Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.173.2.1
      1 /*	$NetBSD: kern_synch.c,v 1.173.2.1 2008/09/16 18:49:34 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  * This code is derived from software contributed to The NetBSD Foundation
     11  * by Charles M. Hannum.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *	This product includes software developed by the NetBSD
     24  *	Foundation, Inc. and its contributors.
     25  * 4. Neither the name of The NetBSD Foundation nor the names of its
     26  *    contributors may be used to endorse or promote products derived
     27  *    from this software without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     31  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     32  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     33  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     34  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     37  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     39  * POSSIBILITY OF SUCH DAMAGE.
     40  */
     41 
     42 /*-
     43  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     44  *	The Regents of the University of California.  All rights reserved.
     45  * (c) UNIX System Laboratories, Inc.
     46  * All or some portions of this file are derived from material licensed
     47  * to the University of California by American Telephone and Telegraph
     48  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     49  * the permission of UNIX System Laboratories, Inc.
     50  *
     51  * Redistribution and use in source and binary forms, with or without
     52  * modification, are permitted provided that the following conditions
     53  * are met:
     54  * 1. Redistributions of source code must retain the above copyright
     55  *    notice, this list of conditions and the following disclaimer.
     56  * 2. Redistributions in binary form must reproduce the above copyright
     57  *    notice, this list of conditions and the following disclaimer in the
     58  *    documentation and/or other materials provided with the distribution.
     59  * 3. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     76  */
     77 
     78 #include <sys/cdefs.h>
     79 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.173.2.1 2008/09/16 18:49:34 bouyer Exp $");
     80 
     81 #include "opt_ddb.h"
     82 #include "opt_ktrace.h"
     83 #include "opt_kstack.h"
     84 #include "opt_lockdebug.h"
     85 #include "opt_multiprocessor.h"
     86 #include "opt_perfctrs.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/proc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/buf.h>
     94 #if defined(PERFCTRS)
     95 #include <sys/pmc.h>
     96 #endif
     97 #include <sys/signalvar.h>
     98 #include <sys/resourcevar.h>
     99 #include <sys/sched.h>
    100 #include <sys/sa.h>
    101 #include <sys/savar.h>
    102 #include <sys/kauth.h>
    103 
    104 #include <uvm/uvm_extern.h>
    105 
    106 #ifdef KTRACE
    107 #include <sys/ktrace.h>
    108 #endif
    109 
    110 #include <machine/cpu.h>
    111 
    112 int	lbolt;			/* once a second sleep address */
    113 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    114 
    115 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    116 #define	XXX_SCHED_LOCK		simple_lock(&sched_lock)
    117 #define	XXX_SCHED_UNLOCK	simple_unlock(&sched_lock)
    118 #else
    119 #define	XXX_SCHED_LOCK		/* nothing */
    120 #define	XXX_SCHED_UNLOCK	/* nothing */
    121 #endif
    122 
    123 /*
    124  * Sleep queues.
    125  *
    126  * We're only looking at 7 bits of the address; everything is
    127  * aligned to 4, lots of things are aligned to greater powers
    128  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
    129  */
    130 #define	SLPQUE_TABLESIZE	128
    131 #define	SLPQUE_LOOKUP(x)	(((u_long)(x) >> 8) & (SLPQUE_TABLESIZE - 1))
    132 
    133 #define	SLPQUE(ident)	(&sched_slpque[SLPQUE_LOOKUP(ident)])
    134 
    135 /*
    136  * The global scheduler state.
    137  */
    138 struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    139 volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    140 struct slpque sched_slpque[SLPQUE_TABLESIZE]; /* sleep queues */
    141 
    142 struct simplelock sched_lock = SIMPLELOCK_INITIALIZER;
    143 
    144 void schedcpu(void *);
    145 void updatepri(struct lwp *);
    146 void endtsleep(void *);
    147 
    148 inline void sa_awaken(struct lwp *);
    149 inline void awaken(struct lwp *);
    150 
    151 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    152 static unsigned int schedcpu_ticks;
    153 
    154 
    155 /*
    156  * Force switch among equal priority processes every 100ms.
    157  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    158  */
    159 /* ARGSUSED */
    160 void
    161 roundrobin(struct cpu_info *ci)
    162 {
    163 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    164 
    165 	spc->spc_rrticks = rrticks;
    166 
    167 	if (curlwp != NULL) {
    168 		if (spc->spc_flags & SPCF_SEENRR) {
    169 			/*
    170 			 * The process has already been through a roundrobin
    171 			 * without switching and may be hogging the CPU.
    172 			 * Indicate that the process should yield.
    173 			 */
    174 			spc->spc_flags |= SPCF_SHOULDYIELD;
    175 		} else
    176 			spc->spc_flags |= SPCF_SEENRR;
    177 	}
    178 	need_resched(curcpu());
    179 }
    180 
    181 #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    182 #define	NICE_WEIGHT 2			/* priorities per nice level */
    183 
    184 #define	ESTCPU_SHIFT	11
    185 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    186 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    187 
    188 /*
    189  * Constants for digital decay and forget:
    190  *	90% of (p_estcpu) usage in 5 * loadav time
    191  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    192  *          Note that, as ps(1) mentions, this can let percentages
    193  *          total over 100% (I've seen 137.9% for 3 processes).
    194  *
    195  * Note that hardclock updates p_estcpu and p_cpticks independently.
    196  *
    197  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    198  * That is, the system wants to compute a value of decay such
    199  * that the following for loop:
    200  * 	for (i = 0; i < (5 * loadavg); i++)
    201  * 		p_estcpu *= decay;
    202  * will compute
    203  * 	p_estcpu *= 0.1;
    204  * for all values of loadavg:
    205  *
    206  * Mathematically this loop can be expressed by saying:
    207  * 	decay ** (5 * loadavg) ~= .1
    208  *
    209  * The system computes decay as:
    210  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    211  *
    212  * We wish to prove that the system's computation of decay
    213  * will always fulfill the equation:
    214  * 	decay ** (5 * loadavg) ~= .1
    215  *
    216  * If we compute b as:
    217  * 	b = 2 * loadavg
    218  * then
    219  * 	decay = b / (b + 1)
    220  *
    221  * We now need to prove two things:
    222  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    223  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    224  *
    225  * Facts:
    226  *         For x close to zero, exp(x) =~ 1 + x, since
    227  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    228  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    229  *         For x close to zero, ln(1+x) =~ x, since
    230  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    231  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    232  *         ln(.1) =~ -2.30
    233  *
    234  * Proof of (1):
    235  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    236  *	solving for factor,
    237  *      ln(factor) =~ (-2.30/5*loadav), or
    238  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    239  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    240  *
    241  * Proof of (2):
    242  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    243  *	solving for power,
    244  *      power*ln(b/(b+1)) =~ -2.30, or
    245  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    246  *
    247  * Actual power values for the implemented algorithm are as follows:
    248  *      loadav: 1       2       3       4
    249  *      power:  5.68    10.32   14.94   19.55
    250  */
    251 
    252 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    253 #define	loadfactor(loadav)	(2 * (loadav))
    254 
    255 static fixpt_t
    256 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    257 {
    258 
    259 	if (estcpu == 0) {
    260 		return 0;
    261 	}
    262 
    263 #if !defined(_LP64)
    264 	/* avoid 64bit arithmetics. */
    265 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    266 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    267 		return estcpu * loadfac / (loadfac + FSCALE);
    268 	}
    269 #endif /* !defined(_LP64) */
    270 
    271 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    272 }
    273 
    274 /*
    275  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    276  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    277  * less than (1 << ESTCPU_SHIFT).
    278  *
    279  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    280  */
    281 static fixpt_t
    282 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    283 {
    284 
    285 	if ((n << FSHIFT) >= 7 * loadfac) {
    286 		return 0;
    287 	}
    288 
    289 	while (estcpu != 0 && n > 1) {
    290 		estcpu = decay_cpu(loadfac, estcpu);
    291 		n--;
    292 	}
    293 
    294 	return estcpu;
    295 }
    296 
    297 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    298 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    299 
    300 /*
    301  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    302  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    303  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    304  *
    305  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    306  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    307  *
    308  * If you dont want to bother with the faster/more-accurate formula, you
    309  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    310  * (more general) method of calculating the %age of CPU used by a process.
    311  */
    312 #define	CCPU_SHIFT	11
    313 
    314 /*
    315  * Recompute process priorities, every hz ticks.
    316  */
    317 /* ARGSUSED */
    318 void
    319 schedcpu(void *arg)
    320 {
    321 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    322 	struct lwp *l;
    323 	struct proc *p;
    324 	int s, minslp;
    325 	int clkhz;
    326 
    327 	schedcpu_ticks++;
    328 
    329 	proclist_lock_read();
    330 	PROCLIST_FOREACH(p, &allproc) {
    331 		/*
    332 		 * Increment time in/out of memory and sleep time
    333 		 * (if sleeping).  We ignore overflow; with 16-bit int's
    334 		 * (remember them?) overflow takes 45 days.
    335 		 */
    336 		minslp = 2;
    337 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    338 			l->l_swtime++;
    339 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    340 			    l->l_stat == LSSUSPENDED) {
    341 				l->l_slptime++;
    342 				minslp = min(minslp, l->l_slptime);
    343 			} else
    344 				minslp = 0;
    345 		}
    346 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    347 		/*
    348 		 * If the process has slept the entire second,
    349 		 * stop recalculating its priority until it wakes up.
    350 		 */
    351 		if (minslp > 1)
    352 			continue;
    353 		s = splstatclock();	/* prevent state changes */
    354 		/*
    355 		 * p_pctcpu is only for ps.
    356 		 */
    357 		clkhz = stathz != 0 ? stathz : hz;
    358 #if	(FSHIFT >= CCPU_SHIFT)
    359 		p->p_pctcpu += (clkhz == 100)?
    360 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    361                 	100 * (((fixpt_t) p->p_cpticks)
    362 				<< (FSHIFT - CCPU_SHIFT)) / clkhz;
    363 #else
    364 		p->p_pctcpu += ((FSCALE - ccpu) *
    365 			(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    366 #endif
    367 		p->p_cpticks = 0;
    368 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    369 		splx(s);	/* Done with the process CPU ticks update */
    370 		SCHED_LOCK(s);
    371 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    372 			if (l->l_slptime > 1)
    373 				continue;
    374 			resetpriority(l);
    375 			if (l->l_priority >= PUSER) {
    376 				if (l->l_stat == LSRUN &&
    377 				    (l->l_flag & L_INMEM) &&
    378 				    (l->l_priority / PPQ) != (l->l_usrpri / PPQ)) {
    379 					remrunqueue(l);
    380 					l->l_priority = l->l_usrpri;
    381 					setrunqueue(l);
    382 				} else
    383 					l->l_priority = l->l_usrpri;
    384 			}
    385 		}
    386 		SCHED_UNLOCK(s);
    387 	}
    388 	proclist_unlock_read();
    389 	uvm_meter();
    390 	wakeup((caddr_t)&lbolt);
    391 	callout_schedule(&schedcpu_ch, hz);
    392 }
    393 
    394 /*
    395  * Recalculate the priority of a process after it has slept for a while.
    396  */
    397 void
    398 updatepri(struct lwp *l)
    399 {
    400 	struct proc *p = l->l_proc;
    401 	fixpt_t loadfac;
    402 
    403 	SCHED_ASSERT_LOCKED();
    404 	KASSERT(l->l_slptime > 1);
    405 
    406 	loadfac = loadfactor(averunnable.ldavg[0]);
    407 
    408 	l->l_slptime--; /* the first time was done in schedcpu */
    409 	/* XXX NJWLWP */
    410 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    411 	resetpriority(l);
    412 }
    413 
    414 /*
    415  * During autoconfiguration or after a panic, a sleep will simply
    416  * lower the priority briefly to allow interrupts, then return.
    417  * The priority to be used (safepri) is machine-dependent, thus this
    418  * value is initialized and maintained in the machine-dependent layers.
    419  * This priority will typically be 0, or the lowest priority
    420  * that is safe for use on the interrupt stack; it can be made
    421  * higher to block network software interrupts after panics.
    422  */
    423 int safepri;
    424 
    425 /*
    426  * General sleep call.  Suspends the current process until a wakeup is
    427  * performed on the specified identifier.  The process will then be made
    428  * runnable with the specified priority.  Sleeps at most timo/hz seconds
    429  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
    430  * before and after sleeping, else signals are not checked.  Returns 0 if
    431  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    432  * signal needs to be delivered, ERESTART is returned if the current system
    433  * call should be restarted if possible, and EINTR is returned if the system
    434  * call should be interrupted by the signal (return EINTR).
    435  *
    436  * The interlock is held until the scheduler_slock is acquired.  The
    437  * interlock will be locked before returning back to the caller
    438  * unless the PNORELOCK flag is specified, in which case the
    439  * interlock will always be unlocked upon return.
    440  */
    441 int
    442 ltsleep(volatile const void *ident, int priority, const char *wmesg, int timo,
    443     volatile struct simplelock *interlock)
    444 {
    445 	struct lwp *l = curlwp;
    446 	struct proc *p = l ? l->l_proc : NULL;
    447 	struct slpque *qp;
    448 	int sig, s;
    449 	int catch = priority & PCATCH;
    450 	int relock = (priority & PNORELOCK) == 0;
    451 	int exiterr = (priority & PNOEXITERR) == 0;
    452 
    453 	/*
    454 	 * XXXSMP
    455 	 * This is probably bogus.  Figure out what the right
    456 	 * thing to do here really is.
    457 	 * Note that not sleeping if ltsleep is called with curlwp == NULL
    458 	 * in the shutdown case is disgusting but partly necessary given
    459 	 * how shutdown (barely) works.
    460 	 */
    461 	if (cold || (doing_shutdown && (panicstr || (l == NULL)))) {
    462 		/*
    463 		 * After a panic, or during autoconfiguration,
    464 		 * just give interrupts a chance, then just return;
    465 		 * don't run any other procs or panic below,
    466 		 * in case this is the idle process and already asleep.
    467 		 */
    468 		s = splhigh();
    469 		splx(safepri);
    470 		splx(s);
    471 		if (interlock != NULL && relock == 0)
    472 			simple_unlock(interlock);
    473 		return (0);
    474 	}
    475 
    476 	KASSERT(p != NULL);
    477 	LOCK_ASSERT(interlock == NULL || simple_lock_held(interlock));
    478 
    479 #ifdef KTRACE
    480 	if (KTRPOINT(p, KTR_CSW))
    481 		ktrcsw(l, 1, 0);
    482 #endif
    483 
    484 	SCHED_LOCK(s);
    485 
    486 #ifdef DIAGNOSTIC
    487 	if (ident == NULL)
    488 		panic("ltsleep: ident == NULL");
    489 	if (l->l_stat != LSONPROC)
    490 		panic("ltsleep: l_stat %d != LSONPROC", l->l_stat);
    491 	if (l->l_back != NULL)
    492 		panic("ltsleep: p_back != NULL");
    493 #endif
    494 
    495 	l->l_wchan = ident;
    496 	l->l_wmesg = wmesg;
    497 	l->l_slptime = 0;
    498 	l->l_priority = priority & PRIMASK;
    499 
    500 	qp = SLPQUE(ident);
    501 	if (qp->sq_head == 0)
    502 		qp->sq_head = l;
    503 	else {
    504 		*qp->sq_tailp = l;
    505 	}
    506 	*(qp->sq_tailp = &l->l_forw) = 0;
    507 
    508 	if (timo)
    509 		callout_reset(&l->l_tsleep_ch, timo, endtsleep, l);
    510 
    511 	/*
    512 	 * We can now release the interlock; the scheduler_slock
    513 	 * is held, so a thread can't get in to do wakeup() before
    514 	 * we do the switch.
    515 	 *
    516 	 * XXX We leave the code block here, after inserting ourselves
    517 	 * on the sleep queue, because we might want a more clever
    518 	 * data structure for the sleep queues at some point.
    519 	 */
    520 	if (interlock != NULL)
    521 		simple_unlock(interlock);
    522 
    523 	/*
    524 	 * We put ourselves on the sleep queue and start our timeout
    525 	 * before calling CURSIG, as we could stop there, and a wakeup
    526 	 * or a SIGCONT (or both) could occur while we were stopped.
    527 	 * A SIGCONT would cause us to be marked as SSLEEP
    528 	 * without resuming us, thus we must be ready for sleep
    529 	 * when CURSIG is called.  If the wakeup happens while we're
    530 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
    531 	 */
    532 	if (catch) {
    533 		XXX_SCHED_UNLOCK;
    534 		l->l_flag |= L_SINTR;
    535 		if (((sig = CURSIG(l)) != 0) ||
    536 		    ((p->p_flag & P_WEXIT) && p->p_nlwps > 1)) {
    537 			XXX_SCHED_LOCK;
    538 			if (l->l_wchan != NULL)
    539 				unsleep(l);
    540 			l->l_stat = LSONPROC;
    541 			SCHED_UNLOCK(s);
    542 			goto resume;
    543 		}
    544 		XXX_SCHED_LOCK;
    545 		if (l->l_wchan == NULL) {
    546 			SCHED_UNLOCK(s);
    547 			catch = 0;
    548 			goto resume;
    549 		}
    550 	} else
    551 		sig = 0;
    552 	l->l_stat = LSSLEEP;
    553 	p->p_nrlwps--;
    554 	p->p_stats->p_ru.ru_nvcsw++;
    555 	SCHED_ASSERT_LOCKED();
    556 	if (l->l_flag & L_SA)
    557 		sa_switch(l, SA_UPCALL_BLOCKED);
    558 	else
    559 		mi_switch(l, NULL);
    560 
    561 #ifdef KERN_SYNCH_BPENDTSLEEP_LABEL
    562 	/*
    563 	 * XXX
    564 	 * gcc4 optimizer will duplicate this asm statement on some arch
    565 	 * and it will cause a multiple symbol definition error in gas.
    566 	 * the kernel Makefile is setup to use -fno-reorder-blocks if
    567 	 * this option is set.
    568 	 */
    569 	/* handy breakpoint location after process "wakes" */
    570 	__asm(".globl bpendtsleep\nbpendtsleep:");
    571 #endif
    572 	/*
    573 	 * p->p_nrlwps is incremented by whoever made us runnable again,
    574 	 * either setrunnable() or awaken().
    575 	 */
    576 
    577 	SCHED_ASSERT_UNLOCKED();
    578 	splx(s);
    579 
    580  resume:
    581 	KDASSERT(l->l_cpu != NULL);
    582 	KDASSERT(l->l_cpu == curcpu());
    583 	l->l_cpu->ci_schedstate.spc_curpriority = l->l_usrpri;
    584 
    585 	l->l_flag &= ~L_SINTR;
    586 	if (l->l_flag & L_TIMEOUT) {
    587 		l->l_flag &= ~(L_TIMEOUT|L_CANCELLED);
    588 		if (sig == 0) {
    589 #ifdef KTRACE
    590 			if (KTRPOINT(p, KTR_CSW))
    591 				ktrcsw(l, 0, 0);
    592 #endif
    593 			if (relock && interlock != NULL)
    594 				simple_lock(interlock);
    595 			return (EWOULDBLOCK);
    596 		}
    597 	} else if (timo)
    598 		callout_stop(&l->l_tsleep_ch);
    599 
    600 	if (catch) {
    601 		const int cancelled = l->l_flag & L_CANCELLED;
    602 		l->l_flag &= ~L_CANCELLED;
    603 		if (sig != 0 || (sig = CURSIG(l)) != 0 || cancelled) {
    604 #ifdef KTRACE
    605 			if (KTRPOINT(p, KTR_CSW))
    606 				ktrcsw(l, 0, 0);
    607 #endif
    608 			if (relock && interlock != NULL)
    609 				simple_lock(interlock);
    610 			/*
    611 			 * If this sleep was canceled, don't let the syscall
    612 			 * restart.
    613 			 */
    614 			if (cancelled ||
    615 			    (SIGACTION(p, sig).sa_flags & SA_RESTART) == 0)
    616 				return (EINTR);
    617 			return (ERESTART);
    618 		}
    619 	}
    620 
    621 #ifdef KTRACE
    622 	if (KTRPOINT(p, KTR_CSW))
    623 		ktrcsw(l, 0, 0);
    624 #endif
    625 	if (relock && interlock != NULL)
    626 		simple_lock(interlock);
    627 
    628 	/* XXXNJW this is very much a kluge.
    629 	 * revisit. a better way of preventing looping/hanging syscalls like
    630 	 * wait4() and _lwp_wait() from wedging an exiting process
    631 	 * would be preferred.
    632 	 */
    633 	if (catch && ((p->p_flag & P_WEXIT) && p->p_nlwps > 1 && exiterr))
    634 		return (EINTR);
    635 	return (0);
    636 }
    637 
    638 /*
    639  * Implement timeout for tsleep.
    640  * If process hasn't been awakened (wchan non-zero),
    641  * set timeout flag and undo the sleep.  If LWP
    642  * is stopped, just unsleep so it will remain stopped.
    643  */
    644 void
    645 endtsleep(void *arg)
    646 {
    647 	struct lwp *l;
    648 	int s;
    649 
    650 	l = (struct lwp *)arg;
    651 	SCHED_LOCK(s);
    652 	if (l->l_wchan) {
    653 		if (l->l_stat == LSSLEEP)
    654 			setrunnable(l);
    655 		else
    656 			unsleep(l);
    657 		l->l_flag |= L_TIMEOUT;
    658 	}
    659 	SCHED_UNLOCK(s);
    660 }
    661 
    662 /*
    663  * Remove a process from its wait queue
    664  */
    665 void
    666 unsleep(struct lwp *l)
    667 {
    668 	struct slpque *qp;
    669 	struct lwp **hp;
    670 
    671 	SCHED_ASSERT_LOCKED();
    672 
    673 	if (l->l_wchan) {
    674 		hp = &(qp = SLPQUE(l->l_wchan))->sq_head;
    675 		while (*hp != l)
    676 			hp = &(*hp)->l_forw;
    677 		*hp = l->l_forw;
    678 		if (qp->sq_tailp == &l->l_forw)
    679 			qp->sq_tailp = hp;
    680 		l->l_wchan = 0;
    681 	}
    682 }
    683 
    684 inline void
    685 sa_awaken(struct lwp *l)
    686 {
    687 
    688 	SCHED_ASSERT_LOCKED();
    689 
    690 	if (l == l->l_savp->savp_lwp && l->l_flag & L_SA_YIELD)
    691 		l->l_flag &= ~L_SA_IDLE;
    692 }
    693 
    694 /*
    695  * Optimized-for-wakeup() version of setrunnable().
    696  */
    697 inline void
    698 awaken(struct lwp *l)
    699 {
    700 
    701 	SCHED_ASSERT_LOCKED();
    702 
    703 	if (l->l_proc->p_sa)
    704 		sa_awaken(l);
    705 
    706 	if (l->l_slptime > 1)
    707 		updatepri(l);
    708 	l->l_slptime = 0;
    709 	l->l_stat = LSRUN;
    710 	l->l_proc->p_nrlwps++;
    711 	/*
    712 	 * Since curpriority is a user priority, p->p_priority
    713 	 * is always better than curpriority on the last CPU on
    714 	 * which it ran.
    715 	 *
    716 	 * XXXSMP See affinity comment in resched_proc().
    717 	 */
    718 	if (l->l_flag & L_INMEM) {
    719 		setrunqueue(l);
    720 		KASSERT(l->l_cpu != NULL);
    721 		need_resched(l->l_cpu);
    722 	} else
    723 		sched_wakeup(&proc0);
    724 }
    725 
    726 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    727 void
    728 sched_unlock_idle(void)
    729 {
    730 
    731 	simple_unlock(&sched_lock);
    732 }
    733 
    734 void
    735 sched_lock_idle(void)
    736 {
    737 
    738 	simple_lock(&sched_lock);
    739 }
    740 #endif /* MULTIPROCESSOR || LOCKDEBUG */
    741 
    742 /*
    743  * Make all processes sleeping on the specified identifier runnable.
    744  */
    745 
    746 void
    747 wakeup(volatile const void *ident)
    748 {
    749 	int s;
    750 
    751 	SCHED_ASSERT_UNLOCKED();
    752 
    753 	SCHED_LOCK(s);
    754 	sched_wakeup(ident);
    755 	SCHED_UNLOCK(s);
    756 }
    757 
    758 void
    759 sched_wakeup(volatile const void *ident)
    760 {
    761 	struct slpque *qp;
    762 	struct lwp *l, **q;
    763 
    764 	SCHED_ASSERT_LOCKED();
    765 
    766 	qp = SLPQUE(ident);
    767  restart:
    768 	for (q = &qp->sq_head; (l = *q) != NULL; ) {
    769 #ifdef DIAGNOSTIC
    770 		if (l->l_back || (l->l_stat != LSSLEEP &&
    771 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    772 			panic("wakeup");
    773 #endif
    774 		if (l->l_wchan == ident) {
    775 			l->l_wchan = 0;
    776 			*q = l->l_forw;
    777 			if (qp->sq_tailp == &l->l_forw)
    778 				qp->sq_tailp = q;
    779 			if (l->l_stat == LSSLEEP) {
    780 				awaken(l);
    781 				goto restart;
    782 			}
    783 		} else
    784 			q = &l->l_forw;
    785 	}
    786 }
    787 
    788 /*
    789  * Make the highest priority process first in line on the specified
    790  * identifier runnable.
    791  */
    792 void
    793 wakeup_one(volatile const void *ident)
    794 {
    795 	struct slpque *qp;
    796 	struct lwp *l, **q;
    797 	struct lwp *best_sleepp, **best_sleepq;
    798 	struct lwp *best_stopp, **best_stopq;
    799 	int s;
    800 
    801 	best_sleepp = best_stopp = NULL;
    802 	best_sleepq = best_stopq = NULL;
    803 
    804 	SCHED_LOCK(s);
    805 
    806 	qp = SLPQUE(ident);
    807 
    808 	for (q = &qp->sq_head; (l = *q) != NULL; q = &l->l_forw) {
    809 #ifdef DIAGNOSTIC
    810 		if (l->l_back || (l->l_stat != LSSLEEP &&
    811 		    l->l_stat != LSSTOP && l->l_stat != LSSUSPENDED))
    812 			panic("wakeup_one");
    813 #endif
    814 		if (l->l_wchan == ident) {
    815 			if (l->l_stat == LSSLEEP) {
    816 				if (best_sleepp == NULL ||
    817 				    l->l_priority < best_sleepp->l_priority) {
    818 					best_sleepp = l;
    819 					best_sleepq = q;
    820 				}
    821 			} else {
    822 				if (best_stopp == NULL ||
    823 				    l->l_priority < best_stopp->l_priority) {
    824 				    	best_stopp = l;
    825 					best_stopq = q;
    826 				}
    827 			}
    828 		}
    829 	}
    830 
    831 	/*
    832 	 * Consider any SSLEEP process higher than the highest priority SSTOP
    833 	 * process.
    834 	 */
    835 	if (best_sleepp != NULL) {
    836 		l = best_sleepp;
    837 		q = best_sleepq;
    838 	} else {
    839 		l = best_stopp;
    840 		q = best_stopq;
    841 	}
    842 
    843 	if (l != NULL) {
    844 		l->l_wchan = NULL;
    845 		*q = l->l_forw;
    846 		if (qp->sq_tailp == &l->l_forw)
    847 			qp->sq_tailp = q;
    848 		if (l->l_stat == LSSLEEP)
    849 			awaken(l);
    850 	}
    851 	SCHED_UNLOCK(s);
    852 }
    853 
    854 /*
    855  * General yield call.  Puts the current process back on its run queue and
    856  * performs a voluntary context switch.  Should only be called when the
    857  * current process explicitly requests it (eg sched_yield(2) in compat code).
    858  */
    859 void
    860 yield(void)
    861 {
    862 	struct lwp *l = curlwp;
    863 	int s;
    864 
    865 	SCHED_LOCK(s);
    866 	l->l_priority = l->l_usrpri;
    867 	l->l_stat = LSRUN;
    868 	setrunqueue(l);
    869 	l->l_proc->p_stats->p_ru.ru_nvcsw++;
    870 	mi_switch(l, NULL);
    871 	SCHED_ASSERT_UNLOCKED();
    872 	splx(s);
    873 }
    874 
    875 /*
    876  * General preemption call.  Puts the current LWP back on its run queue
    877  * and performs an involuntary context switch.
    878  * The 'more' ("more work to do") argument is boolean. Returning to userspace
    879  * preempt() calls pass 0. "Voluntary" preemptions in e.g. uiomove() pass 1.
    880  * This will be used to indicate to the SA subsystem that the LWP is
    881  * not yet finished in the kernel.
    882  */
    883 
    884 void
    885 preempt(int more)
    886 {
    887 	struct lwp *l = curlwp;
    888 	int r, s;
    889 
    890 	SCHED_LOCK(s);
    891 	l->l_priority = l->l_usrpri;
    892 	l->l_stat = LSRUN;
    893 	setrunqueue(l);
    894 	l->l_proc->p_stats->p_ru.ru_nivcsw++;
    895 	r = mi_switch(l, NULL);
    896 	SCHED_ASSERT_UNLOCKED();
    897 	splx(s);
    898 	if ((l->l_flag & L_SA) != 0 && r != 0 && more == 0)
    899 		sa_preempt(l);
    900 }
    901 
    902 /*
    903  * The machine independent parts of context switch.
    904  * Must be called at splsched() (no higher!) and with
    905  * the sched_lock held.
    906  * Switch to "new" if non-NULL, otherwise let cpu_switch choose
    907  * the next lwp.
    908  *
    909  * Returns 1 if another LWP was actually run.
    910  */
    911 int
    912 mi_switch(struct lwp *l, struct lwp *newl)
    913 {
    914 	struct schedstate_percpu *spc;
    915 	struct rlimit *rlim;
    916 	long s, u;
    917 	struct timeval tv;
    918 	int hold_count;
    919 	struct proc *p = l->l_proc;
    920 	int retval;
    921 
    922 	SCHED_ASSERT_LOCKED();
    923 
    924 	/*
    925 	 * Release the kernel_lock, as we are about to yield the CPU.
    926 	 * The scheduler lock is still held until cpu_switch()
    927 	 * selects a new process and removes it from the run queue.
    928 	 */
    929 	hold_count = KERNEL_LOCK_RELEASE_ALL();
    930 
    931 	KDASSERT(l->l_cpu != NULL);
    932 	KDASSERT(l->l_cpu == curcpu());
    933 
    934 	spc = &l->l_cpu->ci_schedstate;
    935 
    936 #ifdef LOCKDEBUG
    937 	spinlock_switchcheck();
    938 	simple_lock_switchcheck();
    939 #endif
    940 
    941 	/*
    942 	 * Compute the amount of time during which the current
    943 	 * process was running.
    944 	 */
    945 	microtime(&tv);
    946 	u = p->p_rtime.tv_usec +
    947 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    948 	s = p->p_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    949 	if (u < 0) {
    950 		u += 1000000;
    951 		s--;
    952 	} else if (u >= 1000000) {
    953 		u -= 1000000;
    954 		s++;
    955 	}
    956 	p->p_rtime.tv_usec = u;
    957 	p->p_rtime.tv_sec = s;
    958 
    959 	/*
    960 	 * Process is about to yield the CPU; clear the appropriate
    961 	 * scheduling flags.
    962 	 */
    963 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    964 
    965 #ifdef KSTACK_CHECK_MAGIC
    966 	kstack_check_magic(l);
    967 #endif
    968 
    969 	/*
    970 	 * If we are using h/w performance counters, save context.
    971 	 */
    972 #if PERFCTRS
    973 	if (PMC_ENABLED(p)) {
    974 		pmc_save_context(p);
    975 	}
    976 #endif
    977 
    978 	/*
    979 	 * Switch to the new current process.  When we
    980 	 * run again, we'll return back here.
    981 	 */
    982 	uvmexp.swtch++;
    983 	if (newl == NULL) {
    984 		retval = cpu_switch(l, NULL);
    985 	} else {
    986 		remrunqueue(newl);
    987 		cpu_switchto(l, newl);
    988 		retval = 0;
    989 	}
    990 
    991 	/*
    992 	 * If we are using h/w performance counters, restore context.
    993 	 */
    994 #if PERFCTRS
    995 	if (PMC_ENABLED(p)) {
    996 		pmc_restore_context(p);
    997 	}
    998 #endif
    999 
   1000 	/*
   1001 	 * Make sure that MD code released the scheduler lock before
   1002 	 * resuming us.
   1003 	 */
   1004 	SCHED_ASSERT_UNLOCKED();
   1005 
   1006 	/*
   1007 	 * We're running again; record our new start time.  We might
   1008 	 * be running on a new CPU now, so don't use the cache'd
   1009 	 * schedstate_percpu pointer.
   1010 	 */
   1011 	KDASSERT(l->l_cpu != NULL);
   1012 	KDASSERT(l->l_cpu == curcpu());
   1013 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
   1014 
   1015 	/*
   1016 	 * Reacquire the kernel_lock now.  We do this after we've
   1017 	 * released the scheduler lock to avoid deadlock, and before
   1018 	 * we reacquire the interlock.
   1019 	 */
   1020 	KERNEL_LOCK_ACQUIRE_COUNT(hold_count);
   1021 
   1022 	/*
   1023 	 * Check if the process exceeds its CPU resource allocation.
   1024 	 * If over max, kill it.  In any case, if it has run for more
   1025 	 * than 10 minutes, reduce priority to give others a chance.
   1026 	 */
   1027 	rlim = &p->p_rlimit[RLIMIT_CPU];
   1028 	if (s >= rlim->rlim_cur) {
   1029 		if (s >= rlim->rlim_max) {
   1030 			psignal(p, SIGKILL);
   1031 		} else {
   1032 			psignal(p, SIGXCPU);
   1033 			if (rlim->rlim_cur < rlim->rlim_max)
   1034 				rlim->rlim_cur += 5;
   1035 		}
   1036 	}
   1037 	if (autonicetime && s > autonicetime &&
   1038 	    kauth_cred_geteuid(p->p_cred) && p->p_nice == NZERO) {
   1039 		SCHED_LOCK(s);
   1040 		p->p_nice = autoniceval + NZERO;
   1041 		resetpriority(l);
   1042 		SCHED_UNLOCK(s);
   1043 	}
   1044 
   1045 	return retval;
   1046 }
   1047 
   1048 /*
   1049  * Initialize the (doubly-linked) run queues
   1050  * to be empty.
   1051  */
   1052 void
   1053 rqinit()
   1054 {
   1055 	int i;
   1056 
   1057 	for (i = 0; i < RUNQUE_NQS; i++)
   1058 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
   1059 		    (struct lwp *)&sched_qs[i];
   1060 }
   1061 
   1062 static inline void
   1063 resched_proc(struct lwp *l, u_char pri)
   1064 {
   1065 	struct cpu_info *ci;
   1066 
   1067 	/*
   1068 	 * XXXSMP
   1069 	 * Since l->l_cpu persists across a context switch,
   1070 	 * this gives us *very weak* processor affinity, in
   1071 	 * that we notify the CPU on which the process last
   1072 	 * ran that it should try to switch.
   1073 	 *
   1074 	 * This does not guarantee that the process will run on
   1075 	 * that processor next, because another processor might
   1076 	 * grab it the next time it performs a context switch.
   1077 	 *
   1078 	 * This also does not handle the case where its last
   1079 	 * CPU is running a higher-priority process, but every
   1080 	 * other CPU is running a lower-priority process.  There
   1081 	 * are ways to handle this situation, but they're not
   1082 	 * currently very pretty, and we also need to weigh the
   1083 	 * cost of moving a process from one CPU to another.
   1084 	 *
   1085 	 * XXXSMP
   1086 	 * There is also the issue of locking the other CPU's
   1087 	 * sched state, which we currently do not do.
   1088 	 */
   1089 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
   1090 	if (pri < ci->ci_schedstate.spc_curpriority)
   1091 		need_resched(ci);
   1092 }
   1093 
   1094 /*
   1095  * Change process state to be runnable,
   1096  * placing it on the run queue if it is in memory,
   1097  * and awakening the swapper if it isn't in memory.
   1098  */
   1099 void
   1100 setrunnable(struct lwp *l)
   1101 {
   1102 	struct proc *p = l->l_proc;
   1103 
   1104 	SCHED_ASSERT_LOCKED();
   1105 
   1106 	switch (l->l_stat) {
   1107 	case 0:
   1108 	case LSRUN:
   1109 	case LSONPROC:
   1110 	case LSZOMB:
   1111 	case LSDEAD:
   1112 	default:
   1113 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
   1114 	case LSSTOP:
   1115 		/*
   1116 		 * If we're being traced (possibly because someone attached us
   1117 		 * while we were stopped), check for a signal from the debugger.
   1118 		 */
   1119 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0) {
   1120 			sigaddset(&p->p_sigctx.ps_siglist, p->p_xstat);
   1121 			CHECKSIGS(p);
   1122 		}
   1123 	case LSSLEEP:
   1124 		unsleep(l);		/* e.g. when sending signals */
   1125 		break;
   1126 
   1127 	case LSIDL:
   1128 		break;
   1129 	case LSSUSPENDED:
   1130 		break;
   1131 	}
   1132 
   1133 	if (l->l_proc->p_sa)
   1134 		sa_awaken(l);
   1135 
   1136 	l->l_stat = LSRUN;
   1137 	p->p_nrlwps++;
   1138 
   1139 	if (l->l_flag & L_INMEM)
   1140 		setrunqueue(l);
   1141 
   1142 	if (l->l_slptime > 1)
   1143 		updatepri(l);
   1144 	l->l_slptime = 0;
   1145 	if ((l->l_flag & L_INMEM) == 0)
   1146 		sched_wakeup((caddr_t)&proc0);
   1147 	else
   1148 		resched_proc(l, l->l_priority);
   1149 }
   1150 
   1151 /*
   1152  * Compute the priority of a process when running in user mode.
   1153  * Arrange to reschedule if the resulting priority is better
   1154  * than that of the current process.
   1155  */
   1156 void
   1157 resetpriority(struct lwp *l)
   1158 {
   1159 	unsigned int newpriority;
   1160 	struct proc *p = l->l_proc;
   1161 
   1162 	SCHED_ASSERT_LOCKED();
   1163 
   1164 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
   1165 			NICE_WEIGHT * (p->p_nice - NZERO);
   1166 	newpriority = min(newpriority, MAXPRI);
   1167 	l->l_usrpri = newpriority;
   1168 	resched_proc(l, l->l_usrpri);
   1169 }
   1170 
   1171 /*
   1172  * Recompute priority for all LWPs in a process.
   1173  */
   1174 void
   1175 resetprocpriority(struct proc *p)
   1176 {
   1177 	struct lwp *l;
   1178 
   1179 	LIST_FOREACH(l, &p->p_lwps, l_sibling)
   1180 	    resetpriority(l);
   1181 }
   1182 
   1183 /*
   1184  * We adjust the priority of the current process.  The priority of a process
   1185  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
   1186  * is increased here.  The formula for computing priorities (in kern_synch.c)
   1187  * will compute a different value each time p_estcpu increases. This can
   1188  * cause a switch, but unless the priority crosses a PPQ boundary the actual
   1189  * queue will not change.  The CPU usage estimator ramps up quite quickly
   1190  * when the process is running (linearly), and decays away exponentially, at
   1191  * a rate which is proportionally slower when the system is busy.  The basic
   1192  * principle is that the system will 90% forget that the process used a lot
   1193  * of CPU time in 5 * loadav seconds.  This causes the system to favor
   1194  * processes which haven't run much recently, and to round-robin among other
   1195  * processes.
   1196  */
   1197 
   1198 void
   1199 schedclock(struct lwp *l)
   1200 {
   1201 	struct proc *p = l->l_proc;
   1202 	int s;
   1203 
   1204 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
   1205 	SCHED_LOCK(s);
   1206 	resetpriority(l);
   1207 	SCHED_UNLOCK(s);
   1208 
   1209 	if (l->l_priority >= PUSER)
   1210 		l->l_priority = l->l_usrpri;
   1211 }
   1212 
   1213 void
   1214 suspendsched()
   1215 {
   1216 	struct lwp *l;
   1217 	int s;
   1218 
   1219 	/*
   1220 	 * Convert all non-P_SYSTEM LSSLEEP or LSRUN processes to
   1221 	 * LSSUSPENDED.
   1222 	 */
   1223 	proclist_lock_read();
   1224 	SCHED_LOCK(s);
   1225 	LIST_FOREACH(l, &alllwp, l_list) {
   1226 		if ((l->l_proc->p_flag & P_SYSTEM) != 0)
   1227 			continue;
   1228 
   1229 		switch (l->l_stat) {
   1230 		case LSRUN:
   1231 			l->l_proc->p_nrlwps--;
   1232 			if ((l->l_flag & L_INMEM) != 0)
   1233 				remrunqueue(l);
   1234 			/* FALLTHROUGH */
   1235 		case LSSLEEP:
   1236 			l->l_stat = LSSUSPENDED;
   1237 			break;
   1238 		case LSONPROC:
   1239 			/*
   1240 			 * XXX SMP: we need to deal with processes on
   1241 			 * others CPU !
   1242 			 */
   1243 			break;
   1244 		default:
   1245 			break;
   1246 		}
   1247 	}
   1248 	SCHED_UNLOCK(s);
   1249 	proclist_unlock_read();
   1250 }
   1251 
   1252 /*
   1253  * scheduler_fork_hook:
   1254  *
   1255  *	Inherit the parent's scheduler history.
   1256  */
   1257 void
   1258 scheduler_fork_hook(struct proc *parent, struct proc *child)
   1259 {
   1260 
   1261 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1262 	child->p_forktime = schedcpu_ticks;
   1263 }
   1264 
   1265 /*
   1266  * scheduler_wait_hook:
   1267  *
   1268  *	Chargeback parents for the sins of their children.
   1269  */
   1270 void
   1271 scheduler_wait_hook(struct proc *parent, struct proc *child)
   1272 {
   1273 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1274 	fixpt_t estcpu;
   1275 
   1276 	/* XXX Only if parent != init?? */
   1277 
   1278 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1279 	    schedcpu_ticks - child->p_forktime);
   1280 	if (child->p_estcpu > estcpu) {
   1281 		parent->p_estcpu =
   1282 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1283 	}
   1284 }
   1285 
   1286 /*
   1287  * Low-level routines to access the run queue.  Optimised assembler
   1288  * routines can override these.
   1289  */
   1290 
   1291 #ifndef __HAVE_MD_RUNQUEUE
   1292 
   1293 /*
   1294  * On some architectures, it's faster to use a MSB ordering for the priorites
   1295  * than the traditional LSB ordering.
   1296  */
   1297 #ifdef __HAVE_BIGENDIAN_BITOPS
   1298 #define	RQMASK(n) (0x80000000 >> (n))
   1299 #else
   1300 #define	RQMASK(n) (0x00000001 << (n))
   1301 #endif
   1302 
   1303 /*
   1304  * The primitives that manipulate the run queues.  whichqs tells which
   1305  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1306  * into queues, remrunqueue removes them from queues.  The running process is
   1307  * on no queue, other processes are on a queue related to p->p_priority,
   1308  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1309  * available queues.
   1310  */
   1311 
   1312 #ifdef RQDEBUG
   1313 static void
   1314 checkrunqueue(int whichq, struct lwp *l)
   1315 {
   1316 	const struct prochd * const rq = &sched_qs[whichq];
   1317 	struct lwp *l2;
   1318 	int found = 0;
   1319 	int die = 0;
   1320 	int empty = 1;
   1321 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
   1322 		if (l2->l_stat != LSRUN) {
   1323 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1324 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1325 		}
   1326 		if (l2->l_back->l_forw != l2) {
   1327 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1328 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1329 			    l2->l_back->l_forw);
   1330 			die = 1;
   1331 		}
   1332 		if (l2->l_forw->l_back != l2) {
   1333 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1334 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1335 			    l2->l_forw->l_back);
   1336 			die = 1;
   1337 		}
   1338 		if (l2 == l)
   1339 			found = 1;
   1340 		empty = 0;
   1341 	}
   1342 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1343 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1344 		    whichq, rq);
   1345 		die = 1;
   1346 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1347 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1348 		    "run-queue %p\n", whichq, rq);
   1349 		die = 1;
   1350 	}
   1351 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1352 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1353 		    whichq, l);
   1354 		die = 1;
   1355 	}
   1356 	if (l != NULL && empty) {
   1357 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1358 		    "active lwp %p\n", whichq, rq, l);
   1359 		die = 1;
   1360 	}
   1361 	if (l != NULL && !found) {
   1362 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1363 		    whichq, l, rq);
   1364 		die = 1;
   1365 	}
   1366 	if (die)
   1367 		panic("checkrunqueue: inconsistency found");
   1368 }
   1369 #endif /* RQDEBUG */
   1370 
   1371 void
   1372 setrunqueue(struct lwp *l)
   1373 {
   1374 	struct prochd *rq;
   1375 	struct lwp *prev;
   1376 	const int whichq = l->l_priority / PPQ;
   1377 
   1378 #ifdef RQDEBUG
   1379 	checkrunqueue(whichq, NULL);
   1380 #endif
   1381 #ifdef DIAGNOSTIC
   1382 	if (l->l_back != NULL || l->l_wchan != NULL || l->l_stat != LSRUN)
   1383 		panic("setrunqueue");
   1384 #endif
   1385 	sched_whichqs |= RQMASK(whichq);
   1386 	rq = &sched_qs[whichq];
   1387 	prev = rq->ph_rlink;
   1388 	l->l_forw = (struct lwp *)rq;
   1389 	rq->ph_rlink = l;
   1390 	prev->l_forw = l;
   1391 	l->l_back = prev;
   1392 #ifdef RQDEBUG
   1393 	checkrunqueue(whichq, l);
   1394 #endif
   1395 }
   1396 
   1397 void
   1398 remrunqueue(struct lwp *l)
   1399 {
   1400 	struct lwp *prev, *next;
   1401 	const int whichq = l->l_priority / PPQ;
   1402 #ifdef RQDEBUG
   1403 	checkrunqueue(whichq, l);
   1404 #endif
   1405 #ifdef DIAGNOSTIC
   1406 	if (((sched_whichqs & RQMASK(whichq)) == 0))
   1407 		panic("remrunqueue: bit %d not set", whichq);
   1408 #endif
   1409 	prev = l->l_back;
   1410 	l->l_back = NULL;
   1411 	next = l->l_forw;
   1412 	prev->l_forw = next;
   1413 	next->l_back = prev;
   1414 	if (prev == next)
   1415 		sched_whichqs &= ~RQMASK(whichq);
   1416 #ifdef RQDEBUG
   1417 	checkrunqueue(whichq, NULL);
   1418 #endif
   1419 }
   1420 
   1421 #undef RQMASK
   1422 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1423