Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.166.2.6
      1 /*	$NetBSD: kern_synch.c,v 1.166.2.6 2006/11/18 21:39:22 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. Neither the name of the University nor the names of its contributors
     58  *    may be used to endorse or promote products derived from this software
     59  *    without specific prior written permission.
     60  *
     61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71  * SUCH DAMAGE.
     72  *
     73  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.166.2.6 2006/11/18 21:39:22 ad Exp $");
     78 
     79 #include "opt_ddb.h"
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/proc.h>
     91 #include <sys/kernel.h>
     92 #include <sys/buf.h>
     93 #if defined(PERFCTRS)
     94 #include <sys/pmc.h>
     95 #endif
     96 #include <sys/signalvar.h>
     97 #include <sys/resourcevar.h>
     98 #include <sys/sched.h>
     99 #include <sys/sa.h>
    100 #include <sys/savar.h>
    101 #include <sys/kauth.h>
    102 #include <sys/sleepq.h>
    103 #include <sys/lockdebug.h>
    104 
    105 #include <uvm/uvm_extern.h>
    106 
    107 #include <machine/cpu.h>
    108 
    109 int	lbolt;			/* once a second sleep address */
    110 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    111 
    112 /*
    113  * The global scheduler state.
    114  */
    115 kmutex_t	sched_mutex;		/* global sched state mutex */
    116 struct prochd	sched_qs[RUNQUE_NQS];	/* run queues */
    117 volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    118 
    119 void	schedcpu(void *);
    120 void	updatepri(struct lwp *);
    121 void	sa_awaken(struct lwp *);
    122 
    123 void	sched_unsleep(struct lwp *);
    124 void	sched_changepri(struct lwp *, int);
    125 
    126 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    127 static unsigned int schedcpu_ticks;
    128 
    129 syncobj_t sleep_syncobj = {
    130 	SOBJ_SLEEPQ_SORTED,
    131 	sleepq_unsleep,
    132 	sleepq_changepri
    133 };
    134 
    135 syncobj_t sched_syncobj = {
    136 	SOBJ_SLEEPQ_SORTED,
    137 	sched_unsleep,
    138 	sched_changepri
    139 };
    140 
    141 /*
    142  * Force switch among equal priority processes every 100ms.
    143  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    144  */
    145 /* ARGSUSED */
    146 void
    147 roundrobin(struct cpu_info *ci)
    148 {
    149 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    150 
    151 	spc->spc_rrticks = rrticks;
    152 
    153 	if (curlwp != NULL) {
    154 		if (spc->spc_flags & SPCF_SEENRR) {
    155 			/*
    156 			 * The process has already been through a roundrobin
    157 			 * without switching and may be hogging the CPU.
    158 			 * Indicate that the process should yield.
    159 			 */
    160 			spc->spc_flags |= SPCF_SHOULDYIELD;
    161 		} else
    162 			spc->spc_flags |= SPCF_SEENRR;
    163 	}
    164 	cpu_need_resched(curcpu());
    165 }
    166 
    167 #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    168 #define	NICE_WEIGHT 2			/* priorities per nice level */
    169 
    170 #define	ESTCPU_SHIFT	11
    171 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    172 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    173 
    174 /*
    175  * Constants for digital decay and forget:
    176  *	90% of (p_estcpu) usage in 5 * loadav time
    177  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    178  *          Note that, as ps(1) mentions, this can let percentages
    179  *          total over 100% (I've seen 137.9% for 3 processes).
    180  *
    181  * Note that hardclock updates p_estcpu and p_cpticks independently.
    182  *
    183  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    184  * That is, the system wants to compute a value of decay such
    185  * that the following for loop:
    186  * 	for (i = 0; i < (5 * loadavg); i++)
    187  * 		p_estcpu *= decay;
    188  * will compute
    189  * 	p_estcpu *= 0.1;
    190  * for all values of loadavg:
    191  *
    192  * Mathematically this loop can be expressed by saying:
    193  * 	decay ** (5 * loadavg) ~= .1
    194  *
    195  * The system computes decay as:
    196  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    197  *
    198  * We wish to prove that the system's computation of decay
    199  * will always fulfill the equation:
    200  * 	decay ** (5 * loadavg) ~= .1
    201  *
    202  * If we compute b as:
    203  * 	b = 2 * loadavg
    204  * then
    205  * 	decay = b / (b + 1)
    206  *
    207  * We now need to prove two things:
    208  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    209  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    210  *
    211  * Facts:
    212  *         For x close to zero, exp(x) =~ 1 + x, since
    213  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    214  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    215  *         For x close to zero, ln(1+x) =~ x, since
    216  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    217  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    218  *         ln(.1) =~ -2.30
    219  *
    220  * Proof of (1):
    221  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    222  *	solving for factor,
    223  *      ln(factor) =~ (-2.30/5*loadav), or
    224  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    225  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    226  *
    227  * Proof of (2):
    228  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    229  *	solving for power,
    230  *      power*ln(b/(b+1)) =~ -2.30, or
    231  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    232  *
    233  * Actual power values for the implemented algorithm are as follows:
    234  *      loadav: 1       2       3       4
    235  *      power:  5.68    10.32   14.94   19.55
    236  */
    237 
    238 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    239 #define	loadfactor(loadav)	(2 * (loadav))
    240 
    241 static fixpt_t
    242 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    243 {
    244 
    245 	if (estcpu == 0) {
    246 		return 0;
    247 	}
    248 
    249 #if !defined(_LP64)
    250 	/* avoid 64bit arithmetics. */
    251 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    252 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    253 		return estcpu * loadfac / (loadfac + FSCALE);
    254 	}
    255 #endif /* !defined(_LP64) */
    256 
    257 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    258 }
    259 
    260 /*
    261  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    262  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    263  * less than (1 << ESTCPU_SHIFT).
    264  *
    265  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    266  */
    267 static fixpt_t
    268 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    269 {
    270 
    271 	if ((n << FSHIFT) >= 7 * loadfac) {
    272 		return 0;
    273 	}
    274 
    275 	while (estcpu != 0 && n > 1) {
    276 		estcpu = decay_cpu(loadfac, estcpu);
    277 		n--;
    278 	}
    279 
    280 	return estcpu;
    281 }
    282 
    283 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    284 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    285 
    286 /*
    287  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    288  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    289  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    290  *
    291  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    292  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    293  *
    294  * If you dont want to bother with the faster/more-accurate formula, you
    295  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    296  * (more general) method of calculating the %age of CPU used by a process.
    297  */
    298 #define	CCPU_SHIFT	11
    299 
    300 /*
    301  * Recompute process priorities, every hz ticks.
    302  */
    303 /* ARGSUSED */
    304 void
    305 schedcpu(void *arg)
    306 {
    307 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    308 	struct rlimit *rlim;
    309 	struct lwp *l;
    310 	struct proc *p;
    311 	int s, minslp;
    312 	int clkhz;
    313 	long runtm;
    314 
    315 	schedcpu_ticks++;
    316 
    317 	mutex_enter(&proclist_mutex);
    318 	PROCLIST_FOREACH(p, &allproc) {
    319 		/*
    320 		 * Increment time in/out of memory and sleep time (if
    321 		 * sleeping).  We ignore overflow; with 16-bit int's
    322 		 * (remember them?) overflow takes 45 days.
    323 		 *
    324 		 * XXXSMP Should create an activeproc list so that we
    325 		 * don't touch every proc+LWP in the system on a regular
    326 		 * basis. l->l_swtime/l->l_slptime can become deltas.
    327 		 */
    328 		minslp = 2;
    329 		runtm = 0;
    330 		mutex_enter(&p->p_smutex);
    331 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    332 			lwp_lock(l);
    333 			runtm += l->l_rtime.tv_sec;
    334 			l->l_swtime++;
    335 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    336 			    l->l_stat == LSSUSPENDED) {
    337 				l->l_slptime++;
    338 				minslp = min(minslp, l->l_slptime);
    339 			} else
    340 				minslp = 0;
    341 			lwp_unlock(l);
    342 		}
    343 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    344 
    345 		/*
    346 		 * Check if the process exceeds its CPU resource allocation.
    347 		 * If over max, kill it.  In any case, if it has run for more
    348 		 * than autonicetime, reduce priority to give others a chance.
    349 		 */
    350 		rlim = &p->p_rlimit[RLIMIT_CPU];
    351 		if (runtm >= rlim->rlim_cur) {
    352 			if (runtm >= rlim->rlim_max)
    353 				psignal(p, SIGKILL);
    354 			else {
    355 				psignal(p, SIGXCPU);
    356 				if (rlim->rlim_cur < rlim->rlim_max)
    357 					rlim->rlim_cur += 5;
    358 			}
    359 		}
    360 		if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
    361 		    && kauth_cred_geteuid(p->p_cred)) {
    362 			p->p_nice = autoniceval + NZERO;
    363 			resetprocpriority(p);
    364 		}
    365 
    366 		/*
    367 		 * If the process has slept the entire second,
    368 		 * stop recalculating its priority until it wakes up.
    369 		 */
    370 		if (minslp > 1) {
    371 			mutex_exit(&p->p_smutex);
    372 			continue;
    373 		}
    374 		s = splstatclock();	/* XXXSMP prevent state changes */
    375 		/*
    376 		 * p_pctcpu is only for ps.
    377 		 */
    378 		clkhz = stathz != 0 ? stathz : hz;
    379 #if	(FSHIFT >= CCPU_SHIFT)
    380 		p->p_pctcpu += (clkhz == 100)?
    381 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    382                 	100 * (((fixpt_t) p->p_cpticks)
    383 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    384 #else
    385 		p->p_pctcpu += ((FSCALE - ccpu) *
    386 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    387 #endif
    388 		p->p_cpticks = 0;
    389 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    390 		splx(s);	/* Done with the process CPU ticks update */
    391 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    392 			lwp_lock(l);
    393 			if (l->l_slptime > 1) {
    394 				lwp_unlock(l);
    395 				continue;
    396 			}
    397 			resetpriority(l);
    398 			if (l->l_priority >= PUSER) {
    399 				if (l->l_stat == LSRUN &&
    400 				    (l->l_flag & L_INMEM) &&
    401 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    402 				    	lwp_changepri(l, l->l_usrpri);
    403 				} else
    404 					l->l_priority = l->l_usrpri;
    405 			}
    406 			lwp_unlock(l);
    407 		}
    408 		mutex_exit(&p->p_smutex);
    409 	}
    410 	mutex_exit(&proclist_mutex);
    411 	uvm_meter();
    412 	wakeup((caddr_t)&lbolt);
    413 	callout_schedule(&schedcpu_ch, hz);
    414 }
    415 
    416 /*
    417  * Recalculate the priority of a process after it has slept for a while.
    418  */
    419 void
    420 updatepri(struct lwp *l)
    421 {
    422 	struct proc *p = l->l_proc;
    423 	fixpt_t loadfac;
    424 
    425 	LOCK_ASSERT(lwp_locked(l, NULL));
    426 	KASSERT(l->l_slptime > 1);
    427 
    428 	loadfac = loadfactor(averunnable.ldavg[0]);
    429 
    430 	l->l_slptime--; /* the first time was done in schedcpu */
    431 	/* XXX NJWLWP */
    432 	/* XXXSMP occasionaly unlocked. */
    433 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    434 	resetpriority(l);
    435 }
    436 
    437 /*
    438  * During autoconfiguration or after a panic, a sleep will simply lower the
    439  * priority briefly to allow interrupts, then return.  The priority to be
    440  * used (safepri) is machine-dependent, thus this value is initialized and
    441  * maintained in the machine-dependent layers.  This priority will typically
    442  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    443  * it can be made higher to block network software interrupts after panics.
    444  */
    445 int	safepri;
    446 
    447 /*
    448  * ltsleep: see mtsleep() for comments.
    449  */
    450 int
    451 ltsleep(wchan_t ident, int priority, const char *wmesg, int timo,
    452 	volatile struct simplelock *interlock)
    453 {
    454 	struct lwp *l = curlwp;
    455 	sleepq_t *sq;
    456 	int error;
    457 
    458 	if (sleepq_dontsleep(l)) {
    459 		(void)sleepq_abort(NULL, 0);
    460 		if ((priority & PNORELOCK) != 0)
    461 			simple_unlock(interlock);
    462 		return 0;
    463 	}
    464 
    465 	sq = sleeptab_lookup(&sleeptab, ident);
    466 
    467 	sleepq_enter(sq, priority & PRIMASK, ident, wmesg, timo,
    468 	    priority & PCATCH, &sleep_syncobj);
    469 
    470 	if (interlock != NULL) {
    471 		LOCK_ASSERT(simple_lock_held(interlock));
    472 		simple_unlock(interlock);
    473 	}
    474 
    475 	error = sleepq_block(sq, timo);
    476 	sleepq_unblock();
    477 
    478 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    479 		simple_lock(interlock);
    480 
    481 	return error;
    482 }
    483 
    484 /*
    485  * General sleep call.  Suspends the current process until a wakeup is
    486  * performed on the specified identifier.  The process will then be made
    487  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    488  * means no timeout).  If pri includes PCATCH flag, signals are checked
    489  * before and after sleeping, else signals are not checked.  Returns 0 if
    490  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    491  * signal needs to be delivered, ERESTART is returned if the current system
    492  * call should be restarted if possible, and EINTR is returned if the system
    493  * call should be interrupted by the signal (return EINTR).
    494  *
    495  * The interlock is held until we are on a sleep queue. The interlock will
    496  * be locked before returning back to the caller unless the PNORELOCK flag
    497  * is specified, in which case the interlock will always be unlocked upon
    498  * return.
    499  */
    500 int
    501 mtsleep(wchan_t ident, int priority, const char *wmesg, int timo,
    502 	kmutex_t *mtx)
    503 {
    504 	struct lwp *l = curlwp;
    505 	sleepq_t *sq;
    506 	int error;
    507 
    508 	if (sleepq_dontsleep(l))
    509 		return sleepq_abort(mtx, priority & PNORELOCK);
    510 
    511 	sq = sleeptab_lookup(&sleeptab, ident);
    512 
    513 	sleepq_enter(sq, priority & PRIMASK, ident, wmesg, timo,
    514 	    priority & PCATCH, &sleep_syncobj);
    515 
    516 	if (mtx != NULL) {
    517 		LOCK_ASSERT(mutex_owned(mtx));
    518 		mutex_exit(mtx);
    519 	}
    520 
    521 	error = sleepq_block(sq, timo);
    522 	sleepq_unblock();
    523 
    524 	if (mtx != NULL && (priority & PNORELOCK) == 0)
    525 		mutex_enter(mtx);
    526 
    527 	return error;
    528 }
    529 
    530 void
    531 sa_awaken(struct lwp *l)
    532 {
    533 
    534 	LOCK_ASSERT(lwp_locked(l, NULL));
    535 
    536 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    537 		l->l_flag &= ~L_SA_IDLE;
    538 }
    539 
    540 /*
    541  * Make all processes sleeping on the specified identifier runnable.
    542  */
    543 void
    544 wakeup(wchan_t ident)
    545 {
    546 	sleepq_t *sq;
    547 
    548 	if (cold)
    549 		return;
    550 
    551 	sq = sleeptab_lookup(&sleeptab, ident);
    552 	sleepq_wake(sq, ident, (u_int)-1);
    553 }
    554 
    555 /*
    556  * Make the highest priority process first in line on the specified
    557  * identifier runnable.
    558  */
    559 void
    560 wakeup_one(wchan_t ident)
    561 {
    562 	sleepq_t *sq;
    563 
    564 	if (cold)
    565 		return;
    566 
    567 	sq = sleeptab_lookup(&sleeptab, ident);
    568 	sleepq_wake(sq, ident, 1);
    569 }
    570 
    571 
    572 /*
    573  * General yield call.  Puts the current process back on its run queue and
    574  * performs a voluntary context switch.  Should only be called when the
    575  * current process explicitly requests it (eg sched_yield(2) in compat code).
    576  */
    577 void
    578 yield(void)
    579 {
    580 	struct lwp *l = curlwp;
    581 
    582 	lwp_lock(l);
    583 	if (l->l_stat == LSONPROC) {
    584 		KASSERT(lwp_locked(l, &sched_mutex));
    585 		l->l_priority = l->l_usrpri;
    586 	}
    587 	l->l_nvcsw++;
    588 	mi_switch(l, NULL);
    589 }
    590 
    591 /*
    592  * General preemption call.  Puts the current process back on its run queue
    593  * and performs an involuntary context switch.
    594  * The 'more' ("more work to do") argument is boolean. Returning to userspace
    595  * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
    596  * This will be used to indicate to the SA subsystem that the LWP is
    597  * not yet finished in the kernel.
    598  */
    599 void
    600 preempt(int more)
    601 {
    602 	struct lwp *l = curlwp;
    603 	int r;
    604 
    605 	lwp_lock(l);
    606 	if (l->l_stat == LSONPROC) {
    607 		KASSERT(lwp_locked(l, &sched_mutex));
    608 		l->l_priority = l->l_usrpri;
    609 	}
    610 	l->l_nivcsw++;
    611 	r = mi_switch(l, NULL);
    612 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    613 		sa_preempt(l);
    614 }
    615 
    616 /*
    617  * The machine independent parts of context switch.  Switch to "new"
    618  * if non-NULL, otherwise let cpu_switch choose the next lwp.
    619  *
    620  * Returns 1 if another process was actually run.
    621  */
    622 int
    623 mi_switch(struct lwp *l, struct lwp *newl)
    624 {
    625 	struct schedstate_percpu *spc;
    626 	struct timeval tv;
    627 	int hold_count;
    628 	int retval, oldspl;
    629 	long s, u;
    630 #if PERFCTRS
    631 	struct proc *p = l->l_proc;
    632 #endif
    633 
    634 	LOCK_ASSERT(lwp_locked(l, NULL));
    635 
    636 	/*
    637 	 * Release the kernel_lock, as we are about to yield the CPU.
    638 	 */
    639 	hold_count = KERNEL_UNLOCK(0, l);
    640 
    641 #ifdef LOCKDEBUG
    642 	spinlock_switchcheck();
    643 	simple_lock_switchcheck();
    644 #endif
    645 #ifdef KSTACK_CHECK_MAGIC
    646 	kstack_check_magic(l);
    647 #endif
    648 
    649 	/*
    650 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    651 	 * are after is the run time and that's guarenteed to have been last
    652 	 * updated by this CPU.
    653 	 */
    654 	KDASSERT(l->l_cpu != NULL);
    655 	KDASSERT(l->l_cpu == curcpu());
    656 	spc = &l->l_cpu->ci_schedstate;
    657 
    658 	/*
    659 	 * Compute the amount of time during which the current
    660 	 * process was running.
    661 	 */
    662 	microtime(&tv);
    663 	u = l->l_rtime.tv_usec +
    664 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    665 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    666 	if (u < 0) {
    667 		u += 1000000;
    668 		s--;
    669 	} else if (u >= 1000000) {
    670 		u -= 1000000;
    671 		s++;
    672 	}
    673 	l->l_rtime.tv_usec = u;
    674 	l->l_rtime.tv_sec = s;
    675 
    676 	/*
    677 	 * XXXSMP If we are using h/w performance counters, save context.
    678 	 */
    679 #if PERFCTRS
    680 	if (PMC_ENABLED(p)) {
    681 		pmc_save_context(p);
    682 	}
    683 #endif
    684 
    685 	/*
    686 	 * Acquire the sched_mutex if necessary.  It will be released by
    687 	 * cpu_switch once it has decided to idle, or picked another LWP
    688 	 * to run.
    689 	 */
    690 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    691 	if (l->l_mutex != &sched_mutex) {
    692 		mutex_enter(&sched_mutex);
    693 		lwp_unlock(l);
    694 	}
    695 #endif
    696 
    697 	/*
    698 	 * If on the CPU and we have gotten this far, then we must yield.
    699 	 */
    700 	KASSERT(l->l_stat != LSRUN);
    701 	if (l->l_stat == LSONPROC) {
    702 		KASSERT(lwp_locked(l, &sched_mutex));
    703 		l->l_stat = LSRUN;
    704 		setrunqueue(l);
    705 	}
    706 	uvmexp.swtch++;
    707 
    708 	/*
    709 	 * Process is about to yield the CPU; clear the appropriate
    710 	 * scheduling flags.
    711 	 */
    712 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    713 
    714 	LOCKDEBUG_BARRIER(&sched_mutex, 1);
    715 
    716 	/*
    717 	 * Switch to the new current LWP.  When we run again, we'll
    718 	 * return back here.
    719 	 */
    720 	oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    721 
    722 	if (newl == NULL || newl->l_back == NULL)
    723 		retval = cpu_switch(l, NULL);
    724 	else {
    725 		KASSERT(lwp_locked(newl, &sched_mutex));
    726 		remrunqueue(newl);
    727 		cpu_switchto(l, newl);
    728 		retval = 0;
    729 	}
    730 
    731 	/*
    732 	 * XXXSMP If we are using h/w performance counters, restore context.
    733 	 */
    734 #if PERFCTRS
    735 	if (PMC_ENABLED(p)) {
    736 		pmc_restore_context(p);
    737 	}
    738 #endif
    739 
    740 	/*
    741 	 * We're running again; record our new start time.  We might
    742 	 * be running on a new CPU now, so don't use the cached
    743 	 * schedstate_percpu pointer.
    744 	 */
    745 	KDASSERT(l->l_cpu != NULL);
    746 	KDASSERT(l->l_cpu == curcpu());
    747 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    748 
    749 	/*
    750 	 * Reacquire the kernel_lock.
    751 	 */
    752 	splx(oldspl);
    753 	KERNEL_LOCK(hold_count, l);
    754 
    755 	return retval;
    756 }
    757 
    758 /*
    759  * Initialize the (doubly-linked) run queues
    760  * to be empty.
    761  */
    762 void
    763 rqinit()
    764 {
    765 	int i;
    766 
    767 	for (i = 0; i < RUNQUE_NQS; i++)
    768 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    769 		    (struct lwp *)&sched_qs[i];
    770 
    771 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    772 }
    773 
    774 static inline void
    775 resched_lwp(struct lwp *l, u_char pri)
    776 {
    777 	struct cpu_info *ci;
    778 
    779 	LOCK_ASSERT(lwp_locked(l, NULL));
    780 
    781 	/*
    782 	 * XXXSMP
    783 	 * Since l->l_cpu persists across a context switch,
    784 	 * this gives us *very weak* processor affinity, in
    785 	 * that we notify the CPU on which the process last
    786 	 * ran that it should try to switch.
    787 	 *
    788 	 * This does not guarantee that the process will run on
    789 	 * that processor next, because another processor might
    790 	 * grab it the next time it performs a context switch.
    791 	 *
    792 	 * This also does not handle the case where its last
    793 	 * CPU is running a higher-priority process, but every
    794 	 * other CPU is running a lower-priority process.  There
    795 	 * are ways to handle this situation, but they're not
    796 	 * currently very pretty, and we also need to weigh the
    797 	 * cost of moving a process from one CPU to another.
    798 	 */
    799 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    800 	if (pri < ci->ci_schedstate.spc_curpriority)
    801 		cpu_need_resched(ci);
    802 }
    803 
    804 /*
    805  * Change process state to be runnable, placing it on the run queue if it is
    806  * in memory, and awakening the swapper if it isn't in memory.
    807  *
    808  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    809  */
    810 void
    811 setrunnable(struct lwp *l)
    812 {
    813 	struct proc *p = l->l_proc;
    814 	struct cpu_info *ci;
    815 
    816 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    817 	LOCK_ASSERT(lwp_locked(l, NULL));
    818 
    819 	switch (l->l_stat) {
    820 	case LSSTOP:
    821 		/*
    822 		 * If we're being traced (possibly because someone attached us
    823 		 * while we were stopped), check for a signal from the debugger.
    824 		 */
    825 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    826 			sigaddset(&l->l_sigpend->sp_set, p->p_xstat);
    827 			signotify(l);
    828 		}
    829 		p->p_nrlwps++;
    830 		break;
    831 	case LSSUSPENDED:
    832 		l->l_flag &= ~L_WSUSPEND;
    833 		p->p_nrlwps++;
    834 		break;
    835 	case LSSLEEP:
    836 		/*
    837 		 * If the LWP was sleeping interruptably, then it's OK to
    838 		 * start it again.  If not, mark it as still sleeping.
    839 		 */
    840 		KASSERT(l->l_wchan != NULL);
    841 
    842 		if ((l->l_flag & L_SINTR) != 0) {
    843 			/* lwp_unsleep() will release the lock. */
    844 			lwp_unsleep(l);
    845 		} else {
    846 			lwp_unlock(l);
    847 #ifdef DIAGNOSTIC
    848 			panic("setrunnable: !L_SINTR");
    849 #endif
    850 		}
    851 		return;
    852 	default:
    853 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    854 	}
    855 
    856 	if (l->l_proc->p_sa)
    857 		sa_awaken(l);
    858 
    859 	/*
    860 	 * Set in sched_mutex as it the LWP's current mutex.  If the LWP is
    861 	 * still on the CPU, mark it as LSONPROC.  It may be about to call
    862 	 * mi_switch(), in which case it will yield.
    863 	 */
    864 	lwp_relock(l, &sched_mutex);
    865 
    866 	if ((ci = l->l_cpu) != NULL && ci->ci_curlwp == l) {
    867 		l->l_stat = LSONPROC;
    868 		l->l_slptime = 0;
    869 		lwp_unlock(l);
    870 		return;
    871 	}
    872 
    873 	/*
    874 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    875 	 * to bring it back in.  Otherwise, enter it into a run queue.
    876 	 */
    877 	l->l_stat = LSRUN;
    878 	if (l->l_slptime > 1)
    879 		updatepri(l);
    880 	l->l_slptime = 0;
    881 
    882 	if (l->l_flag & L_INMEM) {
    883 		setrunqueue(l);
    884 		resched_lwp(l, l->l_priority);
    885 		lwp_unlock(l);
    886 	} else {
    887 		lwp_unlock(l);
    888 		wakeup(&proc0);
    889 	}
    890 }
    891 
    892 /*
    893  * Compute the priority of a process when running in user mode.
    894  * Arrange to reschedule if the resulting priority is better
    895  * than that of the current process.
    896  */
    897 void
    898 resetpriority(struct lwp *l)
    899 {
    900 	unsigned int newpriority;
    901 	struct proc *p = l->l_proc;
    902 
    903 	LOCK_ASSERT(lwp_locked(l, NULL));
    904 
    905 	/* XXXSMP proc values will be accessed unlocked */
    906 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
    907 			NICE_WEIGHT * (p->p_nice - NZERO);
    908 	newpriority = min(newpriority, MAXPRI);
    909 	l->l_usrpri = newpriority;
    910 	resched_lwp(l, l->l_usrpri);
    911 }
    912 
    913 /*
    914  * Recompute priority for all LWPs in a process.
    915  */
    916 void
    917 resetprocpriority(struct proc *p)
    918 {
    919 	struct lwp *l;
    920 
    921 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    922 
    923 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    924 		lwp_lock(l);
    925 		resetpriority(l);
    926 		lwp_unlock(l);
    927 	}
    928 }
    929 
    930 /*
    931  * We adjust the priority of the current process.  The priority of a process
    932  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    933  * is increased here.  The formula for computing priorities (in kern_synch.c)
    934  * will compute a different value each time p_estcpu increases. This can
    935  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    936  * queue will not change.  The CPU usage estimator ramps up quite quickly
    937  * when the process is running (linearly), and decays away exponentially, at
    938  * a rate which is proportionally slower when the system is busy.  The basic
    939  * principle is that the system will 90% forget that the process used a lot
    940  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    941  * processes which haven't run much recently, and to round-robin among other
    942  * processes.
    943  */
    944 
    945 void
    946 schedclock(struct lwp *l)
    947 {
    948 	struct proc *p = l->l_proc;
    949 
    950 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    951 
    952 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    953 
    954 	lwp_lock(l);
    955 	resetpriority(l);
    956 	if (l->l_priority >= PUSER)
    957 		l->l_priority = l->l_usrpri;
    958 	lwp_unlock(l);
    959 }
    960 
    961 /*
    962  * suspendsched:
    963  *
    964  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    965  */
    966 void
    967 suspendsched(void)
    968 {
    969 	CPU_INFO_ITERATOR cii;
    970 	struct cpu_info *ci;
    971 	struct lwp *l;
    972 	struct proc *p;
    973 
    974 	/*
    975 	 * We do this by process in order not to violate the locking rules.
    976 	 */
    977 	rw_enter(&proclist_lock, RW_READER);
    978 	PROCLIST_FOREACH(p, &allproc) {
    979 		mutex_enter(&p->p_smutex);
    980 
    981 		if ((p->p_flag & P_SYSTEM) != 0) {
    982 			mutex_exit(&p->p_smutex);
    983 			continue;
    984 		}
    985 
    986 		p->p_stat = SSTOP;
    987 
    988 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    989 			if (l == curlwp)
    990 				continue;
    991 
    992 			lwp_lock(l);
    993 
    994 			/*
    995 			 * Set L_WREBOOT so that the LWP will suspend itself
    996 			 * when it tries to return to user mode.  We want to
    997 			 * try and get to get as many LWPs as possible to
    998 			 * the user / kernel boundary, so that they will
    999 			 * release any locks that they hold.
   1000 			 */
   1001 			l->l_flag |= (L_WREBOOT | L_WSUSPEND);
   1002 
   1003 			if (l->l_stat == LSSLEEP &&
   1004 			    (l->l_flag & L_SINTR) != 0) {
   1005 				/* setrunnable() will release the lock. */
   1006 				setrunnable(l);
   1007 				continue;
   1008 			}
   1009 
   1010 			lwp_unlock(l);
   1011 		}
   1012 
   1013 		mutex_exit(&p->p_smutex);
   1014 	}
   1015 	rw_exit(&proclist_lock);
   1016 
   1017 	/*
   1018 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1019 	 * They'll trap into the kernel and suspend themselves in userret().
   1020 	 */
   1021 	sched_lock(0);
   1022 	for (CPU_INFO_FOREACH(cii, ci))
   1023 		cpu_need_resched(ci);
   1024 	sched_unlock(0);
   1025 }
   1026 
   1027 /*
   1028  * scheduler_fork_hook:
   1029  *
   1030  *	Inherit the parent's scheduler history.
   1031  */
   1032 void
   1033 scheduler_fork_hook(struct proc *parent, struct proc *child)
   1034 {
   1035 
   1036 	LOCK_ASSERT(mutex_owned(&parent->p_smutex));
   1037 
   1038 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1039 	child->p_forktime = schedcpu_ticks;
   1040 }
   1041 
   1042 /*
   1043  * scheduler_wait_hook:
   1044  *
   1045  *	Chargeback parents for the sins of their children.
   1046  */
   1047 void
   1048 scheduler_wait_hook(struct proc *parent, struct proc *child)
   1049 {
   1050 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1051 	fixpt_t estcpu;
   1052 
   1053 	/* XXX Only if parent != init?? */
   1054 
   1055 	mutex_enter(&parent->p_smutex);
   1056 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1057 	    schedcpu_ticks - child->p_forktime);
   1058 	if (child->p_estcpu > estcpu)
   1059 		parent->p_estcpu =
   1060 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1061 	mutex_exit(&parent->p_smutex);
   1062 }
   1063 
   1064 /*
   1065  * sched_kpri:
   1066  *
   1067  *	Given an LWP a priority boost before it sleeps.  Currently we scale
   1068  *	user priorites into the range 60 -> 40, and kernel priorities into
   1069  *	40 -> 0.
   1070  */
   1071 int
   1072 sched_kpri(struct lwp *l)
   1073 {
   1074 	static const uint8_t kpri_tab[] = {
   1075 		 0,   0,   1,   2,   3,   4,   4,   5,
   1076 		 6,   7,   8,   8,   9,  10,  11,  12,
   1077 		12,  13,  14,  15,  16,  16,  17,  18,
   1078 		19,  20,  20,  21,  22,  23,  24,  24,
   1079 		25,  26,  27,  28,  28,  29,  30,  31,
   1080 		32,  32,  33,  34,  35,  36,  36,  37,
   1081 		38,  39,  40,  40,  40,  40,  41,  41,
   1082 		41,  41,  42,  42,  42,  42,  43,  43,
   1083 		43,  43,  44,  44,  44,  44,  45,  45,
   1084 		45,  45,  46,  46,  46,  47,  47,  47,
   1085 		47,  48,  48,  48,  48,  49,  49,  49,
   1086 		49,  50,  50,  50,  50,  51,  51,  51,
   1087 		51,  52,  52,  52,  52,  53,  53,  53,
   1088 		54,  54,  54,  54,  55,  55,  55,  55,
   1089 		56,  56,  56,  56,  57,  57,  57,  57,
   1090 		58,  58,  58,  58,  59,  59,  59,  60,
   1091 	};
   1092 
   1093 	return kpri_tab[l->l_priority];
   1094 }
   1095 
   1096 /*
   1097  * sched_unsleep:
   1098  *
   1099  *	The is called when the LWP has not been awoken normally but instead
   1100  *	interrupted: for example, if the sleep timed out.  Because of this,
   1101  *	it's not a valid action for running or idle LWPs.
   1102  */
   1103 void
   1104 sched_unsleep(struct lwp *l)
   1105 {
   1106 
   1107 	lwp_unlock(l);
   1108 	panic("sched_unsleep");
   1109 }
   1110 
   1111 /*
   1112  * sched_changepri:
   1113  *
   1114  *	Adjust the priority of an LWP.
   1115  */
   1116 void
   1117 sched_changepri(struct lwp *l, int pri)
   1118 {
   1119 	struct cpu_info *ci;
   1120 
   1121 	/*
   1122 	 * XXXSMP
   1123 	 * Since l->l_cpu persists across a context switch,
   1124 	 * this gives us *very weak* processor affinity, in
   1125 	 * that we notify the CPU on which the process last
   1126 	 * ran that it should try to switch.
   1127 	 *
   1128 	 * This does not guarantee that the process will run on
   1129 	 * that processor next, because another processor might
   1130 	 * grab it the next time it performs a context switch.
   1131 	 *
   1132 	 * This also does not handle the case where its last
   1133 	 * CPU is running a higher-priority process, but every
   1134 	 * other CPU is running a lower-priority process.  There
   1135 	 * are ways to handle this situation, but they're not
   1136 	 * currently very pretty, and we also need to weigh the
   1137 	 * cost of moving a process from one CPU to another.
   1138 	 */
   1139 	if (l->l_stat != LSRUN || (l->l_flag & L_INMEM) == 0) {
   1140 		l->l_priority = pri;
   1141 		return;
   1142 	}
   1143 
   1144 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1145 
   1146 	remrunqueue(l);
   1147 	l->l_priority = pri;
   1148 	setrunqueue(l);
   1149 
   1150 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1151 	if (pri < ci->ci_schedstate.spc_curpriority)
   1152 		cpu_need_resched(ci);
   1153 }
   1154 
   1155 /*
   1156  * Low-level routines to access the run queue.  Optimised assembler
   1157  * routines can override these.
   1158  */
   1159 
   1160 #ifndef __HAVE_MD_RUNQUEUE
   1161 
   1162 /*
   1163  * On some architectures, it's faster to use a MSB ordering for the priorites
   1164  * than the traditional LSB ordering.
   1165  */
   1166 #ifdef __HAVE_BIGENDIAN_BITOPS
   1167 #define	RQMASK(n) (0x80000000 >> (n))
   1168 #else
   1169 #define	RQMASK(n) (0x00000001 << (n))
   1170 #endif
   1171 
   1172 /*
   1173  * The primitives that manipulate the run queues.  whichqs tells which
   1174  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1175  * into queues, remrunqueue removes them from queues.  The running process is
   1176  * on no queue, other processes are on a queue related to p->p_priority,
   1177  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1178  * available queues.
   1179  */
   1180 #ifdef RQDEBUG
   1181 static void
   1182 checkrunqueue(int whichq, struct lwp *l)
   1183 {
   1184 	const struct prochd * const rq = &sched_qs[whichq];
   1185 	struct lwp *l2;
   1186 	int found = 0;
   1187 	int die = 0;
   1188 	int empty = 1;
   1189 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
   1190 		if (l2->l_stat != LSRUN) {
   1191 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1192 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1193 		}
   1194 		if (l2->l_back->l_forw != l2) {
   1195 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1196 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1197 			    l2->l_back->l_forw);
   1198 			die = 1;
   1199 		}
   1200 		if (l2->l_forw->l_back != l2) {
   1201 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1202 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1203 			    l2->l_forw->l_back);
   1204 			die = 1;
   1205 		}
   1206 		if (l2 == l)
   1207 			found = 1;
   1208 		empty = 0;
   1209 	}
   1210 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1211 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1212 		    whichq, rq);
   1213 		die = 1;
   1214 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1215 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1216 		    "run-queue %p\n", whichq, rq);
   1217 		die = 1;
   1218 	}
   1219 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1220 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1221 		    whichq, l);
   1222 		die = 1;
   1223 	}
   1224 	if (l != NULL && empty) {
   1225 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1226 		    "active lwp %p\n", whichq, rq, l);
   1227 		die = 1;
   1228 	}
   1229 	if (l != NULL && !found) {
   1230 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1231 		    whichq, l, rq);
   1232 		die = 1;
   1233 	}
   1234 	if (die)
   1235 		panic("checkrunqueue: inconsistency found");
   1236 }
   1237 #endif /* RQDEBUG */
   1238 
   1239 void
   1240 setrunqueue(struct lwp *l)
   1241 {
   1242 	struct prochd *rq;
   1243 	struct lwp *prev;
   1244 	const int whichq = l->l_priority / PPQ;
   1245 
   1246 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1247 
   1248 #ifdef RQDEBUG
   1249 	checkrunqueue(whichq, NULL);
   1250 #endif
   1251 #ifdef DIAGNOSTIC
   1252 	if (l->l_back != NULL || l->l_stat != LSRUN)
   1253 		panic("setrunqueue");
   1254 #endif
   1255 	sched_whichqs |= RQMASK(whichq);
   1256 	rq = &sched_qs[whichq];
   1257 	prev = rq->ph_rlink;
   1258 	l->l_forw = (struct lwp *)rq;
   1259 	rq->ph_rlink = l;
   1260 	prev->l_forw = l;
   1261 	l->l_back = prev;
   1262 #ifdef RQDEBUG
   1263 	checkrunqueue(whichq, l);
   1264 #endif
   1265 }
   1266 
   1267 void
   1268 remrunqueue(struct lwp *l)
   1269 {
   1270 	struct lwp *prev, *next;
   1271 	const int whichq = l->l_priority / PPQ;
   1272 
   1273 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1274 
   1275 #ifdef RQDEBUG
   1276 	checkrunqueue(whichq, l);
   1277 #endif
   1278 
   1279 #if defined(DIAGNOSTIC)
   1280 	if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
   1281 		/* Shouldn't happen - interrupts disabled. */
   1282 		panic("remrunqueue: bit %d not set", whichq);
   1283 	}
   1284 #endif
   1285 	prev = l->l_back;
   1286 	l->l_back = NULL;
   1287 	next = l->l_forw;
   1288 	prev->l_forw = next;
   1289 	next->l_back = prev;
   1290 	if (prev == next)
   1291 		sched_whichqs &= ~RQMASK(whichq);
   1292 #ifdef RQDEBUG
   1293 	checkrunqueue(whichq, NULL);
   1294 #endif
   1295 }
   1296 
   1297 #undef RQMASK
   1298 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1299