Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.166.2.8
      1 /*	$NetBSD: kern_synch.c,v 1.166.2.8 2007/01/11 22:23:00 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. Neither the name of the University nor the names of its contributors
     58  *    may be used to endorse or promote products derived from this software
     59  *    without specific prior written permission.
     60  *
     61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71  * SUCH DAMAGE.
     72  *
     73  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.166.2.8 2007/01/11 22:23:00 ad Exp $");
     78 
     79 #include "opt_ddb.h"
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/proc.h>
     91 #include <sys/kernel.h>
     92 #include <sys/buf.h>
     93 #if defined(PERFCTRS)
     94 #include <sys/pmc.h>
     95 #endif
     96 #include <sys/signalvar.h>
     97 #include <sys/resourcevar.h>
     98 #include <sys/sched.h>
     99 #include <sys/sa.h>
    100 #include <sys/savar.h>
    101 #include <sys/kauth.h>
    102 #include <sys/sleepq.h>
    103 #include <sys/lockdebug.h>
    104 
    105 #include <uvm/uvm_extern.h>
    106 
    107 #include <machine/cpu.h>
    108 
    109 int	lbolt;			/* once a second sleep address */
    110 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    111 
    112 /*
    113  * The global scheduler state.
    114  */
    115 kmutex_t	sched_mutex;		/* global sched state mutex */
    116 struct prochd	sched_qs[RUNQUE_NQS];	/* run queues */
    117 volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    118 
    119 void	schedcpu(void *);
    120 void	updatepri(struct lwp *);
    121 void	sa_awaken(struct lwp *);
    122 
    123 void	sched_unsleep(struct lwp *);
    124 void	sched_changepri(struct lwp *, int);
    125 
    126 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    127 static unsigned int schedcpu_ticks;
    128 
    129 syncobj_t sleep_syncobj = {
    130 	SOBJ_SLEEPQ_SORTED,
    131 	sleepq_unsleep,
    132 	sleepq_changepri
    133 };
    134 
    135 syncobj_t sched_syncobj = {
    136 	SOBJ_SLEEPQ_SORTED,
    137 	sched_unsleep,
    138 	sched_changepri
    139 };
    140 
    141 /*
    142  * Force switch among equal priority processes every 100ms.
    143  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    144  */
    145 /* ARGSUSED */
    146 void
    147 roundrobin(struct cpu_info *ci)
    148 {
    149 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    150 
    151 	spc->spc_rrticks = rrticks;
    152 
    153 	if (curlwp != NULL) {
    154 		if (spc->spc_flags & SPCF_SEENRR) {
    155 			/*
    156 			 * The process has already been through a roundrobin
    157 			 * without switching and may be hogging the CPU.
    158 			 * Indicate that the process should yield.
    159 			 */
    160 			spc->spc_flags |= SPCF_SHOULDYIELD;
    161 		} else
    162 			spc->spc_flags |= SPCF_SEENRR;
    163 	}
    164 	cpu_need_resched(curcpu());
    165 }
    166 
    167 #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    168 #define	NICE_WEIGHT 2			/* priorities per nice level */
    169 
    170 #define	ESTCPU_SHIFT	11
    171 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    172 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    173 
    174 /*
    175  * Constants for digital decay and forget:
    176  *	90% of (p_estcpu) usage in 5 * loadav time
    177  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    178  *          Note that, as ps(1) mentions, this can let percentages
    179  *          total over 100% (I've seen 137.9% for 3 processes).
    180  *
    181  * Note that hardclock updates p_estcpu and p_cpticks independently.
    182  *
    183  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    184  * That is, the system wants to compute a value of decay such
    185  * that the following for loop:
    186  * 	for (i = 0; i < (5 * loadavg); i++)
    187  * 		p_estcpu *= decay;
    188  * will compute
    189  * 	p_estcpu *= 0.1;
    190  * for all values of loadavg:
    191  *
    192  * Mathematically this loop can be expressed by saying:
    193  * 	decay ** (5 * loadavg) ~= .1
    194  *
    195  * The system computes decay as:
    196  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    197  *
    198  * We wish to prove that the system's computation of decay
    199  * will always fulfill the equation:
    200  * 	decay ** (5 * loadavg) ~= .1
    201  *
    202  * If we compute b as:
    203  * 	b = 2 * loadavg
    204  * then
    205  * 	decay = b / (b + 1)
    206  *
    207  * We now need to prove two things:
    208  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    209  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    210  *
    211  * Facts:
    212  *         For x close to zero, exp(x) =~ 1 + x, since
    213  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    214  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    215  *         For x close to zero, ln(1+x) =~ x, since
    216  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    217  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    218  *         ln(.1) =~ -2.30
    219  *
    220  * Proof of (1):
    221  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    222  *	solving for factor,
    223  *      ln(factor) =~ (-2.30/5*loadav), or
    224  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    225  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    226  *
    227  * Proof of (2):
    228  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    229  *	solving for power,
    230  *      power*ln(b/(b+1)) =~ -2.30, or
    231  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    232  *
    233  * Actual power values for the implemented algorithm are as follows:
    234  *      loadav: 1       2       3       4
    235  *      power:  5.68    10.32   14.94   19.55
    236  */
    237 
    238 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    239 #define	loadfactor(loadav)	(2 * (loadav))
    240 
    241 static fixpt_t
    242 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    243 {
    244 
    245 	if (estcpu == 0) {
    246 		return 0;
    247 	}
    248 
    249 #if !defined(_LP64)
    250 	/* avoid 64bit arithmetics. */
    251 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    252 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    253 		return estcpu * loadfac / (loadfac + FSCALE);
    254 	}
    255 #endif /* !defined(_LP64) */
    256 
    257 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    258 }
    259 
    260 /*
    261  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    262  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    263  * less than (1 << ESTCPU_SHIFT).
    264  *
    265  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    266  */
    267 static fixpt_t
    268 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    269 {
    270 
    271 	if ((n << FSHIFT) >= 7 * loadfac) {
    272 		return 0;
    273 	}
    274 
    275 	while (estcpu != 0 && n > 1) {
    276 		estcpu = decay_cpu(loadfac, estcpu);
    277 		n--;
    278 	}
    279 
    280 	return estcpu;
    281 }
    282 
    283 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    284 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    285 
    286 /*
    287  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    288  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    289  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    290  *
    291  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    292  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    293  *
    294  * If you dont want to bother with the faster/more-accurate formula, you
    295  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    296  * (more general) method of calculating the %age of CPU used by a process.
    297  */
    298 #define	CCPU_SHIFT	11
    299 
    300 /*
    301  * schedcpu:
    302  *
    303  *	Recompute process priorities, every hz ticks.
    304  *
    305  *	XXXSMP This needs to be reorganised in order to reduce the locking
    306  *	burden.
    307  */
    308 /* ARGSUSED */
    309 void
    310 schedcpu(void *arg)
    311 {
    312 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    313 	struct rlimit *rlim;
    314 	struct lwp *l;
    315 	struct proc *p;
    316 	int minslp, clkhz;
    317 	long runtm;
    318 
    319 	schedcpu_ticks++;
    320 
    321 	mutex_enter(&proclist_mutex);
    322 	PROCLIST_FOREACH(p, &allproc) {
    323 		/*
    324 		 * Increment time in/out of memory and sleep time (if
    325 		 * sleeping).  We ignore overflow; with 16-bit int's
    326 		 * (remember them?) overflow takes 45 days.
    327 		 */
    328 		minslp = 2;
    329 		runtm = 0;
    330 		mutex_enter(&p->p_smutex);
    331 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    332 			lwp_lock(l);
    333 			runtm += l->l_rtime.tv_sec;
    334 			l->l_swtime++;
    335 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    336 			    l->l_stat == LSSUSPENDED) {
    337 				l->l_slptime++;
    338 				minslp = min(minslp, l->l_slptime);
    339 			} else
    340 				minslp = 0;
    341 			lwp_unlock(l);
    342 		}
    343 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    344 
    345 		/*
    346 		 * Check if the process exceeds its CPU resource allocation.
    347 		 * If over max, kill it.
    348 		 */
    349 		rlim = &p->p_rlimit[RLIMIT_CPU];
    350 		if (runtm >= rlim->rlim_cur) {
    351 			if (runtm >= rlim->rlim_max)
    352 				psignal(p, SIGKILL);
    353 			else {
    354 				psignal(p, SIGXCPU);
    355 				if (rlim->rlim_cur < rlim->rlim_max)
    356 					rlim->rlim_cur += 5;
    357 			}
    358 		}
    359 
    360 		/*
    361 		 * If the process has run for more than autonicetime, reduce
    362 		 * priority to give others a chance.
    363 		 */
    364 		if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
    365 		    && kauth_cred_geteuid(p->p_cred)) {
    366 			p->p_nice = autoniceval + NZERO;
    367 			resetprocpriority(p);
    368 		}
    369 
    370 		/*
    371 		 * If the process has slept the entire second,
    372 		 * stop recalculating its priority until it wakes up.
    373 		 */
    374 		if (minslp > 1) {
    375 			mutex_exit(&p->p_smutex);
    376 			continue;
    377 		}
    378 
    379 		/*
    380 		 * p_pctcpu is only for ps.
    381 		 */
    382 		mutex_enter(&p->p_stmutex);
    383 		clkhz = stathz != 0 ? stathz : hz;
    384 #if	(FSHIFT >= CCPU_SHIFT)
    385 		p->p_pctcpu += (clkhz == 100)?
    386 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    387                 	100 * (((fixpt_t) p->p_cpticks)
    388 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    389 #else
    390 		p->p_pctcpu += ((FSCALE - ccpu) *
    391 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    392 #endif
    393 		p->p_cpticks = 0;
    394 		mutex_exit(&p->p_stmutex);
    395 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    396 
    397 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    398 			lwp_lock(l);
    399 			if (l->l_slptime <= 1)
    400 				resetpriority(l);
    401 			lwp_unlock(l);
    402 		}
    403 		mutex_exit(&p->p_smutex);
    404 	}
    405 	mutex_exit(&proclist_mutex);
    406 	uvm_meter();
    407 	wakeup((caddr_t)&lbolt);
    408 	callout_schedule(&schedcpu_ch, hz);
    409 }
    410 
    411 /*
    412  * Recalculate the priority of a process after it has slept for a while.
    413  */
    414 void
    415 updatepri(struct lwp *l)
    416 {
    417 	struct proc *p = l->l_proc;
    418 	fixpt_t loadfac;
    419 
    420 	LOCK_ASSERT(lwp_locked(l, NULL));
    421 	KASSERT(l->l_slptime > 1);
    422 
    423 	loadfac = loadfactor(averunnable.ldavg[0]);
    424 
    425 	l->l_slptime--; /* the first time was done in schedcpu */
    426 	/* XXX NJWLWP */
    427 	/* XXXSMP occasionaly unlocked. */
    428 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    429 	resetpriority(l);
    430 }
    431 
    432 /*
    433  * During autoconfiguration or after a panic, a sleep will simply lower the
    434  * priority briefly to allow interrupts, then return.  The priority to be
    435  * used (safepri) is machine-dependent, thus this value is initialized and
    436  * maintained in the machine-dependent layers.  This priority will typically
    437  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    438  * it can be made higher to block network software interrupts after panics.
    439  */
    440 int	safepri;
    441 
    442 /*
    443  * ltsleep: see mtsleep() for comments.
    444  */
    445 int
    446 ltsleep(wchan_t ident, int priority, const char *wmesg, int timo,
    447 	volatile struct simplelock *interlock)
    448 {
    449 	struct lwp *l = curlwp;
    450 	sleepq_t *sq;
    451 	int error, catch;
    452 
    453 	if (sleepq_dontsleep(l)) {
    454 		(void)sleepq_abort(NULL, 0);
    455 		if ((priority & PNORELOCK) != 0)
    456 			simple_unlock(interlock);
    457 		return 0;
    458 	}
    459 
    460 	sq = sleeptab_lookup(&sleeptab, ident);
    461 	sleepq_enter(sq, l);
    462 
    463 	if (interlock != NULL) {
    464 		LOCK_ASSERT(simple_lock_held(interlock));
    465 		simple_unlock(interlock);
    466 	}
    467 
    468 	catch = priority & PCATCH;
    469 	sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
    470 	    &sleep_syncobj);
    471 	error = sleepq_unblock(timo, catch);
    472 
    473 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    474 		simple_lock(interlock);
    475 
    476 	return error;
    477 }
    478 
    479 /*
    480  * General sleep call.  Suspends the current process until a wakeup is
    481  * performed on the specified identifier.  The process will then be made
    482  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    483  * means no timeout).  If pri includes PCATCH flag, signals are checked
    484  * before and after sleeping, else signals are not checked.  Returns 0 if
    485  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    486  * signal needs to be delivered, ERESTART is returned if the current system
    487  * call should be restarted if possible, and EINTR is returned if the system
    488  * call should be interrupted by the signal (return EINTR).
    489  *
    490  * The interlock is held until we are on a sleep queue. The interlock will
    491  * be locked before returning back to the caller unless the PNORELOCK flag
    492  * is specified, in which case the interlock will always be unlocked upon
    493  * return.
    494  */
    495 int
    496 mtsleep(wchan_t ident, int priority, const char *wmesg, int timo,
    497 	kmutex_t *mtx)
    498 {
    499 	struct lwp *l = curlwp;
    500 	sleepq_t *sq;
    501 	int error, catch;
    502 
    503 	if (sleepq_dontsleep(l))
    504 		return sleepq_abort(mtx, priority & PNORELOCK);
    505 
    506 	sq = sleeptab_lookup(&sleeptab, ident);
    507 	sleepq_enter(sq, l);
    508 
    509 	if (mtx != NULL) {
    510 		LOCK_ASSERT(mutex_owned(mtx));
    511 		mutex_exit(mtx);
    512 	}
    513 
    514 	catch = priority & PCATCH;
    515 	sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
    516 	    &sleep_syncobj);
    517 	error = sleepq_unblock(timo, catch);
    518 
    519 	if (mtx != NULL && (priority & PNORELOCK) == 0)
    520 		mutex_enter(mtx);
    521 
    522 	return error;
    523 }
    524 
    525 /*
    526  * sched_pause:
    527  *
    528  *	General sleep call for situations where a wake-up is not expected.
    529  */
    530 int
    531 sched_pause(const char *wmesg, boolean_t intr, int timo)
    532 {
    533 	struct lwp *l = curlwp;
    534 	sleepq_t *sq;
    535 
    536 	if (sleepq_dontsleep(l))
    537 		return sleepq_abort(NULL, 0);
    538 
    539 	sq = sleeptab_lookup(&sleeptab, l);
    540 	sleepq_enter(sq, l);
    541 	sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
    542 	return sleepq_unblock(timo, intr);
    543 }
    544 
    545 void
    546 sa_awaken(struct lwp *l)
    547 {
    548 
    549 	LOCK_ASSERT(lwp_locked(l, NULL));
    550 
    551 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    552 		l->l_flag &= ~L_SA_IDLE;
    553 }
    554 
    555 /*
    556  * Make all processes sleeping on the specified identifier runnable.
    557  */
    558 void
    559 wakeup(wchan_t ident)
    560 {
    561 	sleepq_t *sq;
    562 
    563 	if (cold)
    564 		return;
    565 
    566 	sq = sleeptab_lookup(&sleeptab, ident);
    567 	sleepq_wake(sq, ident, (u_int)-1);
    568 }
    569 
    570 /*
    571  * Make the highest priority process first in line on the specified
    572  * identifier runnable.
    573  */
    574 void
    575 wakeup_one(wchan_t ident)
    576 {
    577 	sleepq_t *sq;
    578 
    579 	if (cold)
    580 		return;
    581 
    582 	sq = sleeptab_lookup(&sleeptab, ident);
    583 	sleepq_wake(sq, ident, 1);
    584 }
    585 
    586 
    587 /*
    588  * General yield call.  Puts the current process back on its run queue and
    589  * performs a voluntary context switch.  Should only be called when the
    590  * current process explicitly requests it (eg sched_yield(2) in compat code).
    591  */
    592 void
    593 yield(void)
    594 {
    595 	struct lwp *l = curlwp;
    596 
    597 	lwp_lock(l);
    598 	if (l->l_stat == LSONPROC) {
    599 		KASSERT(lwp_locked(l, &sched_mutex));
    600 		l->l_priority = l->l_usrpri;
    601 	}
    602 	l->l_nvcsw++;
    603 	mi_switch(l, NULL);
    604 }
    605 
    606 /*
    607  * General preemption call.  Puts the current process back on its run queue
    608  * and performs an involuntary context switch.
    609  * The 'more' ("more work to do") argument is boolean. Returning to userspace
    610  * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
    611  * This will be used to indicate to the SA subsystem that the LWP is
    612  * not yet finished in the kernel.
    613  */
    614 void
    615 preempt(int more)
    616 {
    617 	struct lwp *l = curlwp;
    618 	int r;
    619 
    620 	lwp_lock(l);
    621 	if (l->l_stat == LSONPROC) {
    622 		KASSERT(lwp_locked(l, &sched_mutex));
    623 		l->l_priority = l->l_usrpri;
    624 	}
    625 	l->l_nivcsw++;
    626 	r = mi_switch(l, NULL);
    627 
    628 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    629 		sa_preempt(l);
    630 }
    631 
    632 /*
    633  * The machine independent parts of context switch.  Switch to "new"
    634  * if non-NULL, otherwise let cpu_switch choose the next lwp.
    635  *
    636  * Returns 1 if another process was actually run.
    637  */
    638 int
    639 mi_switch(struct lwp *l, struct lwp *newl)
    640 {
    641 	struct schedstate_percpu *spc;
    642 	struct timeval tv;
    643 #ifdef MULTIPROCESSOR
    644 	int hold_count;
    645 #endif
    646 	int retval, oldspl;
    647 	long s, u;
    648 #if PERFCTRS
    649 	struct proc *p = l->l_proc;
    650 #endif
    651 
    652 	LOCK_ASSERT(lwp_locked(l, NULL));
    653 
    654 	/*
    655 	 * Release the kernel_lock, as we are about to yield the CPU.
    656 	 */
    657 	KERNEL_UNLOCK_ALL(l, &hold_count);
    658 
    659 #ifdef LOCKDEBUG
    660 	spinlock_switchcheck();
    661 	simple_lock_switchcheck();
    662 #endif
    663 #ifdef KSTACK_CHECK_MAGIC
    664 	kstack_check_magic(l);
    665 #endif
    666 
    667 	/*
    668 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    669 	 * are after is the run time and that's guarenteed to have been last
    670 	 * updated by this CPU.
    671 	 */
    672 	KDASSERT(l->l_cpu == curcpu());
    673 	spc = &l->l_cpu->ci_schedstate;
    674 
    675 	/*
    676 	 * Compute the amount of time during which the current
    677 	 * process was running.
    678 	 */
    679 	microtime(&tv);
    680 	u = l->l_rtime.tv_usec +
    681 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    682 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    683 	if (u < 0) {
    684 		u += 1000000;
    685 		s--;
    686 	} else if (u >= 1000000) {
    687 		u -= 1000000;
    688 		s++;
    689 	}
    690 	l->l_rtime.tv_usec = u;
    691 	l->l_rtime.tv_sec = s;
    692 
    693 	/*
    694 	 * XXXSMP If we are using h/w performance counters, save context.
    695 	 */
    696 #if PERFCTRS
    697 	if (PMC_ENABLED(p)) {
    698 		pmc_save_context(p);
    699 	}
    700 #endif
    701 
    702 	/*
    703 	 * Acquire the sched_mutex if necessary.  It will be released by
    704 	 * cpu_switch once it has decided to idle, or picked another LWP
    705 	 * to run.
    706 	 */
    707 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    708 	if (l->l_mutex != &sched_mutex) {
    709 		mutex_enter(&sched_mutex);
    710 		lwp_unlock(l);
    711 	}
    712 #endif
    713 
    714 	/*
    715 	 * If on the CPU and we have gotten this far, then we must yield.
    716 	 */
    717 	KASSERT(l->l_stat != LSRUN);
    718 	if (l->l_stat == LSONPROC) {
    719 		KASSERT(lwp_locked(l, &sched_mutex));
    720 		l->l_stat = LSRUN;
    721 		setrunqueue(l);
    722 	}
    723 	uvmexp.swtch++;
    724 
    725 	/*
    726 	 * Process is about to yield the CPU; clear the appropriate
    727 	 * scheduling flags.
    728 	 */
    729 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    730 
    731 	LOCKDEBUG_BARRIER(&sched_mutex, 1);
    732 
    733 	/*
    734 	 * Switch to the new current LWP.  When we run again, we'll
    735 	 * return back here.
    736 	 */
    737 	oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    738 
    739 	if (newl == NULL || newl->l_back == NULL)
    740 		retval = cpu_switch(l, NULL);
    741 	else {
    742 		KASSERT(lwp_locked(newl, &sched_mutex));
    743 		remrunqueue(newl);
    744 		cpu_switchto(l, newl);
    745 		retval = 0;
    746 	}
    747 
    748 	/*
    749 	 * XXXSMP If we are using h/w performance counters, restore context.
    750 	 */
    751 #if PERFCTRS
    752 	if (PMC_ENABLED(p)) {
    753 		pmc_restore_context(p);
    754 	}
    755 #endif
    756 
    757 	/*
    758 	 * We're running again; record our new start time.  We might
    759 	 * be running on a new CPU now, so don't use the cached
    760 	 * schedstate_percpu pointer.
    761 	 */
    762 	KDASSERT(l->l_cpu == curcpu());
    763 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    764 
    765 	/*
    766 	 * Reacquire the kernel_lock.
    767 	 */
    768 	splx(oldspl);
    769 	KERNEL_LOCK(hold_count, l);
    770 
    771 	return retval;
    772 }
    773 
    774 /*
    775  * Initialize the (doubly-linked) run queues
    776  * to be empty.
    777  */
    778 void
    779 rqinit()
    780 {
    781 	int i;
    782 
    783 	for (i = 0; i < RUNQUE_NQS; i++)
    784 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    785 		    (struct lwp *)&sched_qs[i];
    786 
    787 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    788 }
    789 
    790 static inline void
    791 resched_lwp(struct lwp *l, u_char pri)
    792 {
    793 	struct cpu_info *ci;
    794 
    795 	/*
    796 	 * XXXSMP
    797 	 * Since l->l_cpu persists across a context switch,
    798 	 * this gives us *very weak* processor affinity, in
    799 	 * that we notify the CPU on which the process last
    800 	 * ran that it should try to switch.
    801 	 *
    802 	 * This does not guarantee that the process will run on
    803 	 * that processor next, because another processor might
    804 	 * grab it the next time it performs a context switch.
    805 	 *
    806 	 * This also does not handle the case where its last
    807 	 * CPU is running a higher-priority process, but every
    808 	 * other CPU is running a lower-priority process.  There
    809 	 * are ways to handle this situation, but they're not
    810 	 * currently very pretty, and we also need to weigh the
    811 	 * cost of moving a process from one CPU to another.
    812 	 *
    813 	 * XXXSMP
    814 	 * There is also the issue of locking the other CPU's
    815 	 * sched state, which we currently do not do.
    816 	 */
    817 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    818 	if (pri < ci->ci_schedstate.spc_curpriority)
    819 		cpu_need_resched(ci);
    820 }
    821 
    822 /*
    823  * Change process state to be runnable, placing it on the run queue if it is
    824  * in memory, and awakening the swapper if it isn't in memory.
    825  *
    826  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    827  */
    828 void
    829 setrunnable(struct lwp *l)
    830 {
    831 	struct proc *p = l->l_proc;
    832 
    833 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    834 	LOCK_ASSERT(lwp_locked(l, NULL));
    835 
    836 	switch (l->l_stat) {
    837 	case LSSTOP:
    838 		/*
    839 		 * If we're being traced (possibly because someone attached us
    840 		 * while we were stopped), check for a signal from the debugger.
    841 		 */
    842 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    843 			sigaddset(&l->l_sigpend.sp_set, p->p_xstat);
    844 			signotify(l);
    845 		}
    846 		p->p_nrlwps++;
    847 		break;
    848 	case LSSUSPENDED:
    849 		l->l_flag &= ~L_WSUSPEND;
    850 		p->p_nrlwps++;
    851 		break;
    852 	case LSSLEEP:
    853 		KASSERT(l->l_wchan != NULL);
    854 		break;
    855 	default:
    856 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    857 	}
    858 
    859 	/*
    860 	 * If the LWP was sleeping interruptably, then it's OK to start it
    861 	 * again.  If not, mark it as still sleeping.
    862 	 */
    863 	if (l->l_wchan != NULL) {
    864 		l->l_stat = LSSLEEP;
    865 		if ((l->l_flag & L_SINTR) != 0)
    866 			lwp_unsleep(l);
    867 		else {
    868 			lwp_unlock(l);
    869 #ifdef DIAGNOSTIC
    870 			panic("setrunnable: !L_SINTR");
    871 #endif
    872 		}
    873 		return;
    874 	}
    875 
    876 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
    877 
    878 	if (l->l_proc->p_sa)
    879 		sa_awaken(l);
    880 
    881 	/*
    882 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    883 	 * about to call mi_switch(), in which case it will yield.
    884 	 *
    885 	 * XXXSMP Will need to change for preemption.
    886 	 */
    887 #ifdef MULTIPROCESSOR
    888 	if (l->l_cpu->ci_curlwp == l) {
    889 #else
    890 	if (l == curlwp) {
    891 #endif
    892 		l->l_stat = LSONPROC;
    893 		l->l_slptime = 0;
    894 		lwp_unlock(l);
    895 		return;
    896 	}
    897 
    898 	/*
    899 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    900 	 * to bring it back in.  Otherwise, enter it into a run queue.
    901 	 */
    902 	if (l->l_slptime > 1)
    903 		updatepri(l);
    904 	l->l_stat = LSRUN;
    905 	l->l_slptime = 0;
    906 
    907 	if (l->l_flag & L_INMEM) {
    908 		setrunqueue(l);
    909 		resched_lwp(l, l->l_priority);
    910 		lwp_unlock(l);
    911 	} else {
    912 		lwp_unlock(l);
    913 		wakeup(&proc0);
    914 	}
    915 }
    916 
    917 /*
    918  * Compute the priority of a process when running in user mode.
    919  * Arrange to reschedule if the resulting priority is better
    920  * than that of the current process.
    921  */
    922 void
    923 resetpriority(struct lwp *l)
    924 {
    925 	unsigned int newpriority;
    926 	struct proc *p = l->l_proc;
    927 
    928 	LOCK_ASSERT(lwp_locked(l, NULL));
    929 
    930 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
    931 			NICE_WEIGHT * (p->p_nice - NZERO);
    932 	newpriority = min(newpriority, MAXPRI);
    933 	l->l_usrpri = newpriority;
    934 	lwp_changepri(l, l->l_usrpri);
    935 }
    936 
    937 /*
    938  * Recompute priority for all LWPs in a process.
    939  */
    940 void
    941 resetprocpriority(struct proc *p)
    942 {
    943 	struct lwp *l;
    944 
    945 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    946 
    947 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    948 		lwp_lock(l);
    949 		resetpriority(l);
    950 		lwp_unlock(l);
    951 	}
    952 }
    953 
    954 /*
    955  * We adjust the priority of the current process.  The priority of a process
    956  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    957  * is increased here.  The formula for computing priorities (in kern_synch.c)
    958  * will compute a different value each time p_estcpu increases. This can
    959  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    960  * queue will not change.  The CPU usage estimator ramps up quite quickly
    961  * when the process is running (linearly), and decays away exponentially, at
    962  * a rate which is proportionally slower when the system is busy.  The basic
    963  * principle is that the system will 90% forget that the process used a lot
    964  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    965  * processes which haven't run much recently, and to round-robin among other
    966  * processes.
    967  */
    968 
    969 void
    970 schedclock(struct lwp *l)
    971 {
    972 	struct proc *p = l->l_proc;
    973 
    974 	mutex_enter(&p->p_smutex);
    975 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    976 	lwp_lock(l);
    977 	resetpriority(l);
    978 	mutex_exit(&p->p_smutex);
    979 	if (l->l_priority >= PUSER)
    980 		l->l_priority = l->l_usrpri;
    981 	lwp_unlock(l);
    982 }
    983 
    984 /*
    985  * suspendsched:
    986  *
    987  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    988  */
    989 void
    990 suspendsched(void)
    991 {
    992 #ifdef MULTIPROCESSOR
    993 	CPU_INFO_ITERATOR cii;
    994 	struct cpu_info *ci;
    995 #endif
    996 	struct lwp *l;
    997 	struct proc *p;
    998 
    999 	/*
   1000 	 * We do this by process in order not to violate the locking rules.
   1001 	 */
   1002 	mutex_enter(&proclist_mutex);
   1003 	PROCLIST_FOREACH(p, &allproc) {
   1004 		mutex_enter(&p->p_smutex);
   1005 
   1006 		if ((p->p_flag & P_SYSTEM) != 0) {
   1007 			mutex_exit(&p->p_smutex);
   1008 			continue;
   1009 		}
   1010 
   1011 		p->p_stat = SSTOP;
   1012 
   1013 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1014 			if (l == curlwp)
   1015 				continue;
   1016 
   1017 			lwp_lock(l);
   1018 
   1019 			/*
   1020 			 * Set L_WREBOOT so that the LWP will suspend itself
   1021 			 * when it tries to return to user mode.  We want to
   1022 			 * try and get to get as many LWPs as possible to
   1023 			 * the user / kernel boundary, so that they will
   1024 			 * release any locks that they hold.
   1025 			 */
   1026 			l->l_flag |= (L_WREBOOT | L_WSUSPEND);
   1027 
   1028 			if (l->l_stat == LSSLEEP &&
   1029 			    (l->l_flag & L_SINTR) != 0) {
   1030 				/* setrunnable() will release the lock. */
   1031 				setrunnable(l);
   1032 				continue;
   1033 			}
   1034 
   1035 			lwp_unlock(l);
   1036 		}
   1037 
   1038 		mutex_exit(&p->p_smutex);
   1039 	}
   1040 	mutex_exit(&proclist_mutex);
   1041 
   1042 	/*
   1043 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1044 	 * They'll trap into the kernel and suspend themselves in userret().
   1045 	 */
   1046 	sched_lock(0);
   1047 #ifdef MULTIPROCESSOR
   1048 	for (CPU_INFO_FOREACH(cii, ci))
   1049 		cpu_need_resched(ci);
   1050 #else
   1051 	cpu_need_resched(curcpu());
   1052 #endif
   1053 	sched_unlock(0);
   1054 }
   1055 
   1056 /*
   1057  * scheduler_fork_hook:
   1058  *
   1059  *	Inherit the parent's scheduler history.
   1060  */
   1061 void
   1062 scheduler_fork_hook(struct proc *parent, struct proc *child)
   1063 {
   1064 
   1065 	LOCK_ASSERT(mutex_owned(&parent->p_smutex));
   1066 
   1067 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1068 	child->p_forktime = schedcpu_ticks;
   1069 }
   1070 
   1071 /*
   1072  * scheduler_wait_hook:
   1073  *
   1074  *	Chargeback parents for the sins of their children.
   1075  */
   1076 void
   1077 scheduler_wait_hook(struct proc *parent, struct proc *child)
   1078 {
   1079 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1080 	fixpt_t estcpu;
   1081 
   1082 	/* XXX Only if parent != init?? */
   1083 
   1084 	mutex_enter(&parent->p_smutex);
   1085 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1086 	    schedcpu_ticks - child->p_forktime);
   1087 	if (child->p_estcpu > estcpu)
   1088 		parent->p_estcpu =
   1089 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1090 	mutex_exit(&parent->p_smutex);
   1091 }
   1092 
   1093 /*
   1094  * sched_kpri:
   1095  *
   1096  *	Given an LWP a priority boost before it sleeps.  Currently we scale
   1097  *	user priorites into the range 60 -> 40, and kernel priorities into
   1098  *	40 -> 0.
   1099  */
   1100 int
   1101 sched_kpri(struct lwp *l)
   1102 {
   1103 	static const uint8_t kpri_tab[] = {
   1104 		 0,   0,   1,   2,   3,   4,   4,   5,
   1105 		 6,   7,   8,   8,   9,  10,  11,  12,
   1106 		12,  13,  14,  15,  16,  16,  17,  18,
   1107 		19,  20,  20,  21,  22,  23,  24,  24,
   1108 		25,  26,  27,  28,  28,  29,  30,  31,
   1109 		32,  32,  33,  34,  35,  36,  36,  37,
   1110 		38,  39,  40,  40,  40,  40,  41,  41,
   1111 		41,  41,  42,  42,  42,  42,  43,  43,
   1112 		43,  43,  44,  44,  44,  44,  45,  45,
   1113 		45,  45,  46,  46,  46,  47,  47,  47,
   1114 		47,  48,  48,  48,  48,  49,  49,  49,
   1115 		49,  50,  50,  50,  50,  51,  51,  51,
   1116 		51,  52,  52,  52,  52,  53,  53,  53,
   1117 		54,  54,  54,  54,  55,  55,  55,  55,
   1118 		56,  56,  56,  56,  57,  57,  57,  57,
   1119 		58,  58,  58,  58,  59,  59,  59,  60,
   1120 	};
   1121 
   1122 	return kpri_tab[l->l_priority];
   1123 }
   1124 
   1125 /*
   1126  * sched_unsleep:
   1127  *
   1128  *	The is called when the LWP has not been awoken normally but instead
   1129  *	interrupted: for example, if the sleep timed out.  Because of this,
   1130  *	it's not a valid action for running or idle LWPs.
   1131  */
   1132 void
   1133 sched_unsleep(struct lwp *l)
   1134 {
   1135 
   1136 	lwp_unlock(l);
   1137 	panic("sched_unsleep");
   1138 }
   1139 
   1140 /*
   1141  * sched_changepri:
   1142  *
   1143  *	Adjust the priority of an LWP.
   1144  */
   1145 void
   1146 sched_changepri(struct lwp *l, int pri)
   1147 {
   1148 
   1149 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1150 
   1151 	if (l->l_stat != LSRUN || (l->l_flag & L_INMEM) == 0 ||
   1152 	    (l->l_priority / PPQ) == (l->l_usrpri / PPQ)) {
   1153 		l->l_priority = pri;
   1154 		return;
   1155 	}
   1156 
   1157 	remrunqueue(l);
   1158 	l->l_priority = pri;
   1159 	setrunqueue(l);
   1160 	resched_lwp(l, pri);
   1161 }
   1162 
   1163 /*
   1164  * Low-level routines to access the run queue.  Optimised assembler
   1165  * routines can override these.
   1166  */
   1167 
   1168 #ifndef __HAVE_MD_RUNQUEUE
   1169 
   1170 /*
   1171  * On some architectures, it's faster to use a MSB ordering for the priorites
   1172  * than the traditional LSB ordering.
   1173  */
   1174 #ifdef __HAVE_BIGENDIAN_BITOPS
   1175 #define	RQMASK(n) (0x80000000 >> (n))
   1176 #else
   1177 #define	RQMASK(n) (0x00000001 << (n))
   1178 #endif
   1179 
   1180 /*
   1181  * The primitives that manipulate the run queues.  whichqs tells which
   1182  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1183  * into queues, remrunqueue removes them from queues.  The running process is
   1184  * on no queue, other processes are on a queue related to p->p_priority,
   1185  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1186  * available queues.
   1187  */
   1188 #ifdef RQDEBUG
   1189 static void
   1190 checkrunqueue(int whichq, struct lwp *l)
   1191 {
   1192 	const struct prochd * const rq = &sched_qs[whichq];
   1193 	struct lwp *l2;
   1194 	int found = 0;
   1195 	int die = 0;
   1196 	int empty = 1;
   1197 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
   1198 		if (l2->l_stat != LSRUN) {
   1199 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1200 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1201 		}
   1202 		if (l2->l_back->l_forw != l2) {
   1203 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1204 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1205 			    l2->l_back->l_forw);
   1206 			die = 1;
   1207 		}
   1208 		if (l2->l_forw->l_back != l2) {
   1209 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1210 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1211 			    l2->l_forw->l_back);
   1212 			die = 1;
   1213 		}
   1214 		if (l2 == l)
   1215 			found = 1;
   1216 		empty = 0;
   1217 	}
   1218 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1219 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1220 		    whichq, rq);
   1221 		die = 1;
   1222 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1223 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1224 		    "run-queue %p\n", whichq, rq);
   1225 		die = 1;
   1226 	}
   1227 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1228 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1229 		    whichq, l);
   1230 		die = 1;
   1231 	}
   1232 	if (l != NULL && empty) {
   1233 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1234 		    "active lwp %p\n", whichq, rq, l);
   1235 		die = 1;
   1236 	}
   1237 	if (l != NULL && !found) {
   1238 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1239 		    whichq, l, rq);
   1240 		die = 1;
   1241 	}
   1242 	if (die)
   1243 		panic("checkrunqueue: inconsistency found");
   1244 }
   1245 #endif /* RQDEBUG */
   1246 
   1247 void
   1248 setrunqueue(struct lwp *l)
   1249 {
   1250 	struct prochd *rq;
   1251 	struct lwp *prev;
   1252 	const int whichq = l->l_priority / PPQ;
   1253 
   1254 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1255 
   1256 #ifdef RQDEBUG
   1257 	checkrunqueue(whichq, NULL);
   1258 #endif
   1259 #ifdef DIAGNOSTIC
   1260 	if (l->l_back != NULL || l->l_stat != LSRUN)
   1261 		panic("setrunqueue");
   1262 #endif
   1263 	sched_whichqs |= RQMASK(whichq);
   1264 	rq = &sched_qs[whichq];
   1265 	prev = rq->ph_rlink;
   1266 	l->l_forw = (struct lwp *)rq;
   1267 	rq->ph_rlink = l;
   1268 	prev->l_forw = l;
   1269 	l->l_back = prev;
   1270 #ifdef RQDEBUG
   1271 	checkrunqueue(whichq, l);
   1272 #endif
   1273 }
   1274 
   1275 void
   1276 remrunqueue(struct lwp *l)
   1277 {
   1278 	struct lwp *prev, *next;
   1279 	const int whichq = l->l_priority / PPQ;
   1280 
   1281 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1282 
   1283 #ifdef RQDEBUG
   1284 	checkrunqueue(whichq, l);
   1285 #endif
   1286 
   1287 #if defined(DIAGNOSTIC)
   1288 	if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
   1289 		/* Shouldn't happen - interrupts disabled. */
   1290 		panic("remrunqueue: bit %d not set", whichq);
   1291 	}
   1292 #endif
   1293 	prev = l->l_back;
   1294 	l->l_back = NULL;
   1295 	next = l->l_forw;
   1296 	prev->l_forw = next;
   1297 	next->l_back = prev;
   1298 	if (prev == next)
   1299 		sched_whichqs &= ~RQMASK(whichq);
   1300 #ifdef RQDEBUG
   1301 	checkrunqueue(whichq, NULL);
   1302 #endif
   1303 }
   1304 
   1305 #undef RQMASK
   1306 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1307