Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.173
      1 /*	$NetBSD: kern_synch.c,v 1.173 2006/11/03 20:46:00 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  * This code is derived from software contributed to The NetBSD Foundation
     11  * by Charles M. Hannum.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *	This product includes software developed by the NetBSD
     24  *	Foundation, Inc. and its contributors.
     25  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26  *    contributors may be used to endorse or promote products derived
     27  *    from this software without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39  * POSSIBILITY OF SUCH DAMAGE.
     40  */
     41 
     42 /*-
     43  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     44  *	The Regents of the University of California.  All rights reserved.
     45  * (c) UNIX System Laboratories, Inc.
     46  * All or some portions of this file are derived from material licensed
     47  * to the University of California by American Telephone and Telegraph
     48  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49  * the permission of UNIX System Laboratories, Inc.
     50  *
     51  * Redistribution and use in source and binary forms, with or without
     52  * modification, are permitted provided that the following conditions
     53  * are met:
     54  * 1. Redistributions of source code must retain the above copyright
     55  *    notice, this list of conditions and the following disclaimer.
     56  * 2. Redistributions in binary form must reproduce the above copyright
     57  *    notice, this list of conditions and the following disclaimer in the
     58  *    documentation and/or other materials provided with the distribution.
     59  * 3. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     76  */
     77 
     78 #include <sys/cdefs.h>
     79 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.173 2006/11/03 20:46:00 ad Exp $");
     80 
     81 #include "opt_ddb.h"
     82 #include "opt_ktrace.h"
     83 #include "opt_kstack.h"
     84 #include "opt_lockdebug.h"
     85 #include "opt_multiprocessor.h"
     86 #include "opt_perfctrs.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/proc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/buf.h>
     94 #if defined(PERFCTRS)
     95 #include <sys/pmc.h>
     96 #endif
     97 #include <sys/signalvar.h>
     98 #include <sys/resourcevar.h>
     99 #include <sys/sched.h>
    100 #include <sys/sa.h>
    101 #include <sys/savar.h>
    102 #include <sys/kauth.h>
    103 
    104 #include <uvm/uvm_extern.h>
    105 
    106 #ifdef KTRACE
    107 #include <sys/ktrace.h>
    108 #endif
    109 
    110 #include <machine/cpu.h>
    111 
    112 int	lbolt;			/* once a second sleep address */
    113 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    114 
    115 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    116 #define	XXX_SCHED_LOCK		simple_lock(&sched_lock)
    117 #define	XXX_SCHED_UNLOCK	simple_unlock(&sched_lock)
    118 #else
    119 #define	XXX_SCHED_LOCK		/* nothing */
    120 #define	XXX_SCHED_UNLOCK	/* nothing */
    121 #endif
    122 
    123 /*
    124  * Sleep queues.
    125  *
    126  * We're only looking at 7 bits of the address; everything is
    127  * aligned to 4, lots of things are aligned to greater powers
    128  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    129  */
    130 #define	SLPQUE_TABLESIZE	128
    131 #define	SLPQUE_LOOKUP(x)	(((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
    132 
    133 #define	SLPQUE(ident)	(&sched_slpque[SLPQUE_LOOKUP(ident)])
    134 
    135 /*
    136  * The global scheduler state.
    137  */
    138 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    139 volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    140 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    141 
    142 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    143 
    144 void schedcpu(void *);
    145 void updatepri(struct lwp *);
    146 void endtsleep(void *);
    147 
    148 inline void sa_awaken(struct lwp *);
    149 inline void awaken(struct lwp *);
    150 
    151 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    152 static unsigned int schedcpu_ticks;
    153 
    154 
    155 /*
    156  * Force switch among equal priority processes every 100ms.
    157  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    158  */
    159 /* ARGSUSED */
    160 void
    161 roundrobin(struct cpu_info *ci)
    162 {
    163 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    164 
    165 	spc->spc_rrticks = rrticks;
    166 
    167 	if (curlwp != NULL) {
    168 		if (spc->spc_flags & SPCF_SEENRR) {
    169 			/*
    170 			 * The process has already been through a roundrobin
    171 			 * without switching and may be hogging the CPU.
    172 			 * Indicate that the process should yield.
    173 			 */
    174 			spc->spc_flags |= SPCF_SHOULDYIELD;
    175 		} else
    176 			spc->spc_flags |= SPCF_SEENRR;
    177 	}
    178 	need_resched(curcpu());
    179 }
    180 
    181 #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    182 #define	NICE_WEIGHT 2			/* priorities per nice level */
    183 
    184 #define	ESTCPU_SHIFT	11
    185 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    186 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    187 
    188 /*
    189  * Constants for digital decay and forget:
    190  *	90% of (p_estcpu) usage in 5 * loadav time
    191  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    192  *          Note that, as ps(1) mentions, this can let percentages
    193  *          total over 100% (I've seen 137.9% for 3 processes).
    194  *
    195  * Note that hardclock updates p_estcpu and p_cpticks independently.
    196  *
    197  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    198  * That is, the system wants to compute a value of decay such
    199  * that the following for loop:
    200  * 	for (i = 0; i < (5 * loadavg); i++)
    201  * 		p_estcpu *= decay;
    202  * will compute
    203  * 	p_estcpu *= 0.1;
    204  * for all values of loadavg:
    205  *
    206  * Mathematically this loop can be expressed by saying:
    207  * 	decay ** (5 * loadavg) ~= .1
    208  *
    209  * The system computes decay as:
    210  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    211  *
    212  * We wish to prove that the system's computation of decay
    213  * will always fulfill the equation:
    214  * 	decay ** (5 * loadavg) ~= .1
    215  *
    216  * If we compute b as:
    217  * 	b = 2 * loadavg
    218  * then
    219  * 	decay = b / (b + 1)
    220  *
    221  * We now need to prove two things:
    222  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    223  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    224  *
    225  * Facts:
    226  *         For x close to zero, exp(x) =~ 1 + x, since
    227  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    228  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    229  *         For x close to zero, ln(1+x) =~ x, since
    230  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    231  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    232  *         ln(.1) =~ -2.30
    233  *
    234  * Proof of (1):
    235  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    236  *	solving for factor,
    237  *      ln(factor) =~ (-2.30/5*loadav), or
    238  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    239  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    240  *
    241  * Proof of (2):
    242  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    243  *	solving for power,
    244  *      power*ln(b/(b+1)) =~ -2.30, or
    245  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    246  *
    247  * Actual power values for the implemented algorithm are as follows:
    248  *      loadav: 1       2       3       4
    249  *      power:  5.68    10.32   14.94   19.55
    250  */
    251 
    252 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    253 #define	loadfactor(loadav)	(2 * (loadav))
    254 
    255 static fixpt_t
    256 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    257 {
    258 
    259 	if (estcpu == 0) {
    260 		return 0;
    261 	}
    262 
    263 #if !defined(_LP64)
    264 	/* avoid 64bit arithmetics. */
    265 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    266 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    267 		return estcpu * loadfac / (loadfac + FSCALE);
    268 	}
    269 #endif /* !defined(_LP64) */
    270 
    271 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    272 }
    273 
    274 /*
    275  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    276  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    277  * less than (1 << ESTCPU_SHIFT).
    278  *
    279  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    280  */
    281 static fixpt_t
    282 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    283 {
    284 
    285 	if ((n << FSHIFT) >= 7 * loadfac) {
    286 		return 0;
    287 	}
    288 
    289 	while (estcpu != 0 && n > 1) {
    290 		estcpu = decay_cpu(loadfac, estcpu);
    291 		n--;
    292 	}
    293 
    294 	return estcpu;
    295 }
    296 
    297 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    298 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    299 
    300 /*
    301  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    302  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    303  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    304  *
    305  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    306  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    307  *
    308  * If you dont want to bother with the faster/more-accurate formula, you
    309  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    310  * (more general) method of calculating the %age of CPU used by a process.
    311  */
    312 #define	CCPU_SHIFT	11
    313 
    314 /*
    315  * Recompute process priorities, every hz ticks.
    316  */
    317 /* ARGSUSED */
    318 void
    319 schedcpu(void *arg)
    320 {
    321 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    322 	struct lwp *l;
    323 	struct proc *p;
    324 	int s, minslp;
    325 	int clkhz;
    326 
    327 	schedcpu_ticks++;
    328 
    329 	proclist_lock_read();
    330 	PROCLIST_FOREACH(p, &allproc) {
    331 		/*
    332 		 * Increment time in/out of memory and sleep time
    333 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    334 		 * (remember them?) overflow takes 45 days.
    335 		 */
    336 		minslp = 2;
    337 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    338 			l->l_swtime++;
    339 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    340 			    l->l_stat == LSSUSPENDED) {
    341 				l->l_slptime++;
    342 				minslp = min(minslp, l->l_slptime);
    343 			} else
    344 				minslp = 0;
    345 		}
    346 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    347 		/*
    348 		 * If the process has slept the entire second,
    349 		 * stop recalculating its priority until it wakes up.
    350 		 */
    351 		if (minslp > 1)
    352 			continue;
    353 		s = splstatclock();	/* prevent state changes */
    354 		/*
    355 		 * p_pctcpu is only for ps.
    356 		 */
    357 		clkhz = stathz != 0 ? stathz : hz;
    358 #if	(FSHIFT >= CCPU_SHIFT)
    359 		p->p_pctcpu += (clkhz == 100)?
    360 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    361                 	100 * (((fixpt_t) p->p_cpticks)
    362 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    363 #else
    364 		p->p_pctcpu += ((FSCALE - ccpu) *
    365 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    366 #endif
    367 		p->p_cpticks = 0;
    368 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    369 		splx(s);	/* Done with the process CPU ticks update */
    370 		SCHED_LOCK(s);
    371 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    372 			if (l->l_slptime > 1)
    373 				continue;
    374 			resetpriority(l);
    375 			if (l->l_priority >= PUSER) {
    376 				if (l->l_stat == LSRUN &&
    377 				    (l->l_flag & L_INMEM) &&
    378 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    379 					remrunqueue(l);
    380 					l->l_priority = l->l_usrpri;
    381 					setrunqueue(l);
    382 				} else
    383 					l->l_priority = l->l_usrpri;
    384 			}
    385 		}
    386 		SCHED_UNLOCK(s);
    387 	}
    388 	proclist_unlock_read();
    389 	uvm_meter();
    390 	wakeup((caddr_t)&lbolt);
    391 	callout_schedule(&schedcpu_ch, hz);
    392 }
    393 
    394 /*
    395  * Recalculate the priority of a process after it has slept for a while.
    396  */
    397 void
    398 updatepri(struct lwp *l)
    399 {
    400 	struct proc *p = l->l_proc;
    401 	fixpt_t loadfac;
    402 
    403 	SCHED_ASSERT_LOCKED();
    404 	KASSERT(l->l_slptime > 1);
    405 
    406 	loadfac = loadfactor(averunnable.ldavg[0]);
    407 
    408 	l->l_slptime--; /* the first time was done in schedcpu */
    409 	/* XXX NJWLWP */
    410 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    411 	resetpriority(l);
    412 }
    413 
    414 /*
    415  * During autoconfiguration or after a panic, a sleep will simply
    416  * lower the priority briefly to allow interrupts, then return.
    417  * The priority to be used (safepri) is machine-dependent, thus this
    418  * value is initialized and maintained in the machine-dependent layers.
    419  * This priority will typically be 0, or the lowest priority
    420  * that is safe for use on the interrupt stack; it can be made
    421  * higher to block network software interrupts after panics.
    422  */
    423 int safepri;
    424 
    425 /*
    426  * General sleep call.  Suspends the current process until a wakeup is
    427  * performed on the specified identifier.  The process will then be made
    428  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    429  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    430  * before and after sleeping, else signals are not checked.  Returns 0 if
    431  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    432  * signal needs to be delivered, ERESTART is returned if the current system
    433  * call should be restarted if possible, and EINTR is returned if the system
    434  * call should be interrupted by the signal (return EINTR).
    435  *
    436  * The interlock is held until the scheduler_slock is acquired.  The
    437  * interlock will be locked before returning back to the caller
    438  * unless the PNORELOCK flag is specified, in which case the
    439  * interlock will always be unlocked upon return.
    440  */
    441 int
    442 ltsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
    443     volatile struct simplelock *interlock)
    444 {
    445 	struct lwp *l = curlwp;
    446 	struct proc *p = l ? l->l_proc : NULL;
    447 	struct slpque *qp;
    448 	struct sadata_upcall *sau;
    449 	int sig, s;
    450 	int catch = priority & PCATCH;
    451 	int relock = (priority & PNORELOCK) == 0;
    452 	int exiterr = (priority & PNOEXITERR) == 0;
    453 
    454 	/*
    455 	 * XXXSMP
    456 	 * This is probably bogus.  Figure out what the right
    457 	 * thing to do here really is.
    458 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    459 	 * in the shutdown case is disgusting but partly necessary given
    460 	 * how shutdown (barely) works.
    461 	 */
    462 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    463 		/*
    464 		 * After a panic, or during autoconfiguration,
    465 		 * just give interrupts a chance, then just return;
    466 		 * don't run any other procs or panic below,
    467 		 * in case this is the idle process and already asleep.
    468 		 */
    469 		s = splhigh();
    470 		splx(safepri);
    471 		splx(s);
    472 		if (interlock != NULL && relock == 0)
    473 			simple_unlock(interlock);
    474 		return (0);
    475 	}
    476 
    477 	KASSERT(p != NULL);
    478 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    479 
    480 #ifdef KTRACE
    481 	if (KTRPOINT(p, KTR_CSW))
    482 		ktrcsw(l, 1, 0);
    483 #endif
    484 
    485 	/*
    486 	 * XXX We need to allocate the sadata_upcall structure here,
    487 	 * XXX since we can't sleep while waiting for memory inside
    488 	 * XXX sa_upcall().  It would be nice if we could safely
    489 	 * XXX allocate the sadata_upcall structure on the stack, here.
    490 	 */
    491 	if (l->l_flag & L_SA) {
    492 		sau = sadata_upcall_alloc(0);
    493 	} else {
    494 		sau = NULL;
    495 	}
    496 
    497 	SCHED_LOCK(s);
    498 
    499 #ifdef DIAGNOSTIC
    500 	if (ident == NULL)
    501 		panic("ltsleep: ident == NULL");
    502 	if (l->l_stat != LSONPROC)
    503 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    504 	if (l->l_back != NULL)
    505 		panic("ltsleep: p_back != NULL");
    506 #endif
    507 
    508 	l->l_wchan = ident;
    509 	l->l_wmesg = wmesg;
    510 	l->l_slptime = 0;
    511 	l->l_priority = priority & PRIMASK;
    512 
    513 	qp = SLPQUE(ident);
    514 	if (qp->sq_head == 0)
    515 		qp->sq_head = l;
    516 	else {
    517 		*qp->sq_tailp = l;
    518 	}
    519 	*(qp->sq_tailp = &l->l_forw) = 0;
    520 
    521 	if (timo)
    522 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    523 
    524 	/*
    525 	 * We can now release the interlock; the scheduler_slock
    526 	 * is held, so a thread can't get in to do wakeup() before
    527 	 * we do the switch.
    528 	 *
    529 	 * XXX We leave the code block here, after inserting ourselves
    530 	 * on the sleep queue, because we might want a more clever
    531 	 * data structure for the sleep queues at some point.
    532 	 */
    533 	if (interlock != NULL)
    534 		simple_unlock(interlock);
    535 
    536 	/*
    537 	 * We put ourselves on the sleep queue and start our timeout
    538 	 * before calling CURSIG, as we could stop there, and a wakeup
    539 	 * or a SIGCONT (or both) could occur while we were stopped.
    540 	 * A SIGCONT would cause us to be marked as SSLEEP
    541 	 * without resuming us, thus we must be ready for sleep
    542 	 * when CURSIG is called.  If the wakeup happens while we're
    543 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    544 	 */
    545 	if (catch) {
    546 		XXX_SCHED_UNLOCK;
    547 		l->l_flag |= L_SINTR;
    548 		if (((sig = CURSIG(l)) != 0) ||
    549 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    550 			XXX_SCHED_LOCK;
    551 			if (l->l_wchan != NULL)
    552 				unsleep(l);
    553 			l->l_stat = LSONPROC;
    554 			SCHED_UNLOCK(s);
    555 			goto resume;
    556 		}
    557 		XXX_SCHED_LOCK;
    558 		if (l->l_wchan == NULL) {
    559 			SCHED_UNLOCK(s);
    560 			catch = 0;
    561 			goto resume;
    562 		}
    563 	} else
    564 		sig = 0;
    565 	l->l_stat = LSSLEEP;
    566 	p->p_nrlwps--;
    567 	p->p_stats->p_ru.ru_nvcsw++;
    568 	SCHED_ASSERT_LOCKED();
    569 	if (l->l_flag & L_SA)
    570 		sa_switch(l, sau, SA_UPCALL_BLOCKED);
    571 	else
    572 		mi_switch(l, NULL);
    573 
    574 #ifdef KERN_SYNCH_BPENDTSLEEP_LABEL
    575 	/*
    576 	 * XXX
    577 	 * gcc4 optimizer will duplicate this asm statement on some arch
    578 	 * and it will cause a multiple symbol definition error in gas.
    579 	 * the kernel Makefile is setup to use -fno-reorder-blocks if
    580 	 * this option is set.
    581 	 */
    582 	/* handy breakpoint location after process "wakes" */
    583 	__asm(".globl bpendtsleep\nbpendtsleep:");
    584 #endif
    585 	/*
    586 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    587 	 * either setrunnable() or awaken().
    588 	 */
    589 
    590 	SCHED_ASSERT_UNLOCKED();
    591 	splx(s);
    592 
    593  resume:
    594 	KDASSERT(l->l_cpu != NULL);
    595 	KDASSERT(l->l_cpu == curcpu());
    596 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    597 
    598 	l->l_flag &= ~L_SINTR;
    599 	if (l->l_flag & L_TIMEOUT) {
    600 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    601 		if (sig == 0) {
    602 #ifdef KTRACE
    603 			if (KTRPOINT(p, KTR_CSW))
    604 				ktrcsw(l, 0, 0);
    605 #endif
    606 			if (relock && interlock != NULL)
    607 				simple_lock(interlock);
    608 			return (EWOULDBLOCK);
    609 		}
    610 	} else if (timo)
    611 		callout_stop(&l->l_tsleep_ch);
    612 
    613 	if (catch) {
    614 		const int cancelled = l->l_flag & L_CANCELLED;
    615 		l->l_flag &= ~L_CANCELLED;
    616 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    617 #ifdef KTRACE
    618 			if (KTRPOINT(p, KTR_CSW))
    619 				ktrcsw(l, 0, 0);
    620 #endif
    621 			if (relock && interlock != NULL)
    622 				simple_lock(interlock);
    623 			/*
    624 			 * If this sleep was canceled, don't let the syscall
    625 			 * restart.
    626 			 */
    627 			if (cancelled ||
    628 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    629 				return (EINTR);
    630 			return (ERESTART);
    631 		}
    632 	}
    633 
    634 #ifdef KTRACE
    635 	if (KTRPOINT(p, KTR_CSW))
    636 		ktrcsw(l, 0, 0);
    637 #endif
    638 	if (relock && interlock != NULL)
    639 		simple_lock(interlock);
    640 
    641 	/* XXXNJW this is very much a kluge.
    642 	 * revisit. a better way of preventing looping/hanging syscalls like
    643 	 * wait4() and _lwp_wait() from wedging an exiting process
    644 	 * would be preferred.
    645 	 */
    646 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    647 		return (EINTR);
    648 	return (0);
    649 }
    650 
    651 /*
    652  * Implement timeout for tsleep.
    653  * If process hasn't been awakened (wchan non-zero),
    654  * set timeout flag and undo the sleep.  If proc
    655  * is stopped, just unsleep so it will remain stopped.
    656  */
    657 void
    658 endtsleep(void *arg)
    659 {
    660 	struct lwp *l;
    661 	int s;
    662 
    663 	l = (struct lwp *)arg;
    664 	SCHED_LOCK(s);
    665 	if (l->l_wchan) {
    666 		if (l->l_stat == LSSLEEP)
    667 			setrunnable(l);
    668 		else
    669 			unsleep(l);
    670 		l->l_flag |= L_TIMEOUT;
    671 	}
    672 	SCHED_UNLOCK(s);
    673 }
    674 
    675 /*
    676  * Remove a process from its wait queue
    677  */
    678 void
    679 unsleep(struct lwp *l)
    680 {
    681 	struct slpque *qp;
    682 	struct lwp **hp;
    683 
    684 	SCHED_ASSERT_LOCKED();
    685 
    686 	if (l->l_wchan) {
    687 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    688 		while (*hp != l)
    689 			hp = &(*hp)->l_forw;
    690 		*hp = l->l_forw;
    691 		if (qp->sq_tailp == &l->l_forw)
    692 			qp->sq_tailp = hp;
    693 		l->l_wchan = 0;
    694 	}
    695 }
    696 
    697 inline void
    698 sa_awaken(struct lwp *l)
    699 {
    700 
    701 	SCHED_ASSERT_LOCKED();
    702 
    703 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    704 		l->l_flag &= ~L_SA_IDLE;
    705 }
    706 
    707 /*
    708  * Optimized-for-wakeup() version of setrunnable().
    709  */
    710 inline void
    711 awaken(struct lwp *l)
    712 {
    713 
    714 	SCHED_ASSERT_LOCKED();
    715 
    716 	if (l->l_proc->p_sa)
    717 		sa_awaken(l);
    718 
    719 	if (l->l_slptime > 1)
    720 		updatepri(l);
    721 	l->l_slptime = 0;
    722 	l->l_stat = LSRUN;
    723 	l->l_proc->p_nrlwps++;
    724 	/*
    725 	 * Since curpriority is a user priority, p->p_priority
    726 	 * is always better than curpriority on the last CPU on
    727 	 * which it ran.
    728 	 *
    729 	 * XXXSMP See affinity comment in resched_proc().
    730 	 */
    731 	if (l->l_flag & L_INMEM) {
    732 		setrunqueue(l);
    733 		KASSERT(l->l_cpu != NULL);
    734 		need_resched(l->l_cpu);
    735 	} else
    736 		sched_wakeup(&proc0);
    737 }
    738 
    739 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    740 void
    741 sched_unlock_idle(void)
    742 {
    743 
    744 	simple_unlock(&sched_lock);
    745 }
    746 
    747 void
    748 sched_lock_idle(void)
    749 {
    750 
    751 	simple_lock(&sched_lock);
    752 }
    753 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    754 
    755 /*
    756  * Make all processes sleeping on the specified identifier runnable.
    757  */
    758 
    759 void
    760 wakeup(volatile const void *ident)
    761 {
    762 	int s;
    763 
    764 	SCHED_ASSERT_UNLOCKED();
    765 
    766 	SCHED_LOCK(s);
    767 	sched_wakeup(ident);
    768 	SCHED_UNLOCK(s);
    769 }
    770 
    771 void
    772 sched_wakeup(volatile const void *ident)
    773 {
    774 	struct slpque *qp;
    775 	struct lwp *l, **q;
    776 
    777 	SCHED_ASSERT_LOCKED();
    778 
    779 	qp = SLPQUE(ident);
    780  restart:
    781 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    782 #ifdef DIAGNOSTIC
    783 		if (l->l_back || (l->l_stat != LSSLEEP &&
    784 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    785 			panic("wakeup");
    786 #endif
    787 		if (l->l_wchan == ident) {
    788 			l->l_wchan = 0;
    789 			*q = l->l_forw;
    790 			if (qp->sq_tailp == &l->l_forw)
    791 				qp->sq_tailp = q;
    792 			if (l->l_stat == LSSLEEP) {
    793 				awaken(l);
    794 				goto restart;
    795 			}
    796 		} else
    797 			q = &l->l_forw;
    798 	}
    799 }
    800 
    801 /*
    802  * Make the highest priority process first in line on the specified
    803  * identifier runnable.
    804  */
    805 void
    806 wakeup_one(volatile const void *ident)
    807 {
    808 	struct slpque *qp;
    809 	struct lwp *l, **q;
    810 	struct lwp *best_sleepp, **best_sleepq;
    811 	struct lwp *best_stopp, **best_stopq;
    812 	int s;
    813 
    814 	best_sleepp = best_stopp = NULL;
    815 	best_sleepq = best_stopq = NULL;
    816 
    817 	SCHED_LOCK(s);
    818 
    819 	qp = SLPQUE(ident);
    820 
    821 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    822 #ifdef DIAGNOSTIC
    823 		if (l->l_back || (l->l_stat != LSSLEEP &&
    824 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    825 			panic("wakeup_one");
    826 #endif
    827 		if (l->l_wchan == ident) {
    828 			if (l->l_stat == LSSLEEP) {
    829 				if (best_sleepp == NULL ||
    830 				    l->l_priority < best_sleepp->l_priority) {
    831 					best_sleepp = l;
    832 					best_sleepq = q;
    833 				}
    834 			} else {
    835 				if (best_stopp == NULL ||
    836 				    l->l_priority < best_stopp->l_priority) {
    837 				    	best_stopp = l;
    838 					best_stopq = q;
    839 				}
    840 			}
    841 		}
    842 	}
    843 
    844 	/*
    845 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    846 	 * process.
    847 	 */
    848 	if (best_sleepp != NULL) {
    849 		l = best_sleepp;
    850 		q = best_sleepq;
    851 	} else {
    852 		l = best_stopp;
    853 		q = best_stopq;
    854 	}
    855 
    856 	if (l != NULL) {
    857 		l->l_wchan = NULL;
    858 		*q = l->l_forw;
    859 		if (qp->sq_tailp == &l->l_forw)
    860 			qp->sq_tailp = q;
    861 		if (l->l_stat == LSSLEEP)
    862 			awaken(l);
    863 	}
    864 	SCHED_UNLOCK(s);
    865 }
    866 
    867 /*
    868  * General yield call.  Puts the current process back on its run queue and
    869  * performs a voluntary context switch.  Should only be called when the
    870  * current process explicitly requests it (eg sched_yield(2) in compat code).
    871  */
    872 void
    873 yield(void)
    874 {
    875 	struct lwp *l = curlwp;
    876 	int s;
    877 
    878 	SCHED_LOCK(s);
    879 	l->l_priority = l->l_usrpri;
    880 	l->l_stat = LSRUN;
    881 	setrunqueue(l);
    882 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    883 	mi_switch(l, NULL);
    884 	SCHED_ASSERT_UNLOCKED();
    885 	splx(s);
    886 }
    887 
    888 /*
    889  * General preemption call.  Puts the current process back on its run queue
    890  * and performs an involuntary context switch.
    891  * The 'more' ("more work to do") argument is boolean. Returning to userspace
    892  * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
    893  * This will be used to indicate to the SA subsystem that the LWP is
    894  * not yet finished in the kernel.
    895  */
    896 
    897 void
    898 preempt(int more)
    899 {
    900 	struct lwp *l = curlwp;
    901 	int r, s;
    902 
    903 	SCHED_LOCK(s);
    904 	l->l_priority = l->l_usrpri;
    905 	l->l_stat = LSRUN;
    906 	setrunqueue(l);
    907 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    908 	r = mi_switch(l, NULL);
    909 	SCHED_ASSERT_UNLOCKED();
    910 	splx(s);
    911 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    912 		sa_preempt(l);
    913 }
    914 
    915 /*
    916  * The machine independent parts of context switch.
    917  * Must be called at splsched() (no higher!) and with
    918  * the sched_lock held.
    919  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    920  * the next lwp.
    921  *
    922  * Returns 1 if another process was actually run.
    923  */
    924 int
    925 mi_switch(struct lwp *l, struct lwp *newl)
    926 {
    927 	struct schedstate_percpu *spc;
    928 	struct rlimit *rlim;
    929 	long s, u;
    930 	struct timeval tv;
    931 	int hold_count;
    932 	struct proc *p = l->l_proc;
    933 	int retval;
    934 
    935 	SCHED_ASSERT_LOCKED();
    936 
    937 	/*
    938 	 * Release the kernel_lock, as we are about to yield the CPU.
    939 	 * The scheduler lock is still held until cpu_switch()
    940 	 * selects a new process and removes it from the run queue.
    941 	 */
    942 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    943 
    944 	KDASSERT(l->l_cpu != NULL);
    945 	KDASSERT(l->l_cpu == curcpu());
    946 
    947 	spc = &l->l_cpu->ci_schedstate;
    948 
    949 #ifdef LOCKDEBUG
    950 	spinlock_switchcheck();
    951 	simple_lock_switchcheck();
    952 #endif
    953 
    954 	/*
    955 	 * Compute the amount of time during which the current
    956 	 * process was running.
    957 	 */
    958 	microtime(&tv);
    959 	u = p->p_rtime.tv_usec +
    960 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    961 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    962 	if (u < 0) {
    963 		u += 1000000;
    964 		s--;
    965 	} else if (u >= 1000000) {
    966 		u -= 1000000;
    967 		s++;
    968 	}
    969 	p->p_rtime.tv_usec = u;
    970 	p->p_rtime.tv_sec = s;
    971 
    972 	/*
    973 	 * Process is about to yield the CPU; clear the appropriate
    974 	 * scheduling flags.
    975 	 */
    976 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    977 
    978 #ifdef KSTACK_CHECK_MAGIC
    979 	kstack_check_magic(l);
    980 #endif
    981 
    982 	/*
    983 	 * If we are using h/w performance counters, save context.
    984 	 */
    985 #if PERFCTRS
    986 	if (PMC_ENABLED(p)) {
    987 		pmc_save_context(p);
    988 	}
    989 #endif
    990 
    991 	/*
    992 	 * Switch to the new current process.  When we
    993 	 * run again, we'll return back here.
    994 	 */
    995 	uvmexp.swtch++;
    996 	if (newl == NULL) {
    997 		retval = cpu_switch(l, NULL);
    998 	} else {
    999 		remrunqueue(newl);
   1000 		cpu_switchto(l, newl);
   1001 		retval = 0;
   1002 	}
   1003 
   1004 	/*
   1005 	 * If we are using h/w performance counters, restore context.
   1006 	 */
   1007 #if PERFCTRS
   1008 	if (PMC_ENABLED(p)) {
   1009 		pmc_restore_context(p);
   1010 	}
   1011 #endif
   1012 
   1013 	/*
   1014 	 * Make sure that MD code released the scheduler lock before
   1015 	 * resuming us.
   1016 	 */
   1017 	SCHED_ASSERT_UNLOCKED();
   1018 
   1019 	/*
   1020 	 * We're running again; record our new start time.  We might
   1021 	 * be running on a new CPU now, so don't use the cache'd
   1022 	 * schedstate_percpu pointer.
   1023 	 */
   1024 	KDASSERT(l->l_cpu != NULL);
   1025 	KDASSERT(l->l_cpu == curcpu());
   1026 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
   1027 
   1028 	/*
   1029 	 * Reacquire the kernel_lock now.  We do this after we've
   1030 	 * released the scheduler lock to avoid deadlock, and before
   1031 	 * we reacquire the interlock.
   1032 	 */
   1033 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
   1034 
   1035 	/*
   1036 	 * Check if the process exceeds its CPU resource allocation.
   1037 	 * If over max, kill it.  In any case, if it has run for more
   1038 	 * than 10 minutes, reduce priority to give others a chance.
   1039 	 */
   1040 	rlim = &p->p_rlimit[RLIMIT_CPU];
   1041 	if (s >= rlim->rlim_cur) {
   1042 		if (s >= rlim->rlim_max) {
   1043 			psignal(p, SIGKILL);
   1044 		} else {
   1045 			psignal(p, SIGXCPU);
   1046 			if (rlim->rlim_cur < rlim->rlim_max)
   1047 				rlim->rlim_cur += 5;
   1048 		}
   1049 	}
   1050 	if (autonicetime && s > autonicetime &&
   1051 	    kauth_cred_geteuid(p->p_cred) && p->p_nice == NZERO) {
   1052 		SCHED_LOCK(s);
   1053 		p->p_nice = autoniceval + NZERO;
   1054 		resetpriority(l);
   1055 		SCHED_UNLOCK(s);
   1056 	}
   1057 
   1058 	return retval;
   1059 }
   1060 
   1061 /*
   1062  * Initialize the (doubly-linked) run queues
   1063  * to be empty.
   1064  */
   1065 void
   1066 rqinit()
   1067 {
   1068 	int i;
   1069 
   1070 	for (i = 0; i < RUNQUE_NQS; i++)
   1071 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
   1072 		    (struct lwp *)&sched_qs[i];
   1073 }
   1074 
   1075 static inline void
   1076 resched_proc(struct lwp *l, u_char pri)
   1077 {
   1078 	struct cpu_info *ci;
   1079 
   1080 	/*
   1081 	 * XXXSMP
   1082 	 * Since l->l_cpu persists across a context switch,
   1083 	 * this gives us *very weak* processor affinity, in
   1084 	 * that we notify the CPU on which the process last
   1085 	 * ran that it should try to switch.
   1086 	 *
   1087 	 * This does not guarantee that the process will run on
   1088 	 * that processor next, because another processor might
   1089 	 * grab it the next time it performs a context switch.
   1090 	 *
   1091 	 * This also does not handle the case where its last
   1092 	 * CPU is running a higher-priority process, but every
   1093 	 * other CPU is running a lower-priority process.  There
   1094 	 * are ways to handle this situation, but they're not
   1095 	 * currently very pretty, and we also need to weigh the
   1096 	 * cost of moving a process from one CPU to another.
   1097 	 *
   1098 	 * XXXSMP
   1099 	 * There is also the issue of locking the other CPU's
   1100 	 * sched state, which we currently do not do.
   1101 	 */
   1102 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1103 	if (pri < ci->ci_schedstate.spc_curpriority)
   1104 		need_resched(ci);
   1105 }
   1106 
   1107 /*
   1108  * Change process state to be runnable,
   1109  * placing it on the run queue if it is in memory,
   1110  * and awakening the swapper if it isn't in memory.
   1111  */
   1112 void
   1113 setrunnable(struct lwp *l)
   1114 {
   1115 	struct proc *p = l->l_proc;
   1116 
   1117 	SCHED_ASSERT_LOCKED();
   1118 
   1119 	switch (l->l_stat) {
   1120 	case 0:
   1121 	case LSRUN:
   1122 	case LSONPROC:
   1123 	case LSZOMB:
   1124 	case LSDEAD:
   1125 	default:
   1126 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1127 	case LSSTOP:
   1128 		/*
   1129 		 * If we're being traced (possibly because someone attached us
   1130 		 * while we were stopped), check for a signal from the debugger.
   1131 		 */
   1132 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1133 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1134 			CHECKSIGS(p);
   1135 		}
   1136 	case LSSLEEP:
   1137 		unsleep(l);		/* e.g. when sending signals */
   1138 		break;
   1139 
   1140 	case LSIDL:
   1141 		break;
   1142 	case LSSUSPENDED:
   1143 		break;
   1144 	}
   1145 
   1146 	if (l->l_proc->p_sa)
   1147 		sa_awaken(l);
   1148 
   1149 	l->l_stat = LSRUN;
   1150 	p->p_nrlwps++;
   1151 
   1152 	if (l->l_flag & L_INMEM)
   1153 		setrunqueue(l);
   1154 
   1155 	if (l->l_slptime > 1)
   1156 		updatepri(l);
   1157 	l->l_slptime = 0;
   1158 	if ((l->l_flag & L_INMEM) == 0)
   1159 		sched_wakeup((caddr_t)&proc0);
   1160 	else
   1161 		resched_proc(l, l->l_priority);
   1162 }
   1163 
   1164 /*
   1165  * Compute the priority of a process when running in user mode.
   1166  * Arrange to reschedule if the resulting priority is better
   1167  * than that of the current process.
   1168  */
   1169 void
   1170 resetpriority(struct lwp *l)
   1171 {
   1172 	unsigned int newpriority;
   1173 	struct proc *p = l->l_proc;
   1174 
   1175 	SCHED_ASSERT_LOCKED();
   1176 
   1177 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
   1178 			NICE_WEIGHT * (p->p_nice - NZERO);
   1179 	newpriority = min(newpriority, MAXPRI);
   1180 	l->l_usrpri = newpriority;
   1181 	resched_proc(l, l->l_usrpri);
   1182 }
   1183 
   1184 /*
   1185  * Recompute priority for all LWPs in a process.
   1186  */
   1187 void
   1188 resetprocpriority(struct proc *p)
   1189 {
   1190 	struct lwp *l;
   1191 
   1192 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1193 	    resetpriority(l);
   1194 }
   1195 
   1196 /*
   1197  * We adjust the priority of the current process.  The priority of a process
   1198  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
   1199  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1200  * will compute a different value each time p_estcpu increases. This can
   1201  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1202  * queue will not change.  The CPU usage estimator ramps up quite quickly
   1203  * when the process is running (linearly), and decays away exponentially, at
   1204  * a rate which is proportionally slower when the system is busy.  The basic
   1205  * principle is that the system will 90% forget that the process used a lot
   1206  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1207  * processes which haven't run much recently, and to round-robin among other
   1208  * processes.
   1209  */
   1210 
   1211 void
   1212 schedclock(struct lwp *l)
   1213 {
   1214 	struct proc *p = l->l_proc;
   1215 	int s;
   1216 
   1217 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
   1218 	SCHED_LOCK(s);
   1219 	resetpriority(l);
   1220 	SCHED_UNLOCK(s);
   1221 
   1222 	if (l->l_priority >= PUSER)
   1223 		l->l_priority = l->l_usrpri;
   1224 }
   1225 
   1226 void
   1227 suspendsched()
   1228 {
   1229 	struct lwp *l;
   1230 	int s;
   1231 
   1232 	/*
   1233 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1234 	 * LSSUSPENDED.
   1235 	 */
   1236 	proclist_lock_read();
   1237 	SCHED_LOCK(s);
   1238 	LIST_FOREACH(l, &alllwp, l_list) {
   1239 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1240 			continue;
   1241 
   1242 		switch (l->l_stat) {
   1243 		case LSRUN:
   1244 			l->l_proc->p_nrlwps--;
   1245 			if ((l->l_flag & L_INMEM) != 0)
   1246 				remrunqueue(l);
   1247 			/* FALLTHROUGH */
   1248 		case LSSLEEP:
   1249 			l->l_stat = LSSUSPENDED;
   1250 			break;
   1251 		case LSONPROC:
   1252 			/*
   1253 			 * XXX SMP: we need to deal with processes on
   1254 			 * others CPU !
   1255 			 */
   1256 			break;
   1257 		default:
   1258 			break;
   1259 		}
   1260 	}
   1261 	SCHED_UNLOCK(s);
   1262 	proclist_unlock_read();
   1263 }
   1264 
   1265 /*
   1266  * scheduler_fork_hook:
   1267  *
   1268  *	Inherit the parent's scheduler history.
   1269  */
   1270 void
   1271 scheduler_fork_hook(struct proc *parent, struct proc *child)
   1272 {
   1273 
   1274 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1275 	child->p_forktime = schedcpu_ticks;
   1276 }
   1277 
   1278 /*
   1279  * scheduler_wait_hook:
   1280  *
   1281  *	Chargeback parents for the sins of their children.
   1282  */
   1283 void
   1284 scheduler_wait_hook(struct proc *parent, struct proc *child)
   1285 {
   1286 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1287 	fixpt_t estcpu;
   1288 
   1289 	/* XXX Only if parent != init?? */
   1290 
   1291 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1292 	    schedcpu_ticks - child->p_forktime);
   1293 	if (child->p_estcpu > estcpu) {
   1294 		parent->p_estcpu =
   1295 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1296 	}
   1297 }
   1298 
   1299 /*
   1300  * Low-level routines to access the run queue.  Optimised assembler
   1301  * routines can override these.
   1302  */
   1303 
   1304 #ifndef __HAVE_MD_RUNQUEUE
   1305 
   1306 /*
   1307  * On some architectures, it's faster to use a MSB ordering for the priorites
   1308  * than the traditional LSB ordering.
   1309  */
   1310 #ifdef __HAVE_BIGENDIAN_BITOPS
   1311 #define	RQMASK(n) (0x80000000 >> (n))
   1312 #else
   1313 #define	RQMASK(n) (0x00000001 << (n))
   1314 #endif
   1315 
   1316 /*
   1317  * The primitives that manipulate the run queues.  whichqs tells which
   1318  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1319  * into queues, remrunqueue removes them from queues.  The running process is
   1320  * on no queue, other processes are on a queue related to p->p_priority,
   1321  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1322  * available queues.
   1323  */
   1324 
   1325 #ifdef RQDEBUG
   1326 static void
   1327 checkrunqueue(int whichq, struct lwp *l)
   1328 {
   1329 	const struct prochd * const rq = &sched_qs[whichq];
   1330 	struct lwp *l2;
   1331 	int found = 0;
   1332 	int die = 0;
   1333 	int empty = 1;
   1334 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
   1335 		if (l2->l_stat != LSRUN) {
   1336 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1337 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1338 		}
   1339 		if (l2->l_back->l_forw != l2) {
   1340 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1341 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1342 			    l2->l_back->l_forw);
   1343 			die = 1;
   1344 		}
   1345 		if (l2->l_forw->l_back != l2) {
   1346 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1347 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1348 			    l2->l_forw->l_back);
   1349 			die = 1;
   1350 		}
   1351 		if (l2 == l)
   1352 			found = 1;
   1353 		empty = 0;
   1354 	}
   1355 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1356 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1357 		    whichq, rq);
   1358 		die = 1;
   1359 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1360 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1361 		    "run-queue %p\n", whichq, rq);
   1362 		die = 1;
   1363 	}
   1364 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1365 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1366 		    whichq, l);
   1367 		die = 1;
   1368 	}
   1369 	if (l != NULL && empty) {
   1370 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1371 		    "active lwp %p\n", whichq, rq, l);
   1372 		die = 1;
   1373 	}
   1374 	if (l != NULL && !found) {
   1375 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1376 		    whichq, l, rq);
   1377 		die = 1;
   1378 	}
   1379 	if (die)
   1380 		panic("checkrunqueue: inconsistency found");
   1381 }
   1382 #endif /* RQDEBUG */
   1383 
   1384 void
   1385 setrunqueue(struct lwp *l)
   1386 {
   1387 	struct prochd *rq;
   1388 	struct lwp *prev;
   1389 	const int whichq = l->l_priority / PPQ;
   1390 
   1391 #ifdef RQDEBUG
   1392 	checkrunqueue(whichq, NULL);
   1393 #endif
   1394 #ifdef DIAGNOSTIC
   1395 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1396 		panic("setrunqueue");
   1397 #endif
   1398 	sched_whichqs |= RQMASK(whichq);
   1399 	rq = &sched_qs[whichq];
   1400 	prev = rq->ph_rlink;
   1401 	l->l_forw = (struct lwp *)rq;
   1402 	rq->ph_rlink = l;
   1403 	prev->l_forw = l;
   1404 	l->l_back = prev;
   1405 #ifdef RQDEBUG
   1406 	checkrunqueue(whichq, l);
   1407 #endif
   1408 }
   1409 
   1410 void
   1411 remrunqueue(struct lwp *l)
   1412 {
   1413 	struct lwp *prev, *next;
   1414 	const int whichq = l->l_priority / PPQ;
   1415 #ifdef RQDEBUG
   1416 	checkrunqueue(whichq, l);
   1417 #endif
   1418 #ifdef DIAGNOSTIC
   1419 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1420 		panic("remrunqueue: bit %d not set", whichq);
   1421 #endif
   1422 	prev = l->l_back;
   1423 	l->l_back = NULL;
   1424 	next = l->l_forw;
   1425 	prev->l_forw = next;
   1426 	next->l_back = prev;
   1427 	if (prev == next)
   1428 		sched_whichqs &= ~RQMASK(whichq);
   1429 #ifdef RQDEBUG
   1430 	checkrunqueue(whichq, NULL);
   1431 #endif
   1432 }
   1433 
   1434 #undef RQMASK
   1435 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1436