kern_synch.c revision 1.174 1 /* $NetBSD: kern_synch.c,v 1.174 2007/02/09 21:55:31 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.174 2007/02/09 21:55:31 ad Exp $");
78
79 #include "opt_ddb.h"
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/proc.h>
91 #include <sys/kernel.h>
92 #include <sys/buf.h>
93 #if defined(PERFCTRS)
94 #include <sys/pmc.h>
95 #endif
96 #include <sys/signalvar.h>
97 #include <sys/resourcevar.h>
98 #include <sys/sched.h>
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101 #include <sys/lockdebug.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <machine/cpu.h>
106
107 int lbolt; /* once a second sleep address */
108 int rrticks; /* number of hardclock ticks per roundrobin() */
109
110 /*
111 * The global scheduler state.
112 */
113 kmutex_t sched_mutex; /* global sched state mutex */
114 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
115 volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
116
117 void schedcpu(void *);
118 void updatepri(struct lwp *);
119 void sa_awaken(struct lwp *);
120
121 void sched_unsleep(struct lwp *);
122 void sched_changepri(struct lwp *, int);
123
124 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
125 static unsigned int schedcpu_ticks;
126
127 syncobj_t sleep_syncobj = {
128 SOBJ_SLEEPQ_SORTED,
129 sleepq_unsleep,
130 sleepq_changepri
131 };
132
133 syncobj_t sched_syncobj = {
134 SOBJ_SLEEPQ_SORTED,
135 sched_unsleep,
136 sched_changepri
137 };
138
139 /*
140 * Force switch among equal priority processes every 100ms.
141 * Called from hardclock every hz/10 == rrticks hardclock ticks.
142 */
143 /* ARGSUSED */
144 void
145 roundrobin(struct cpu_info *ci)
146 {
147 struct schedstate_percpu *spc = &ci->ci_schedstate;
148
149 spc->spc_rrticks = rrticks;
150
151 if (curlwp != NULL) {
152 if (spc->spc_flags & SPCF_SEENRR) {
153 /*
154 * The process has already been through a roundrobin
155 * without switching and may be hogging the CPU.
156 * Indicate that the process should yield.
157 */
158 spc->spc_flags |= SPCF_SHOULDYIELD;
159 } else
160 spc->spc_flags |= SPCF_SEENRR;
161 }
162 cpu_need_resched(curcpu());
163 }
164
165 #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
166 #define NICE_WEIGHT 2 /* priorities per nice level */
167
168 #define ESTCPU_SHIFT 11
169 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
170 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
171
172 /*
173 * Constants for digital decay and forget:
174 * 90% of (p_estcpu) usage in 5 * loadav time
175 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
176 * Note that, as ps(1) mentions, this can let percentages
177 * total over 100% (I've seen 137.9% for 3 processes).
178 *
179 * Note that hardclock updates p_estcpu and p_cpticks independently.
180 *
181 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
182 * That is, the system wants to compute a value of decay such
183 * that the following for loop:
184 * for (i = 0; i < (5 * loadavg); i++)
185 * p_estcpu *= decay;
186 * will compute
187 * p_estcpu *= 0.1;
188 * for all values of loadavg:
189 *
190 * Mathematically this loop can be expressed by saying:
191 * decay ** (5 * loadavg) ~= .1
192 *
193 * The system computes decay as:
194 * decay = (2 * loadavg) / (2 * loadavg + 1)
195 *
196 * We wish to prove that the system's computation of decay
197 * will always fulfill the equation:
198 * decay ** (5 * loadavg) ~= .1
199 *
200 * If we compute b as:
201 * b = 2 * loadavg
202 * then
203 * decay = b / (b + 1)
204 *
205 * We now need to prove two things:
206 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
207 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
208 *
209 * Facts:
210 * For x close to zero, exp(x) =~ 1 + x, since
211 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
212 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
213 * For x close to zero, ln(1+x) =~ x, since
214 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
215 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
216 * ln(.1) =~ -2.30
217 *
218 * Proof of (1):
219 * Solve (factor)**(power) =~ .1 given power (5*loadav):
220 * solving for factor,
221 * ln(factor) =~ (-2.30/5*loadav), or
222 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
223 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
224 *
225 * Proof of (2):
226 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
227 * solving for power,
228 * power*ln(b/(b+1)) =~ -2.30, or
229 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
230 *
231 * Actual power values for the implemented algorithm are as follows:
232 * loadav: 1 2 3 4
233 * power: 5.68 10.32 14.94 19.55
234 */
235
236 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
237 #define loadfactor(loadav) (2 * (loadav))
238
239 static fixpt_t
240 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
241 {
242
243 if (estcpu == 0) {
244 return 0;
245 }
246
247 #if !defined(_LP64)
248 /* avoid 64bit arithmetics. */
249 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
250 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
251 return estcpu * loadfac / (loadfac + FSCALE);
252 }
253 #endif /* !defined(_LP64) */
254
255 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
256 }
257
258 /*
259 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
260 * sleeping for at least seven times the loadfactor will decay p_estcpu to
261 * less than (1 << ESTCPU_SHIFT).
262 *
263 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
264 */
265 static fixpt_t
266 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
267 {
268
269 if ((n << FSHIFT) >= 7 * loadfac) {
270 return 0;
271 }
272
273 while (estcpu != 0 && n > 1) {
274 estcpu = decay_cpu(loadfac, estcpu);
275 n--;
276 }
277
278 return estcpu;
279 }
280
281 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
282 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
283
284 /*
285 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
286 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
287 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
288 *
289 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
290 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
291 *
292 * If you dont want to bother with the faster/more-accurate formula, you
293 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
294 * (more general) method of calculating the %age of CPU used by a process.
295 */
296 #define CCPU_SHIFT 11
297
298 /*
299 * schedcpu:
300 *
301 * Recompute process priorities, every hz ticks.
302 *
303 * XXXSMP This needs to be reorganised in order to reduce the locking
304 * burden.
305 */
306 /* ARGSUSED */
307 void
308 schedcpu(void *arg)
309 {
310 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
311 struct rlimit *rlim;
312 struct lwp *l;
313 struct proc *p;
314 int minslp, clkhz, sig;
315 long runtm;
316
317 schedcpu_ticks++;
318
319 mutex_enter(&proclist_mutex);
320 PROCLIST_FOREACH(p, &allproc) {
321 /*
322 * Increment time in/out of memory and sleep time (if
323 * sleeping). We ignore overflow; with 16-bit int's
324 * (remember them?) overflow takes 45 days.
325 */
326 minslp = 2;
327 mutex_enter(&p->p_smutex);
328 runtm = p->p_rtime.tv_sec;
329 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
330 lwp_lock(l);
331 runtm += l->l_rtime.tv_sec;
332 l->l_swtime++;
333 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
334 l->l_stat == LSSUSPENDED) {
335 l->l_slptime++;
336 minslp = min(minslp, l->l_slptime);
337 } else
338 minslp = 0;
339 lwp_unlock(l);
340 }
341 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
342
343 /*
344 * Check if the process exceeds its CPU resource allocation.
345 * If over max, kill it.
346 */
347 rlim = &p->p_rlimit[RLIMIT_CPU];
348 sig = 0;
349 if (runtm >= rlim->rlim_cur) {
350 if (runtm >= rlim->rlim_max)
351 sig = SIGKILL;
352 else {
353 sig = SIGXCPU;
354 if (rlim->rlim_cur < rlim->rlim_max)
355 rlim->rlim_cur += 5;
356 }
357 }
358
359 /*
360 * If the process has run for more than autonicetime, reduce
361 * priority to give others a chance.
362 */
363 if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
364 && kauth_cred_geteuid(p->p_cred)) {
365 mutex_spin_enter(&p->p_stmutex);
366 p->p_nice = autoniceval + NZERO;
367 resetprocpriority(p);
368 mutex_spin_exit(&p->p_stmutex);
369 }
370
371 /*
372 * If the process has slept the entire second,
373 * stop recalculating its priority until it wakes up.
374 */
375 if (minslp <= 1) {
376 /*
377 * p_pctcpu is only for ps.
378 */
379 mutex_spin_enter(&p->p_stmutex);
380 clkhz = stathz != 0 ? stathz : hz;
381 #if (FSHIFT >= CCPU_SHIFT)
382 p->p_pctcpu += (clkhz == 100)?
383 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
384 100 * (((fixpt_t) p->p_cpticks)
385 << (FSHIFT - CCPU_SHIFT)) / clkhz;
386 #else
387 p->p_pctcpu += ((FSCALE - ccpu) *
388 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
389 #endif
390 p->p_cpticks = 0;
391 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
392
393 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
394 lwp_lock(l);
395 if (l->l_slptime <= 1 &&
396 l->l_priority >= PUSER)
397 resetpriority(l);
398 lwp_unlock(l);
399 }
400 mutex_spin_exit(&p->p_stmutex);
401 }
402
403 mutex_exit(&p->p_smutex);
404 if (sig) {
405 psignal(p, sig);
406 }
407 }
408 mutex_exit(&proclist_mutex);
409 uvm_meter();
410 wakeup((caddr_t)&lbolt);
411 callout_schedule(&schedcpu_ch, hz);
412 }
413
414 /*
415 * Recalculate the priority of a process after it has slept for a while.
416 */
417 void
418 updatepri(struct lwp *l)
419 {
420 struct proc *p = l->l_proc;
421 fixpt_t loadfac;
422
423 LOCK_ASSERT(lwp_locked(l, NULL));
424 KASSERT(l->l_slptime > 1);
425
426 loadfac = loadfactor(averunnable.ldavg[0]);
427
428 l->l_slptime--; /* the first time was done in schedcpu */
429 /* XXX NJWLWP */
430 /* XXXSMP occasionally unlocked, should be per-LWP */
431 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
432 resetpriority(l);
433 }
434
435 /*
436 * During autoconfiguration or after a panic, a sleep will simply lower the
437 * priority briefly to allow interrupts, then return. The priority to be
438 * used (safepri) is machine-dependent, thus this value is initialized and
439 * maintained in the machine-dependent layers. This priority will typically
440 * be 0, or the lowest priority that is safe for use on the interrupt stack;
441 * it can be made higher to block network software interrupts after panics.
442 */
443 int safepri;
444
445 /*
446 * OBSOLETE INTERFACE
447 *
448 * General sleep call. Suspends the current process until a wakeup is
449 * performed on the specified identifier. The process will then be made
450 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
451 * means no timeout). If pri includes PCATCH flag, signals are checked
452 * before and after sleeping, else signals are not checked. Returns 0 if
453 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
454 * signal needs to be delivered, ERESTART is returned if the current system
455 * call should be restarted if possible, and EINTR is returned if the system
456 * call should be interrupted by the signal (return EINTR).
457 *
458 * The interlock is held until we are on a sleep queue. The interlock will
459 * be locked before returning back to the caller unless the PNORELOCK flag
460 * is specified, in which case the interlock will always be unlocked upon
461 * return.
462 */
463 int
464 ltsleep(wchan_t ident, int priority, const char *wmesg, int timo,
465 volatile struct simplelock *interlock)
466 {
467 struct lwp *l = curlwp;
468 sleepq_t *sq;
469 int error, catch;
470
471 if (sleepq_dontsleep(l)) {
472 (void)sleepq_abort(NULL, 0);
473 if ((priority & PNORELOCK) != 0)
474 simple_unlock(interlock);
475 return 0;
476 }
477
478 sq = sleeptab_lookup(&sleeptab, ident);
479 sleepq_enter(sq, l);
480
481 if (interlock != NULL) {
482 LOCK_ASSERT(simple_lock_held(interlock));
483 simple_unlock(interlock);
484 }
485
486 catch = priority & PCATCH;
487 sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
488 &sleep_syncobj);
489 error = sleepq_unblock(timo, catch);
490
491 if (interlock != NULL && (priority & PNORELOCK) == 0)
492 simple_lock(interlock);
493
494 return error;
495 }
496
497 /*
498 * General sleep call for situations where a wake-up is not expected.
499 */
500 int
501 kpause(const char *wmesg, boolean_t intr, int timo, kmutex_t *mtx)
502 {
503 struct lwp *l = curlwp;
504 sleepq_t *sq;
505 int error;
506
507 if (sleepq_dontsleep(l))
508 return sleepq_abort(NULL, 0);
509
510 if (mtx != NULL)
511 mutex_exit(mtx);
512 sq = sleeptab_lookup(&sleeptab, l);
513 sleepq_enter(sq, l);
514 sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
515 error = sleepq_unblock(timo, intr);
516 if (mtx != NULL)
517 mutex_enter(mtx);
518
519 return error;
520 }
521
522 /*
523 * OBSOLETE INTERFACE
524 *
525 * Make all processes sleeping on the specified identifier runnable.
526 */
527 void
528 wakeup(wchan_t ident)
529 {
530 sleepq_t *sq;
531
532 if (cold)
533 return;
534
535 sq = sleeptab_lookup(&sleeptab, ident);
536 sleepq_wake(sq, ident, (u_int)-1);
537 }
538
539 /*
540 * OBSOLETE INTERFACE
541 *
542 * Make the highest priority process first in line on the specified
543 * identifier runnable.
544 */
545 void
546 wakeup_one(wchan_t ident)
547 {
548 sleepq_t *sq;
549
550 if (cold)
551 return;
552
553 sq = sleeptab_lookup(&sleeptab, ident);
554 sleepq_wake(sq, ident, 1);
555 }
556
557
558 /*
559 * General yield call. Puts the current process back on its run queue and
560 * performs a voluntary context switch. Should only be called when the
561 * current process explicitly requests it (eg sched_yield(2) in compat code).
562 */
563 void
564 yield(void)
565 {
566 struct lwp *l = curlwp;
567
568 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
569 lwp_lock(l);
570 if (l->l_stat == LSONPROC) {
571 KASSERT(lwp_locked(l, &sched_mutex));
572 l->l_priority = l->l_usrpri;
573 }
574 l->l_nvcsw++;
575 mi_switch(l, NULL);
576 KERNEL_LOCK(l->l_biglocks, l);
577 }
578
579 /*
580 * General preemption call. Puts the current process back on its run queue
581 * and performs an involuntary context switch.
582 */
583 void
584 preempt(void)
585 {
586 struct lwp *l = curlwp;
587
588 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
589 lwp_lock(l);
590 if (l->l_stat == LSONPROC) {
591 KASSERT(lwp_locked(l, &sched_mutex));
592 l->l_priority = l->l_usrpri;
593 }
594 l->l_nivcsw++;
595 (void)mi_switch(l, NULL);
596 KERNEL_LOCK(l->l_biglocks, l);
597 }
598
599 /*
600 * The machine independent parts of context switch. Switch to "new"
601 * if non-NULL, otherwise let cpu_switch choose the next lwp.
602 *
603 * Returns 1 if another process was actually run.
604 */
605 int
606 mi_switch(struct lwp *l, struct lwp *newl)
607 {
608 struct schedstate_percpu *spc;
609 struct timeval tv;
610 int retval, oldspl;
611 long s, u;
612 #if PERFCTRS
613 struct proc *p = l->l_proc;
614 #endif
615
616 LOCK_ASSERT(lwp_locked(l, NULL));
617
618 #ifdef LOCKDEBUG
619 spinlock_switchcheck();
620 simple_lock_switchcheck();
621 #endif
622 #ifdef KSTACK_CHECK_MAGIC
623 kstack_check_magic(l);
624 #endif
625
626 /*
627 * It's safe to read the per CPU schedstate unlocked here, as all we
628 * are after is the run time and that's guarenteed to have been last
629 * updated by this CPU.
630 */
631 KDASSERT(l->l_cpu == curcpu());
632 spc = &l->l_cpu->ci_schedstate;
633
634 /*
635 * Compute the amount of time during which the current
636 * process was running.
637 */
638 microtime(&tv);
639 u = l->l_rtime.tv_usec +
640 (tv.tv_usec - spc->spc_runtime.tv_usec);
641 s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
642 if (u < 0) {
643 u += 1000000;
644 s--;
645 } else if (u >= 1000000) {
646 u -= 1000000;
647 s++;
648 }
649 l->l_rtime.tv_usec = u;
650 l->l_rtime.tv_sec = s;
651
652 /*
653 * XXXSMP If we are using h/w performance counters, save context.
654 */
655 #if PERFCTRS
656 if (PMC_ENABLED(p)) {
657 pmc_save_context(p);
658 }
659 #endif
660
661 /*
662 * Acquire the sched_mutex if necessary. It will be released by
663 * cpu_switch once it has decided to idle, or picked another LWP
664 * to run.
665 */
666 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
667 if (l->l_mutex != &sched_mutex) {
668 mutex_spin_enter(&sched_mutex);
669 lwp_unlock(l);
670 }
671 #endif
672
673 /*
674 * If on the CPU and we have gotten this far, then we must yield.
675 */
676 KASSERT(l->l_stat != LSRUN);
677 if (l->l_stat == LSONPROC) {
678 KASSERT(lwp_locked(l, &sched_mutex));
679 l->l_stat = LSRUN;
680 setrunqueue(l);
681 }
682 uvmexp.swtch++;
683
684 /*
685 * Process is about to yield the CPU; clear the appropriate
686 * scheduling flags.
687 */
688 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
689
690 LOCKDEBUG_BARRIER(&sched_mutex, 1);
691
692 /*
693 * Switch to the new current LWP. When we run again, we'll
694 * return back here.
695 */
696 oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
697
698 if (newl == NULL || newl->l_back == NULL)
699 retval = cpu_switch(l, NULL);
700 else {
701 KASSERT(lwp_locked(newl, &sched_mutex));
702 remrunqueue(newl);
703 cpu_switchto(l, newl);
704 retval = 0;
705 }
706
707 /*
708 * XXXSMP If we are using h/w performance counters, restore context.
709 */
710 #if PERFCTRS
711 if (PMC_ENABLED(p)) {
712 pmc_restore_context(p);
713 }
714 #endif
715
716 /*
717 * We're running again; record our new start time. We might
718 * be running on a new CPU now, so don't use the cached
719 * schedstate_percpu pointer.
720 */
721 KDASSERT(l->l_cpu == curcpu());
722 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
723 splx(oldspl);
724
725 return retval;
726 }
727
728 /*
729 * Initialize the (doubly-linked) run queues
730 * to be empty.
731 */
732 void
733 rqinit()
734 {
735 int i;
736
737 for (i = 0; i < RUNQUE_NQS; i++)
738 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
739 (struct lwp *)&sched_qs[i];
740
741 mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
742 }
743
744 static inline void
745 resched_lwp(struct lwp *l, u_char pri)
746 {
747 struct cpu_info *ci;
748
749 /*
750 * XXXSMP
751 * Since l->l_cpu persists across a context switch,
752 * this gives us *very weak* processor affinity, in
753 * that we notify the CPU on which the process last
754 * ran that it should try to switch.
755 *
756 * This does not guarantee that the process will run on
757 * that processor next, because another processor might
758 * grab it the next time it performs a context switch.
759 *
760 * This also does not handle the case where its last
761 * CPU is running a higher-priority process, but every
762 * other CPU is running a lower-priority process. There
763 * are ways to handle this situation, but they're not
764 * currently very pretty, and we also need to weigh the
765 * cost of moving a process from one CPU to another.
766 *
767 * XXXSMP
768 * There is also the issue of locking the other CPU's
769 * sched state, which we currently do not do.
770 */
771 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
772 if (pri < ci->ci_schedstate.spc_curpriority)
773 cpu_need_resched(ci);
774 }
775
776 /*
777 * Change process state to be runnable, placing it on the run queue if it is
778 * in memory, and awakening the swapper if it isn't in memory.
779 *
780 * Call with the process and LWP locked. Will return with the LWP unlocked.
781 */
782 void
783 setrunnable(struct lwp *l)
784 {
785 struct proc *p = l->l_proc;
786 sigset_t *ss;
787
788 LOCK_ASSERT(mutex_owned(&p->p_smutex));
789 LOCK_ASSERT(lwp_locked(l, NULL));
790
791 switch (l->l_stat) {
792 case LSSTOP:
793 /*
794 * If we're being traced (possibly because someone attached us
795 * while we were stopped), check for a signal from the debugger.
796 */
797 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
798 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
799 ss = &l->l_sigpend.sp_set;
800 else
801 ss = &p->p_sigpend.sp_set;
802 sigaddset(ss, p->p_xstat);
803 signotify(l);
804 }
805 p->p_nrlwps++;
806 break;
807 case LSSUSPENDED:
808 l->l_flag &= ~L_WSUSPEND;
809 p->p_nrlwps++;
810 break;
811 case LSSLEEP:
812 KASSERT(l->l_wchan != NULL);
813 break;
814 default:
815 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
816 }
817
818 /*
819 * If the LWP was sleeping interruptably, then it's OK to start it
820 * again. If not, mark it as still sleeping.
821 */
822 if (l->l_wchan != NULL) {
823 l->l_stat = LSSLEEP;
824 if ((l->l_flag & L_SINTR) != 0)
825 lwp_unsleep(l);
826 else {
827 lwp_unlock(l);
828 #ifdef DIAGNOSTIC
829 panic("setrunnable: !L_SINTR");
830 #endif
831 }
832 return;
833 }
834
835 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
836
837 /*
838 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
839 * about to call mi_switch(), in which case it will yield.
840 *
841 * XXXSMP Will need to change for preemption.
842 */
843 #ifdef MULTIPROCESSOR
844 if (l->l_cpu->ci_curlwp == l) {
845 #else
846 if (l == curlwp) {
847 #endif
848 l->l_stat = LSONPROC;
849 l->l_slptime = 0;
850 lwp_unlock(l);
851 return;
852 }
853
854 /*
855 * Set the LWP runnable. If it's swapped out, we need to wake the swapper
856 * to bring it back in. Otherwise, enter it into a run queue.
857 */
858 if (l->l_slptime > 1)
859 updatepri(l);
860 l->l_stat = LSRUN;
861 l->l_slptime = 0;
862
863 if (l->l_flag & L_INMEM) {
864 setrunqueue(l);
865 resched_lwp(l, l->l_priority);
866 lwp_unlock(l);
867 } else {
868 lwp_unlock(l);
869 wakeup(&proc0);
870 }
871 }
872
873 /*
874 * Compute the priority of a process when running in user mode.
875 * Arrange to reschedule if the resulting priority is better
876 * than that of the current process.
877 */
878 void
879 resetpriority(struct lwp *l)
880 {
881 unsigned int newpriority;
882 struct proc *p = l->l_proc;
883
884 /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
885 LOCK_ASSERT(lwp_locked(l, NULL));
886
887 if ((l->l_flag & L_SYSTEM) != 0)
888 return;
889
890 newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
891 NICE_WEIGHT * (p->p_nice - NZERO);
892 newpriority = min(newpriority, MAXPRI);
893 lwp_changepri(l, newpriority);
894 }
895
896 /*
897 * Recompute priority for all LWPs in a process.
898 */
899 void
900 resetprocpriority(struct proc *p)
901 {
902 struct lwp *l;
903
904 LOCK_ASSERT(mutex_owned(&p->p_stmutex));
905
906 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
907 lwp_lock(l);
908 resetpriority(l);
909 lwp_unlock(l);
910 }
911 }
912
913 /*
914 * We adjust the priority of the current process. The priority of a process
915 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
916 * is increased here. The formula for computing priorities (in kern_synch.c)
917 * will compute a different value each time p_estcpu increases. This can
918 * cause a switch, but unless the priority crosses a PPQ boundary the actual
919 * queue will not change. The CPU usage estimator ramps up quite quickly
920 * when the process is running (linearly), and decays away exponentially, at
921 * a rate which is proportionally slower when the system is busy. The basic
922 * principle is that the system will 90% forget that the process used a lot
923 * of CPU time in 5 * loadav seconds. This causes the system to favor
924 * processes which haven't run much recently, and to round-robin among other
925 * processes.
926 */
927
928 void
929 schedclock(struct lwp *l)
930 {
931 struct proc *p = l->l_proc;
932
933 mutex_spin_enter(&p->p_stmutex);
934 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
935 lwp_lock(l);
936 resetpriority(l);
937 mutex_spin_exit(&p->p_stmutex);
938 if ((l->l_flag & L_SYSTEM) == 0 && l->l_priority >= PUSER)
939 l->l_priority = l->l_usrpri;
940 lwp_unlock(l);
941 }
942
943 /*
944 * suspendsched:
945 *
946 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
947 */
948 void
949 suspendsched(void)
950 {
951 #ifdef MULTIPROCESSOR
952 CPU_INFO_ITERATOR cii;
953 struct cpu_info *ci;
954 #endif
955 struct lwp *l;
956 struct proc *p;
957
958 /*
959 * We do this by process in order not to violate the locking rules.
960 */
961 mutex_enter(&proclist_mutex);
962 PROCLIST_FOREACH(p, &allproc) {
963 mutex_enter(&p->p_smutex);
964
965 if ((p->p_flag & P_SYSTEM) != 0) {
966 mutex_exit(&p->p_smutex);
967 continue;
968 }
969
970 p->p_stat = SSTOP;
971
972 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
973 if (l == curlwp)
974 continue;
975
976 lwp_lock(l);
977
978 /*
979 * Set L_WREBOOT so that the LWP will suspend itself
980 * when it tries to return to user mode. We want to
981 * try and get to get as many LWPs as possible to
982 * the user / kernel boundary, so that they will
983 * release any locks that they hold.
984 */
985 l->l_flag |= (L_WREBOOT | L_WSUSPEND);
986
987 if (l->l_stat == LSSLEEP &&
988 (l->l_flag & L_SINTR) != 0) {
989 /* setrunnable() will release the lock. */
990 setrunnable(l);
991 continue;
992 }
993
994 lwp_unlock(l);
995 }
996
997 mutex_exit(&p->p_smutex);
998 }
999 mutex_exit(&proclist_mutex);
1000
1001 /*
1002 * Kick all CPUs to make them preempt any LWPs running in user mode.
1003 * They'll trap into the kernel and suspend themselves in userret().
1004 */
1005 sched_lock(0);
1006 #ifdef MULTIPROCESSOR
1007 for (CPU_INFO_FOREACH(cii, ci))
1008 cpu_need_resched(ci);
1009 #else
1010 cpu_need_resched(curcpu());
1011 #endif
1012 sched_unlock(0);
1013 }
1014
1015 /*
1016 * scheduler_fork_hook:
1017 *
1018 * Inherit the parent's scheduler history.
1019 */
1020 void
1021 scheduler_fork_hook(struct proc *parent, struct proc *child)
1022 {
1023
1024 LOCK_ASSERT(mutex_owned(&parent->p_smutex));
1025
1026 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1027 child->p_forktime = schedcpu_ticks;
1028 }
1029
1030 /*
1031 * scheduler_wait_hook:
1032 *
1033 * Chargeback parents for the sins of their children.
1034 */
1035 void
1036 scheduler_wait_hook(struct proc *parent, struct proc *child)
1037 {
1038 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1039 fixpt_t estcpu;
1040
1041 /* XXX Only if parent != init?? */
1042
1043 mutex_spin_enter(&parent->p_stmutex);
1044 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1045 schedcpu_ticks - child->p_forktime);
1046 if (child->p_estcpu > estcpu)
1047 parent->p_estcpu =
1048 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1049 mutex_spin_exit(&parent->p_stmutex);
1050 }
1051
1052 /*
1053 * sched_kpri:
1054 *
1055 * Scale a priority level to a kernel priority level, usually
1056 * for an LWP that is about to sleep.
1057 */
1058 int
1059 sched_kpri(struct lwp *l)
1060 {
1061 /*
1062 * Scale user priorities (127 -> 50) up to kernel priorities
1063 * in the range (49 -> 8). Reserve the top 8 kernel priorities
1064 * for high priority kthreads. Kernel priorities passed in
1065 * are left "as is". XXX This is somewhat arbitrary.
1066 */
1067 static const uint8_t kpri_tab[] = {
1068 0, 1, 2, 3, 4, 5, 6, 7,
1069 8, 9, 10, 11, 12, 13, 14, 15,
1070 16, 17, 18, 19, 20, 21, 22, 23,
1071 24, 25, 26, 27, 28, 29, 30, 31,
1072 32, 33, 34, 35, 36, 37, 38, 39,
1073 40, 41, 42, 43, 44, 45, 46, 47,
1074 48, 49, 8, 8, 9, 9, 10, 10,
1075 11, 11, 12, 12, 13, 14, 14, 15,
1076 15, 16, 16, 17, 17, 18, 18, 19,
1077 20, 20, 21, 21, 22, 22, 23, 23,
1078 24, 24, 25, 26, 26, 27, 27, 28,
1079 28, 29, 29, 30, 30, 31, 32, 32,
1080 33, 33, 34, 34, 35, 35, 36, 36,
1081 37, 38, 38, 39, 39, 40, 40, 41,
1082 41, 42, 42, 43, 44, 44, 45, 45,
1083 46, 46, 47, 47, 48, 48, 49, 49,
1084 };
1085
1086 return kpri_tab[l->l_usrpri];
1087 }
1088
1089 /*
1090 * sched_unsleep:
1091 *
1092 * The is called when the LWP has not been awoken normally but instead
1093 * interrupted: for example, if the sleep timed out. Because of this,
1094 * it's not a valid action for running or idle LWPs.
1095 */
1096 void
1097 sched_unsleep(struct lwp *l)
1098 {
1099
1100 lwp_unlock(l);
1101 panic("sched_unsleep");
1102 }
1103
1104 /*
1105 * sched_changepri:
1106 *
1107 * Adjust the priority of an LWP.
1108 */
1109 void
1110 sched_changepri(struct lwp *l, int pri)
1111 {
1112
1113 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1114
1115 l->l_usrpri = pri;
1116
1117 if (l->l_priority < PUSER)
1118 return;
1119 if (l->l_stat != LSRUN || (l->l_flag & L_INMEM) == 0 ||
1120 (l->l_priority / PPQ) == (pri / PPQ)) {
1121 l->l_priority = pri;
1122 return;
1123 }
1124
1125 remrunqueue(l);
1126 l->l_priority = pri;
1127 setrunqueue(l);
1128 resched_lwp(l, pri);
1129 }
1130
1131 /*
1132 * Low-level routines to access the run queue. Optimised assembler
1133 * routines can override these.
1134 */
1135
1136 #ifndef __HAVE_MD_RUNQUEUE
1137
1138 /*
1139 * On some architectures, it's faster to use a MSB ordering for the priorites
1140 * than the traditional LSB ordering.
1141 */
1142 #ifdef __HAVE_BIGENDIAN_BITOPS
1143 #define RQMASK(n) (0x80000000 >> (n))
1144 #else
1145 #define RQMASK(n) (0x00000001 << (n))
1146 #endif
1147
1148 /*
1149 * The primitives that manipulate the run queues. whichqs tells which
1150 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1151 * into queues, remrunqueue removes them from queues. The running process is
1152 * on no queue, other processes are on a queue related to p->p_priority,
1153 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1154 * available queues.
1155 */
1156 #ifdef RQDEBUG
1157 static void
1158 checkrunqueue(int whichq, struct lwp *l)
1159 {
1160 const struct prochd * const rq = &sched_qs[whichq];
1161 struct lwp *l2;
1162 int found = 0;
1163 int die = 0;
1164 int empty = 1;
1165 for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
1166 if (l2->l_stat != LSRUN) {
1167 printf("checkrunqueue[%d]: lwp %p state (%d) "
1168 " != LSRUN\n", whichq, l2, l2->l_stat);
1169 }
1170 if (l2->l_back->l_forw != l2) {
1171 printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1172 "corrupt %p\n", whichq, l2, l2->l_back,
1173 l2->l_back->l_forw);
1174 die = 1;
1175 }
1176 if (l2->l_forw->l_back != l2) {
1177 printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1178 "corrupt %p\n", whichq, l2, l2->l_forw,
1179 l2->l_forw->l_back);
1180 die = 1;
1181 }
1182 if (l2 == l)
1183 found = 1;
1184 empty = 0;
1185 }
1186 if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1187 printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1188 whichq, rq);
1189 die = 1;
1190 } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1191 printf("checkrunqueue[%d]: bit clear for non-empty "
1192 "run-queue %p\n", whichq, rq);
1193 die = 1;
1194 }
1195 if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1196 printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1197 whichq, l);
1198 die = 1;
1199 }
1200 if (l != NULL && empty) {
1201 printf("checkrunqueue[%d]: empty run-queue %p with "
1202 "active lwp %p\n", whichq, rq, l);
1203 die = 1;
1204 }
1205 if (l != NULL && !found) {
1206 printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1207 whichq, l, rq);
1208 die = 1;
1209 }
1210 if (die)
1211 panic("checkrunqueue: inconsistency found");
1212 }
1213 #endif /* RQDEBUG */
1214
1215 void
1216 setrunqueue(struct lwp *l)
1217 {
1218 struct prochd *rq;
1219 struct lwp *prev;
1220 const int whichq = l->l_priority / PPQ;
1221
1222 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1223
1224 #ifdef RQDEBUG
1225 checkrunqueue(whichq, NULL);
1226 #endif
1227 #ifdef DIAGNOSTIC
1228 if (l->l_back != NULL || l->l_stat != LSRUN)
1229 panic("setrunqueue");
1230 #endif
1231 sched_whichqs |= RQMASK(whichq);
1232 rq = &sched_qs[whichq];
1233 prev = rq->ph_rlink;
1234 l->l_forw = (struct lwp *)rq;
1235 rq->ph_rlink = l;
1236 prev->l_forw = l;
1237 l->l_back = prev;
1238 #ifdef RQDEBUG
1239 checkrunqueue(whichq, l);
1240 #endif
1241 }
1242
1243 /*
1244 * XXXSMP When LWP dispatch (cpu_switch()) is changed to use remrunqueue(),
1245 * drop of the effective priority level from kernel to user needs to be
1246 * moved here from userret(). The assignment in userret() is currently
1247 * done unlocked.
1248 */
1249 void
1250 remrunqueue(struct lwp *l)
1251 {
1252 struct lwp *prev, *next;
1253 const int whichq = l->l_priority / PPQ;
1254
1255 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1256
1257 #ifdef RQDEBUG
1258 checkrunqueue(whichq, l);
1259 #endif
1260
1261 #if defined(DIAGNOSTIC)
1262 if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
1263 /* Shouldn't happen - interrupts disabled. */
1264 panic("remrunqueue: bit %d not set", whichq);
1265 }
1266 #endif
1267 prev = l->l_back;
1268 l->l_back = NULL;
1269 next = l->l_forw;
1270 prev->l_forw = next;
1271 next->l_back = prev;
1272 if (prev == next)
1273 sched_whichqs &= ~RQMASK(whichq);
1274 #ifdef RQDEBUG
1275 checkrunqueue(whichq, NULL);
1276 #endif
1277 }
1278
1279 #undef RQMASK
1280 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1281