the machine-dependent layers.  This priority will typically
    441  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    442  * it can be made higher to block network software interrupts after panics.
    443  */
    444 int	safepri;
    445 
    446 /*
    447  * OBSOLETE INTERFACE
    448  *
    449  * General sleep call.  Suspends the current process until a wakeup is
    450  * performed on the specified identifier.  The process will then be made
    451  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    452  * means no timeout).  If pri includes PCATCH flag, signals are checked
    453  * before and after sleeping, else signals are not checked.  Returns 0 if
    454  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    455  * signal needs to be delivered, ERESTART is returned if the current system
    456  * call should be restarted if possible, and EINTR is returned if the system
    457  * call should be interrupted by the signal (return EINTR).
    458  *
    459  * The interlock is held until we are on a sleep queue. The interlock will
    460  * be locked before returning back to the caller unless the PNORELOCK flag
    461  * is specified, in which case the interlock will always be unlocked upon
    462  * return.
    463  */
    464 int
    465 ltsleep(wchan_t ident, int priority, const char *wmesg, int timo,
    466 	volatile struct simplelock *interlock)
    467 {
    468 	struct lwp *l = curlwp;
    469 	sleepq_t *sq;
    470 	int error, catch;
    471 
    472 	if (sleepq_dontsleep(l)) {
    473 		(void)sleepq_abort(NULL, 0);
    474 		if ((priority & PNORELOCK) != 0)
    475 			simple_unlock(interlock);
    476 		return 0;
    477 	}
    478 
    479 	sq = sleeptab_lookup(&sleeptab, ident);
    480 	sleepq_enter(sq, l);
    481 
    482 	if (interlock != NULL) {
    483 		LOCK_ASSERT(simple_lock_held(interlock));
    484 		simple_unlock(interlock);
    485 	}
    486 
    487 	catch = priority & PCATCH;
    488 	sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
    489 	    &sleep_syncobj);
    490 	error = sleepq_unblock(timo, catch);
    491 
    492 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    493 		simple_lock(interlock);
    494 
    495 	return error;
    496 }
    497 
    498 /*
    499  * General sleep call for situations where a wake-up is not expected.
    500  */
    501 int
    502 kpause(const char *wmesg, boolean_t intr, int timo, kmutex_t *mtx)
    503 {
    504 	struct lwp *l = curlwp;
    505 	sleepq_t *sq;
    506 	int error;
    507 
    508 	if (sleepq_dontsleep(l))
    509 		return sleepq_abort(NULL, 0);
    510 
    511 	if (mtx != NULL)
    512 		mutex_exit(mtx);
    513 	sq = sleeptab_lookup(&sleeptab, l);
    514 	sleepq_enter(sq, l);
    515 	sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
    516 	error = sleepq_unblock(timo, intr);
    517 	if (mtx != NULL)
    518 		mutex_enter(mtx);
    519 
    520 	return error;
    521 }
    522 
    523 void
    524 sa_awaken(struct lwp *l)
    525 {
    526 
    527 	LOCK_ASSERT(lwp_locked(l, NULL));
    528 
    529 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    530 		l->l_flag &= ~L_SA_IDLE;
    531 }
    532 
    533 /*
    534  * OBSOLETE INTERFACE
    535  *
    536  * Make all processes sleeping on the specified identifier runnable.
    537  */
    538 void
    539 wakeup(wchan_t ident)
    540 {
    541 	sleepq_t *sq;
    542 
    543 	if (cold)
    544 		return;
    545 
    546 	sq = sleeptab_lookup(&sleeptab, ident);
    547 	sleepq_wake(sq, ident, (u_int)-1);
    548 }
    549 
    550 /*
    551  * OBSOLETE INTERFACE
    552  *
    553  * Make the highest priority process first in line on the specified
    554  * identifier runnable.
    555  */
    556 void
    557 wakeup_one(wchan_t ident)
    558 {
    559 	sleepq_t *sq;
    560 
    561 	if (cold)
    562 		return;
    563 
    564 	sq = sleeptab_lookup(&sleeptab, ident);
    565 	sleepq_wake(sq, ident, 1);
    566 }
    567 
    568 
    569 /*
    570  * General yield call.  Puts the current process back on its run queue and
    571  * performs a voluntary context switch.  Should only be called when the
    572  * current process explicitly requests it (eg sched_yield(2) in compat code).
    573  */
    574 void
    575 yield(void)
    576 {
    577 	struct lwp *l = curlwp;
    578 
    579 	lwp_lock(l);
    580 	if (l->l_stat == LSONPROC) {
    581 		KASSERT(lwp_locked(l, &sched_mutex));
    582 		l->l_priority = l->l_usrpri;
    583 	}
    584 	l->l_nvcsw++;
    585 	mi_switch(l, NULL);
    586 }
    587 
    588 /*
    589  * General preemption call.  Puts the current process back on its run queue
    590  * and performs an involuntary context switch.
    591  * The 'more' ("more work to do") argument is boolean. Returning to userspace
    592  * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
    593  * This will be used to indicate to the SA subsystem that the LWP is
    594  * not yet finished in the kernel.
    595  */
    596 void
    597 preempt(int more)
    598 {
    599 	struct lwp *l = curlwp;
    600 	int r;
    601 
    602 	lwp_lock(l);
    603 	if (l->l_stat == LSONPROC) {
    604 		KASSERT(lwp_locked(l, &sched_mutex));
    605 		l->l_priority = l->l_usrpri;
    606 	}
    607 	l->l_nivcsw++;
    608 	r = mi_switch(l, NULL);
    609 
    610 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    611 		sa_preempt(l);
    612 }
    613 
    614 /*
    615  * The machine independent parts of context switch.  Switch to "new"
    616  * if non-NULL, otherwise let cpu_switch choose the next lwp.
    617  *
    618  * Returns 1 if another process was actually run.
    619  */
    620 int
    621 mi_switch(struct lwp *l, struct lwp *newl)
    622 {
    623 	struct schedstate_percpu *spc;
    624 	struct timeval tv;
    625 #ifdef MULTIPROCESSOR
    626 	int hold_count;
    627 #endif
    628 	int retval, oldspl;
    629 	long s, u;
    630 #if PERFCTRS
    631 	struct proc *p = l->l_proc;
    632 #endif
    633 
    634 	LOCK_ASSERT(lwp_locked(l, NULL));
    635 
    636 	/*
    637 	 * Release the kernel_lock, as we are about to yield the CPU.
    638 	 */
    639 	KERNEL_UNLOCK_ALL(l, &hold_count);
    640 
    641 #ifdef LOCKDEBUG
    642 	spinlock_switchcheck();
    643 	simple_lock_switchcheck();
    644 #endif
    645 #ifdef KSTACK_CHECK_MAGIC
    646 	kstack_check_magic(l);
    647 #endif
    648 
    649 	/*
    650 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    651 	 * are after is the run time and that's guarenteed to have been last
    652 	 * updated by this CPU.
    653 	 */
    654 	KDASSERT(l->l_cpu == curcpu());
    655 	spc = &l->l_cpu->ci_schedstate;
    656 
    657 	/*
    658 	 * Compute the amount of time during which the current
    659 	 * process was running.
    660 	 */
    661 	microtime(&tv);
    662 	u = l->l_rtime.tv_usec +
    663 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    664 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    665 	if (u < 0) {
    666 		u += 1000000;
    667 		s--;
    668 	} else if (u >= 1000000) {
    669 		u -= 1000000;
    670 		s++;
    671 	}
    672 	l->l_rtime.tv_usec = u;
    673 	l->l_rtime.tv_sec = s;
    674 
    675 	/*
    676 	 * XXXSMP If we are using h/w performance counters, save context.
    677 	 */
    678 #if PERFCTRS
    679 	if (PMC_ENABLED(p)) {
    680 		pmc_save_context(p);
    681 	}
    682 #endif
    683 
    684 	/*
    685 	 * Acquire the sched_mutex if necessary.  It will be released by
    686 	 * cpu_switch once it has decided to idle, or picked another LWP
    687 	 * to run.
    688 	 */
    689 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    690 	if (l->l_mutex != &sched_mutex) {
    691 		mutex_spin_enter(&sched_mutex);
    692 		lwp_unlock(l);
    693 	}
    694 #endif
    695 
    696 	/*
    697 	 * If on the CPU and we have gotten this far, then we must yield.
    698 	 */
    699 	KASSERT(l->l_stat != LSRUN);
    700 	if (l->l_stat == LSONPROC) {
    701 		KASSERT(lwp_locked(l, &sched_mutex));
    702 		l->l_stat = LSRUN;
    703 		setrunqueue(l);
    704 	}
    705 	uvmexp.swtch++;
    706 
    707 	/*
    708 	 * Process is about to yield the CPU; clear the appropriate
    709 	 * scheduling flags.
    710 	 */
    711 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    712 
    713 	LOCKDEBUG_BARRIER(&sched_mutex, 1);
    714 
    715 	/*
    716 	 * Switch to the new current LWP.  When we run again, we'll
    717 	 * return back here.
    718 	 */
    719 	oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    720 
    721 	if (newl == NULL || newl->l_back == NULL)
    722 		retval = cpu_switch(l, NULL);
    723 	else {
    724 		KASSERT(lwp_locked(newl, &sched_mutex));
    725 		remrunqueue(newl);
    726 		cpu_switchto(l, newl);
    727 		retval = 0;
    728 	}
    729 
    730 	/*
    731 	 * XXXSMP If we are using h/w performance counters, restore context.
    732 	 */
    733 #if PERFCTRS
    734 	if (PMC_ENABLED(p)) {
    735 		pmc_restore_context(p);
    736 	}
    737 #endif
    738 
    739 	/*
    740 	 * We're running again; record our new start time.  We might
    741 	 * be running on a new CPU now, so don't use the cached
    742 	 * schedstate_percpu pointer.
    743 	 */
    744 	KDASSERT(l->l_cpu == curcpu());
    745 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    746 
    747 	/*
    748 	 * Reacquire the kernel_lock.
    749 	 */
    750 	splx(oldspl);
    751 	KERNEL_LOCK(hold_count, l);
    752 
    753 	return retval;
    754 }
    755 
    756 /*
    757  * Initialize the (doubly-linked) run queues
    758  * to be empty.
    759  */
    760 void
    761 rqinit()
    762 {
    763 	int i;
    764 
    765 	for (i = 0; i < RUNQUE_NQS; i++)
    766 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    767 		    (struct lwp *)&sched_qs[i];
    768 
    769 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    770 }
    771 
    772 static inline void
    773 resched_lwp(struct lwp *l, u_char pri)
    774 {
    775 	struct cpu_info *ci;
    776 
    777 	/*
    778 	 * XXXSMP
    779 	 * Since l->l_cpu persists across a context switch,
    780 	 * this gives us *very weak* processor affinity, in
    781 	 * that we notify the CPU on which the process last
    782 	 * ran that it should try to switch.
    783 	 *
    784 	 * This does not guarantee that the process will run on
    785 	 * that processor next, because another processor might
    786 	 * grab it the next time it performs a context switch.
    787 	 *
    788 	 * This also does not handle the case where its last
    789 	 * CPU is running a higher-priority process, but every
    790 	 * other CPU is running a lower-priority process.  There
    791 	 * are ways to handle this situation, but they're not
    792 	 * currently very pretty, and we also need to weigh the
    793 	 * cost of moving a process from one CPU to another.
    794 	 *
    795 	 * XXXSMP
    796 	 * There is also the issue of locking the other CPU's
    797 	 * sched state, which we currently do not do.
    798 	 */
    799 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    800 	if (pri < ci->ci_schedstate.spc_curpriority)
    801 		cpu_need_resched(ci);
    802 }
    803 
    804 /*
    805  * Change process state to be runnable, placing it on the run queue if it is
    806  * in memory, and awakening the swapper if it isn't in memory.
    807  *
    808  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    809  */
    810 void
    811 setrunnable(struct lwp *l)
    812 {
    813 	struct proc *p = l->l_proc;
    814 
    815 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    816 	LOCK_ASSERT(lwp_locked(l, NULL));
    817 
    818 	switch (l->l_stat) {
    819 	case LSSTOP:
    820 		/*
    821 		 * If we're being traced (possibly because someone attached us
    822 		 * while we were stopped), check for a signal from the debugger.
    823 		 */
    824 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    825 			sigaddset(&l->l_sigpend.sp_set, p->p_xstat);
    826 			signotify(l);
    827 		}
    828 		p->p_nrlwps++;
    829 		break;
    830 	case LSSUSPENDED:
    831 		l->l_flag &= ~L_WSUSPEND;
    832 		p->p_nrlwps++;
    833 		break;
    834 	case LSSLEEP:
    835 		KASSERT(l->l_wchan != NULL);
    836 		break;
    837 	default:
    838 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    839 	}
    840 
    841 	/*
    842 	 * If the LWP was sleeping interruptably, then it's OK to start it
    843 	 * again.  If not, mark it as still sleeping.
    844 	 */
    845 	if (l->l_wchan != NULL) {
    846 		l->l_stat = LSSLEEP;
    847 		if ((l->l_flag & L_SINTR) != 0)
    848 			lwp_unsleep(l);
    849 		else {
    850 			lwp_unlock(l);
    851 #ifdef DIAGNOSTIC
    852 			panic("setrunnable: !L_SINTR");
    853 #endif
    854 		}
    855 		return;
    856 	}
    857 
    858 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
    859 
    860 	if (l->l_proc->p_sa)
    861 		sa_awaken(l);
    862 
    863 	/*
    864 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    865 	 * about to call mi_switch(), in which case it will yield.
    866 	 *
    867 	 * XXXSMP Will need to change for preemption.
    868 	 */
    869 #ifdef MULTIPROCESSOR
    870 	if (l->l_cpu->ci_curlwp == l) {
    871 #else
    872 	if (l == curlwp) {
    873 #endif
    874 		l->l_stat = LSONPROC;
    875 		l->l_slptime = 0;
    876 		lwp_unlock(l);
    877 		return;
    878 	}
    879 
    880 	/*
    881 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    882 	 * to bring it back in.  Otherwise, enter it into a run queue.
    883 	 */
    884 	if (l->l_slptime > 1)
    885 		updatepri(l);
    886 	l->l_stat = LSRUN;
    887 	l->l_slptime = 0;
    888 
    889 	if (l->l_flag & L_INMEM) {
    890 		setrunqueue(l);
    891 		resched_lwp(l, l->l_priority);
    892 		lwp_unlock(l);
    893 	} else {
    894 		lwp_unlock(l);
    895 		wakeup(&proc0);
    896 	}
    897 }
    898 
    899 /*
    900  * Compute the priority of a process when running in user mode.
    901  * Arrange to reschedule if the resulting priority is better
    902  * than that of the current process.
    903  */
    904 void
    905 resetpriority(struct lwp *l)
    906 {
    907 	unsigned int newpriority;
    908 	struct proc *p = l->l_proc;
    909 
    910 	/* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
    911 	LOCK_ASSERT(lwp_locked(l, NULL));
    912 
    913 	if ((l->l_flag & L_SYSTEM) != 0)
    914 		return;
    915 
    916 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
    917 	    NICE_WEIGHT * (p->p_nice - NZERO);
    918 	newpriority = min(newpriority, MAXPRI);
    919 	l->l_usrpri = newpriority;
    920 	if (l->l_priority != newpriority)
    921 		lwp_changepri(l, newpriority);
    922 }
    923 
    924 /*
    925  * Recompute priority for all LWPs in a process.
    926  */
    927 void
    928 resetprocpriority(struct proc *p)
    929 {
    930 	struct lwp *l;
    931 
    932 	LOCK_ASSERT(mutex_owned(&p->p_stmutex));
    933 
    934 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    935 		lwp_lock(l);
    936 		resetpriority(l);
    937 		lwp_unlock(l);
    938 	}
    939 }
    940 
    941 /*
    942  * We adjust the priority of the current process.  The priority of a process
    943  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    944  * is increased here.  The formula for computing priorities (in kern_synch.c)
    945  * will compute a different value each time p_estcpu increases. This can
    946  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    947  * queue will not change.  The CPU usage estimator ramps up quite quickly
    948  * when the process is running (linearly), and decays away exponentially, at
    949  * a rate which is proportionally slower when the system is busy.  The basic
    950  * principle is that the system will 90% forget that the process used a lot
    951  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    952  * processes which haven't run much recently, and to round-robin among other
    953  * processes.
    954  */
    955 
    956 void
    957 schedclock(struct lwp *l)
    958 {
    959 	struct proc *p = l->l_proc;
    960 
    961 	mutex_enter(&p->p_stmutex);
    962 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    963 	lwp_lock(l);
    964 	resetpriority(l);
    965 	mutex_exit(&p->p_stmutex);
    966 	if ((l->l_flag & L_SYSTEM) == 0 && l->l_priority >= PUSER)
    967 		l->l_priority = l->l_usrpri;
    968 	lwp_unlock(l);
    969 }
    970 
    971 /*
    972  * suspendsched:
    973  *
    974  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    975  */
    976 void
    977 suspendsched(void)
    978 {
    979 #ifdef MULTIPROCESSOR
    980 	CPU_INFO_ITERATOR cii;
    981 	struct cpu_info *ci;
    982 #endif
    983 	struct lwp *l;
    984 	struct proc *p;
    985 
    986 	/*
    987 	 * We do this by process in order not to violate the locking rules.
    988 	 */
    989 	mutex_enter(&proclist_mutex);
    990 	PROCLIST_FOREACH(p, &allproc) {
    991 		mutex_enter(&p->p_smutex);
    992 
    993 		if ((p->p_flag & P_SYSTEM) != 0) {
    994 			mutex_exit(&p->p_smutex);
    995 			continue;
    996 		}
    997 
    998 		p->p_stat = SSTOP;
    999 
   1000 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1001 			if (l == curlwp)
   1002 				continue;
   1003 
   1004 			lwp_lock(l);
   1005 
   1006 			/*
   1007 			 * Set L_WREBOOT so that the LWP will suspend itself
   1008 			 * when it tries to return to user mode.  We want to
   1009 			 * try and get to get as many LWPs as possible to
   1010 			 * the user / kernel boundary, so that they will
   1011 			 * release any locks that they hold.
   1012 			 */
   1013 			l->l_flag |= (L_WREBOOT | L_WSUSPEND);
   1014 
   1015 			if (l->l_stat == LSSLEEP &&
   1016 			    (l->l_flag & L_SINTR) != 0) {
   1017 				/* setrunnable() will release the lock. */
   1018 				setrunnable(l);
   1019 				continue;
   1020 			}
   1021 
   1022 			lwp_unlock(l);
   1023 		}
   1024 
   1025 		mutex_exit(&p->p_smutex);
   1026 	}
   1027 	mutex_exit(&proclist_mutex);
   1028 
   1029 	/*
   1030 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1031 	 * They'll trap into the kernel and suspend themselves in userret().
   1032 	 */
   1033 	sched_lock(0);
   1034 #ifdef MULTIPROCESSOR
   1035 	for (CPU_INFO_FOREACH(cii, ci))
   1036 		cpu_need_resched(ci);
   1037 #else
   1038 	cpu_need_resched(curcpu());
   1039 #endif
   1040 	sched_unlock(0);
   1041 }
   1042 
   1043 /*
   1044  * scheduler_fork_hook:
   1045  *
   1046  *	Inherit the parent's scheduler history.
   1047  */
   1048 void
   1049 scheduler_fork_hook(struct proc *parent, struct proc *child)
   1050 {
   1051 
   1052 	LOCK_ASSERT(mutex_owned(&parent->p_smutex));
   1053 
   1054 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1055 	child->p_forktime = schedcpu_ticks;
   1056 }
   1057 
   1058 /*
   1059  * scheduler_wait_hook:
   1060  *
   1061  *	Chargeback parents for the sins of their children.
   1062  */
   1063 void
   1064 scheduler_wait_hook(struct proc *parent, struct proc *child)
   1065 {
   1066 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1067 	fixpt_t estcpu;
   1068 
   1069 	/* XXX Only if parent != init?? */
   1070 
   1071 	mutex_enter(&parent->p_stmutex);
   1072 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1073 	    schedcpu_ticks - child->p_forktime);
   1074 	if (child->p_estcpu > estcpu)
   1075 		parent->p_estcpu =
   1076 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1077 	mutex_exit(&parent->p_stmutex);
   1078 }
   1079 
   1080 /*
   1081  * sched_kpri:
   1082  *
   1083  *	Scale a priority level to a kernel priority level, usually
   1084  *	for an LWP that is about to sleep.
   1085  */
   1086 int
   1087 sched_kpri(struct lwp *l)
   1088 {
   1089 	static const uint8_t kpri_tab[] = {
   1090 		 0,   1,   2,   3,   4,   5,   6,   7,
   1091 		 8,   9,  10,  11,  12,  13,  14,  15,
   1092 		16,  17,  18,  19,  20,  21,  22,  23,
   1093 		24,  25,  26,  27,  28,  29,  30,  31,
   1094 		32,  33,  34,  35,  36,  37,  38,  39,
   1095 		40,  41,  42,  43,  44,  45,  46,  47,
   1096 		48,  49,   8,   8,   9,   9,  10,  10,
   1097 		11,  11,  12,  12,  13,  14,  14,  15,
   1098 		15,  16,  16,  17,  17,  18,  18,  19,
   1099 		20,  20,  21,  21,  22,  22,  23,  23,
   1100 		24,  24,  25,  26,  26,  27,  27,  28,
   1101 		28,  29,  29,  30,  30,  31,  32,  32,
   1102 		33,  33,  34,  34,  35,  35,  36,  36,
   1103 		37,  38,  38,  39,  39,  40,  40,  41,
   1104 		41,  42,  42,  43,  44,  44,  45,  45,
   1105 		46,  46,  47,  47,  48,  48,  49,  49,
   1106 	};
   1107 
   1108 	return kpri_tab[l->l_priority];
   1109 }
   1110 
   1111 /*
   1112  * sched_unsleep:
   1113  *
   1114  *	The is called when the LWP has not been awoken normally but instead
   1115  *	interrupted: for example, if the sleep timed out.  Because of this,
   1116  *	it's not a valid action for running or idle LWPs.
   1117  */
   1118 void
   1119 sched_unsleep(struct lwp *l)
   1120 {
   1121 
   1122 	lwp_unlock(l);
   1123 	panic("sched_unsleep");
   1124 }
   1125 
   1126 /*
   1127  * sched_changepri:
   1128  *
   1129  *	Adjust the priority of an LWP.
   1130  */
   1131 void
   1132 sched_changepri(struct lwp *l, int pri)
   1133 {
   1134 
   1135 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1136 
   1137 	if (l->l_stat != LSRUN || (l->l_flag & L_INMEM) == 0 ||
   1138 	    (l->l_priority / PPQ) == (pri / PPQ)) {
   1139 		l->l_priority = pri;
   1140 		return;
   1141 	}
   1142 
   1143 	remrunqueue(l);
   1144 	l->l_priority = pri;
   1145 	setrunqueue(l);
   1146 	resched_lwp(l, pri);
   1147 }
   1148 
   1149 /*
   1150  * Low-level routines to access the run queue.  Optimised assembler
   1151  * routines can override these.
   1152  */
   1153 
   1154 #ifndef __HAVE_MD_RUNQUEUE
   1155 
   1156 /*
   1157  * On some architectures, it's faster to use a MSB ordering for the priorites
   1158  * than the traditional LSB ordering.
   1159  */
   1160 #ifdef __HAVE_BIGENDIAN_BITOPS
   1161 #define	RQMASK(n) (0x80000000 >> (n))
   1162 #else
   1163 #define	RQMASK(n) (0x00000001 << (n))
   1164 #endif
   1165 
   1166 /*
   1167  * The primitives that manipulate the run queues.  whichqs tells which
   1168  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1169  * into queues, remrunqueue removes them from queues.  The running process is
   1170  * on no queue, other processes are on a queue related to p->p_priority,
   1171  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1172  * available queues.
   1173  */
   1174 #ifdef RQDEBUG
   1175 static void
   1176 checkrunqueue(int whichq, struct lwp *l)
   1177 {
   1178 	const struct prochd * const rq = &sched_qs[whichq];
   1179 	struct lwp *l2;
   1180 	int found = 0;
   1181 	int die = 0;
   1182 	int empty = 1;
   1183 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
   1184 		if (l2->l_stat != LSRUN) {
   1185 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1186 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1187 		}
   1188 		if (l2->l_back->l_forw != l2) {
   1189 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1190 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1191 			    l2->l_back->l_forw);
   1192 			die = 1;
   1193 		}
   1194 		if (l2->l_forw->l_back != l2) {
   1195 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1196 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1197 			    l2->l_forw->l_back);
   1198 			die = 1;
   1199 		}
   1200 		if (l2 == l)
   1201 			found = 1;
   1202 		empty = 0;
   1203 	}
   1204 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1205 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1206 		    whichq, rq);
   1207 		die = 1;
   1208 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1209 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1210 		    "run-queue %p\n", whichq, rq);
   1211 		die = 1;
   1212 	}
   1213 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1214 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1215 		    whichq, l);
   1216 		die = 1;
   1217 	}
   1218 	if (l != NULL && empty) {
   1219 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1220 		    "active lwp %p\n", whichq, rq, l);
   1221 		die = 1;
   1222 	}
   1223 	if (l != NULL && !found) {
   1224 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1225 		    whichq, l, rq);
   1226 		die = 1;
   1227 	}
   1228 	if (die)
   1229 		panic("checkrunqueue: inconsistency found");
   1230 }
   1231 #endif /* RQDEBUG */
   1232 
   1233 void
   1234 setrunqueue(struct lwp *l)
   1235 {
   1236 	struct prochd *rq;
   1237 	struct lwp *prev;
   1238 	const int whichq = l->l_priority / PPQ;
   1239 
   1240 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1241 
   1242 #ifdef RQDEBUG
   1243 	checkrunqueue(whichq, NULL);
   1244 #endif
   1245 #ifdef DIAGNOSTIC
   1246 	if (l->l_back != NULL || l->l_stat != LSRUN)
   1247 		panic("setrunqueue");
   1248 #endif
   1249 	sched_whichqs |= RQMASK(whichq);
   1250 	rq = &sched_qs[whichq];
   1251 	prev = rq->ph_rlink;
   1252 	l->l_forw = (struct lwp *)rq;
   1253 	rq->ph_rlink = l;
   1254 	prev->l_forw = l;
   1255 	l->l_back = prev;
   1256 #ifdef RQDEBUG
   1257 	checkrunqueue(whichq, l);
   1258 #endif
   1259 }
   1260 
   1261 void
   1262 remrunqueue(struct lwp *l)
   1263 {
   1264 	struct lwp *prev, *next;
   1265 	const int whichq = l->l_priority / PPQ;
   1266 
   1267 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1268 
   1269 #ifdef RQDEBUG
   1270 	checkrunqueue(whichq, l);
   1271 #endif
   1272 
   1273 #if defined(DIAGNOSTIC)
   1274 	if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
   1275 		/* Shouldn't happen - interrupts disabled. */
   1276 		panic("remrunqueue: bit %d not set", whichq);
   1277 	}
   1278 #endif
   1279 	prev = l->l_back;
   1280 	l->l_back = NULL;
   1281 	next = l->l_forw;
   1282 	prev->l_forw = next;
   1283 	next->l_back = prev;
   1284 	if (prev == next)
   1285 		sched_whichqs &= ~RQMASK(whichq);
   1286 #ifdef RQDEBUG
   1287 	checkrunqueue(whichq, NULL);
   1288 #endif
   1289 }
   1290 
   1291 #undef RQMASK
   1292 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1293