Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.177.2.13
      1 /*	$NetBSD: kern_synch.c,v 1.177.2.13 2007/03/09 15:16:25 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.177.2.13 2007/03/09 15:16:25 rmind Exp $");
     79 
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #if defined(PERFCTRS)
     92 #include <sys/pmc.h>
     93 #endif
     94 #include <sys/cpu.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/syscall_stats.h>
     98 #include <sys/sleepq.h>
     99 #include <sys/lockdebug.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 int	lbolt;			/* once a second sleep address */
    104 
    105 /*
    106  * The global scheduler state.
    107  */
    108 kmutex_t	sched_mutex;		/* global sched state mutex */
    109 
    110 static void	sched_unsleep(struct lwp *);
    111 static void	sched_changepri(struct lwp *, pri_t);
    112 static void	sched_lendpri(struct lwp *, pri_t);
    113 
    114 syncobj_t sleep_syncobj = {
    115 	SOBJ_SLEEPQ_SORTED,
    116 	sleepq_unsleep,
    117 	sleepq_changepri,
    118 	sleepq_lendpri,
    119 	syncobj_noowner,
    120 };
    121 
    122 syncobj_t sched_syncobj = {
    123 	SOBJ_SLEEPQ_SORTED,
    124 	sched_unsleep,
    125 	sched_changepri,
    126 	sched_lendpri,
    127 	syncobj_noowner,
    128 };
    129 
    130 /*
    131  * During autoconfiguration or after a panic, a sleep will simply lower the
    132  * priority briefly to allow interrupts, then return.  The priority to be
    133  * used (safepri) is machine-dependent, thus this value is initialized and
    134  * maintained in the machine-dependent layers.  This priority will typically
    135  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    136  * it can be made higher to block network software interrupts after panics.
    137  */
    138 int	safepri;
    139 
    140 /*
    141  * OBSOLETE INTERFACE
    142  *
    143  * General sleep call.  Suspends the current process until a wakeup is
    144  * performed on the specified identifier.  The process will then be made
    145  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    146  * means no timeout).  If pri includes PCATCH flag, signals are checked
    147  * before and after sleeping, else signals are not checked.  Returns 0 if
    148  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    149  * signal needs to be delivered, ERESTART is returned if the current system
    150  * call should be restarted if possible, and EINTR is returned if the system
    151  * call should be interrupted by the signal (return EINTR).
    152  *
    153  * The interlock is held until we are on a sleep queue. The interlock will
    154  * be locked before returning back to the caller unless the PNORELOCK flag
    155  * is specified, in which case the interlock will always be unlocked upon
    156  * return.
    157  */
    158 int
    159 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    160 	volatile struct simplelock *interlock)
    161 {
    162 	struct lwp *l = curlwp;
    163 	sleepq_t *sq;
    164 	int error, catch;
    165 
    166 	if (sleepq_dontsleep(l)) {
    167 		(void)sleepq_abort(NULL, 0);
    168 		if ((priority & PNORELOCK) != 0)
    169 			simple_unlock(interlock);
    170 		return 0;
    171 	}
    172 
    173 	sq = sleeptab_lookup(&sleeptab, ident);
    174 	sleepq_enter(sq, l);
    175 
    176 	if (interlock != NULL) {
    177 		LOCK_ASSERT(simple_lock_held(interlock));
    178 		simple_unlock(interlock);
    179 	}
    180 
    181 	catch = priority & PCATCH;
    182 	sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
    183 	    &sleep_syncobj);
    184 	error = sleepq_unblock(timo, catch);
    185 
    186 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    187 		simple_lock(interlock);
    188 
    189 	return error;
    190 }
    191 
    192 /*
    193  * General sleep call for situations where a wake-up is not expected.
    194  */
    195 int
    196 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    197 {
    198 	struct lwp *l = curlwp;
    199 	sleepq_t *sq;
    200 	int error;
    201 
    202 	if (sleepq_dontsleep(l))
    203 		return sleepq_abort(NULL, 0);
    204 
    205 	if (mtx != NULL)
    206 		mutex_exit(mtx);
    207 	sq = sleeptab_lookup(&sleeptab, l);
    208 	sleepq_enter(sq, l);
    209 	sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
    210 	error = sleepq_unblock(timo, intr);
    211 	if (mtx != NULL)
    212 		mutex_enter(mtx);
    213 
    214 	return error;
    215 }
    216 
    217 /*
    218  * OBSOLETE INTERFACE
    219  *
    220  * Make all processes sleeping on the specified identifier runnable.
    221  */
    222 void
    223 wakeup(wchan_t ident)
    224 {
    225 	sleepq_t *sq;
    226 
    227 	if (cold)
    228 		return;
    229 
    230 	sq = sleeptab_lookup(&sleeptab, ident);
    231 	sleepq_wake(sq, ident, (u_int)-1);
    232 }
    233 
    234 /*
    235  * OBSOLETE INTERFACE
    236  *
    237  * Make the highest priority process first in line on the specified
    238  * identifier runnable.
    239  */
    240 void
    241 wakeup_one(wchan_t ident)
    242 {
    243 	sleepq_t *sq;
    244 
    245 	if (cold)
    246 		return;
    247 
    248 	sq = sleeptab_lookup(&sleeptab, ident);
    249 	sleepq_wake(sq, ident, 1);
    250 }
    251 
    252 
    253 /*
    254  * General yield call.  Puts the current process back on its run queue and
    255  * performs a voluntary context switch.  Should only be called when the
    256  * current process explicitly requests it (eg sched_yield(2) in compat code).
    257  */
    258 void
    259 yield(void)
    260 {
    261 	struct lwp *l = curlwp;
    262 
    263 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    264 	lwp_lock(l);
    265 	if (l->l_stat == LSONPROC) {
    266 		KASSERT(lwp_locked(l, &sched_mutex));
    267 		l->l_priority = l->l_usrpri;
    268 	}
    269 	l->l_nvcsw++;
    270 	mi_switch(l);
    271 	KERNEL_LOCK(l->l_biglocks, l);
    272 }
    273 
    274 /*
    275  * General preemption call.  Puts the current process back on its run queue
    276  * and performs an involuntary context switch.
    277  */
    278 void
    279 preempt(void)
    280 {
    281 	struct lwp *l = curlwp;
    282 
    283 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    284 	lwp_lock(l);
    285 	if (l->l_stat == LSONPROC) {
    286 		KASSERT(lwp_locked(l, &sched_mutex));
    287 		l->l_priority = l->l_usrpri;
    288 	}
    289 	l->l_nivcsw++;
    290 	(void)mi_switch(l);
    291 	KERNEL_LOCK(l->l_biglocks, l);
    292 }
    293 
    294 /*
    295  * sched_switch_unlock: update 'curlwp' and release old lwp.
    296  */
    297 
    298 void
    299 sched_switch_unlock(struct lwp *old, struct lwp *new)
    300 {
    301 
    302 	KASSERT(old == NULL || old == curlwp);
    303 	KASSERT(new != NULL);
    304 
    305 	if (old != NULL) {
    306 		LOCKDEBUG_BARRIER(old->l_mutex, 1);
    307 	} else {
    308 		LOCKDEBUG_BARRIER(NULL, 1);
    309 	}
    310 
    311 	curlwp = new;
    312 	if (old != NULL) {
    313 		lwp_unlock(old);
    314 	}
    315 	spl0();
    316 }
    317 
    318 /*
    319  * Compute the amount of time during which the current lwp was running.
    320  *
    321  * - update l_rtime unless it's an idle lwp.
    322  * - update spc_runtime for the next lwp.
    323  */
    324 
    325 static inline void
    326 updatertime(struct lwp *l, struct schedstate_percpu *spc)
    327 {
    328 	struct timeval tv;
    329 	long s, u;
    330 
    331 	if ((l->l_flag & LW_IDLE) != 0) {
    332 		microtime(&spc->spc_runtime);
    333 		return;
    334 	}
    335 
    336 	microtime(&tv);
    337 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    338 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    339 	if (u < 0) {
    340 		u += 1000000;
    341 		s--;
    342 	} else if (u >= 1000000) {
    343 		u -= 1000000;
    344 		s++;
    345 	}
    346 	l->l_rtime.tv_usec = u;
    347 	l->l_rtime.tv_sec = s;
    348 
    349 	spc->spc_runtime = tv;
    350 }
    351 
    352 /*
    353  * The machine independent parts of context switch.  Switch to "new"
    354  * if non-NULL, otherwise let cpu_switch choose the next lwp.
    355  *
    356  * Returns 1 if another process was actually run.
    357  */
    358 int
    359 mi_switch(struct lwp *l)
    360 {
    361 	struct schedstate_percpu *spc;
    362 	struct lwp *newl;
    363 	int retval, oldspl;
    364 
    365 	LOCK_ASSERT(lwp_locked(l, NULL));
    366 
    367 #ifdef LOCKDEBUG
    368 	spinlock_switchcheck();
    369 	simple_lock_switchcheck();
    370 #endif
    371 #ifdef KSTACK_CHECK_MAGIC
    372 	kstack_check_magic(l);
    373 #endif
    374 
    375 	/*
    376 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    377 	 * are after is the run time and that's guarenteed to have been last
    378 	 * updated by this CPU.
    379 	 */
    380 	KDASSERT(l->l_cpu == curcpu());
    381 	spc = &l->l_cpu->ci_schedstate;
    382 
    383 	/* Count time spent in current system call */
    384 	SYSCALL_TIME_SLEEP(l);
    385 
    386 	/*
    387 	 * XXXSMP If we are using h/w performance counters, save context.
    388 	 */
    389 #if PERFCTRS
    390 	if (PMC_ENABLED(l->l_proc)) {
    391 		pmc_save_context(l->l_proc);
    392 	}
    393 #endif
    394 
    395 	/*
    396 	 * Process is about to yield the CPU; clear the appropriate
    397 	 * scheduling flags.
    398 	 */
    399 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    400 
    401 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    402 
    403 	/*
    404 	 * Switch to the new LWP if necessary.
    405 	 * When we run again, we'll return back here.
    406 	 */
    407 	oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    408 
    409 	/*
    410 	 * Acquire the sched_mutex if necessary.
    411 	 */
    412 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    413 	if (l->l_mutex != &sched_mutex) {
    414 		mutex_enter(&sched_mutex);
    415 	}
    416 #endif
    417 
    418 	/* Please note that sched_switch() will enqueue the LWP */
    419 	newl = sched_switch(l);
    420 	if (newl == NULL) {
    421 		newl = l->l_cpu->ci_data.cpu_idlelwp;
    422 		KASSERT(newl != NULL);
    423 	} else {
    424 		sched_dequeue(newl);
    425 	}
    426 	KASSERT(lwp_locked(newl, &sched_mutex));
    427 	newl->l_stat = LSONPROC;
    428 	newl->l_cpu = l->l_cpu;
    429 
    430 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    431 	if (l->l_mutex != &sched_mutex) {
    432 		mutex_exit(&sched_mutex);
    433 	}
    434 #endif
    435 
    436 	updatertime(l, spc);
    437 	if (l != newl) {
    438 		struct lwp *prevlwp;
    439 
    440 		uvmexp.swtch++;
    441 		pmap_deactivate(l);
    442 		prevlwp = cpu_switchto(l, newl);
    443 		sched_switch_unlock(prevlwp, l);
    444 		pmap_activate(l);
    445 		retval = 1;
    446 	} else {
    447 		sched_switch_unlock(l, l);
    448 		retval = 0;
    449 	}
    450 
    451 	KASSERT(l == curlwp);
    452 	KASSERT(l->l_stat == LSONPROC);
    453 
    454 	/*
    455 	 * XXXSMP If we are using h/w performance counters, restore context.
    456 	 */
    457 #if PERFCTRS
    458 	if (PMC_ENABLED(l->l_proc)) {
    459 		pmc_restore_context(l->l_proc);
    460 	}
    461 #endif
    462 
    463 	/*
    464 	 * We're running again; record our new start time.  We might
    465 	 * be running on a new CPU now, so don't use the cached
    466 	 * schedstate_percpu pointer.
    467 	 */
    468 	SYSCALL_TIME_WAKEUP(l);
    469 	KDASSERT(l->l_cpu == curcpu());
    470 
    471 	(void)splsched();
    472 	splx(oldspl);
    473 	return retval;
    474 }
    475 
    476 /*
    477  * Change process state to be runnable, placing it on the run queue if it is
    478  * in memory, and awakening the swapper if it isn't in memory.
    479  *
    480  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    481  */
    482 void
    483 setrunnable(struct lwp *l)
    484 {
    485 	struct proc *p = l->l_proc;
    486 	sigset_t *ss;
    487 
    488 	KASSERT((l->l_flag & LW_IDLE) == 0);
    489 	KASSERT(mutex_owned(&p->p_smutex));
    490 	KASSERT(lwp_locked(l, NULL));
    491 
    492 	switch (l->l_stat) {
    493 	case LSSTOP:
    494 		/*
    495 		 * If we're being traced (possibly because someone attached us
    496 		 * while we were stopped), check for a signal from the debugger.
    497 		 */
    498 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    499 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    500 				ss = &l->l_sigpend.sp_set;
    501 			else
    502 				ss = &p->p_sigpend.sp_set;
    503 			sigaddset(ss, p->p_xstat);
    504 			signotify(l);
    505 		}
    506 		p->p_nrlwps++;
    507 		break;
    508 	case LSSUSPENDED:
    509 		l->l_flag &= ~LW_WSUSPEND;
    510 		p->p_nrlwps++;
    511 		break;
    512 	case LSSLEEP:
    513 		KASSERT(l->l_wchan != NULL);
    514 		break;
    515 	default:
    516 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    517 	}
    518 
    519 	/*
    520 	 * If the LWP was sleeping interruptably, then it's OK to start it
    521 	 * again.  If not, mark it as still sleeping.
    522 	 */
    523 	if (l->l_wchan != NULL) {
    524 		l->l_stat = LSSLEEP;
    525 		/* lwp_unsleep() will release the lock. */
    526 		lwp_unsleep(l);
    527 		return;
    528 	}
    529 
    530 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
    531 
    532 	/*
    533 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    534 	 * about to call mi_switch(), in which case it will yield.
    535 	 *
    536 	 * XXXSMP Will need to change for preemption.
    537 	 */
    538 #ifdef MULTIPROCESSOR
    539 	if (l->l_cpu->ci_curlwp == l) {
    540 #else
    541 	if (l == curlwp) {
    542 #endif
    543 		l->l_stat = LSONPROC;
    544 		l->l_slptime = 0;
    545 		lwp_unlock(l);
    546 		return;
    547 	}
    548 
    549 	/*
    550 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    551 	 * to bring it back in.  Otherwise, enter it into a run queue.
    552 	 */
    553 	sched_setrunnable(l);
    554 	l->l_stat = LSRUN;
    555 	l->l_slptime = 0;
    556 
    557 	if (l->l_flag & LW_INMEM) {
    558 		sched_enqueue(l);
    559 		resched_cpu(l);
    560 		lwp_unlock(l);
    561 	} else {
    562 		lwp_unlock(l);
    563 		uvm_kick_scheduler();
    564 	}
    565 }
    566 
    567 /*
    568  * suspendsched:
    569  *
    570  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    571  */
    572 void
    573 suspendsched(void)
    574 {
    575 #ifdef MULTIPROCESSOR
    576 	CPU_INFO_ITERATOR cii;
    577 	struct cpu_info *ci;
    578 #endif
    579 	struct lwp *l;
    580 	struct proc *p;
    581 
    582 	/*
    583 	 * We do this by process in order not to violate the locking rules.
    584 	 */
    585 	mutex_enter(&proclist_mutex);
    586 	PROCLIST_FOREACH(p, &allproc) {
    587 		mutex_enter(&p->p_smutex);
    588 
    589 		if ((p->p_flag & PK_SYSTEM) != 0) {
    590 			mutex_exit(&p->p_smutex);
    591 			continue;
    592 		}
    593 
    594 		p->p_stat = SSTOP;
    595 
    596 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    597 			if (l == curlwp)
    598 				continue;
    599 
    600 			lwp_lock(l);
    601 
    602 			/*
    603 			 * Set L_WREBOOT so that the LWP will suspend itself
    604 			 * when it tries to return to user mode.  We want to
    605 			 * try and get to get as many LWPs as possible to
    606 			 * the user / kernel boundary, so that they will
    607 			 * release any locks that they hold.
    608 			 */
    609 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    610 
    611 			if (l->l_stat == LSSLEEP &&
    612 			    (l->l_flag & LW_SINTR) != 0) {
    613 				/* setrunnable() will release the lock. */
    614 				setrunnable(l);
    615 				continue;
    616 			}
    617 
    618 			lwp_unlock(l);
    619 		}
    620 
    621 		mutex_exit(&p->p_smutex);
    622 	}
    623 	mutex_exit(&proclist_mutex);
    624 
    625 	/*
    626 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    627 	 * They'll trap into the kernel and suspend themselves in userret().
    628 	 */
    629 	sched_lock(0);
    630 #ifdef MULTIPROCESSOR
    631 	for (CPU_INFO_FOREACH(cii, ci))
    632 		cpu_need_resched(ci, 0);
    633 #else
    634 	cpu_need_resched(curcpu(), 0);
    635 #endif
    636 	sched_unlock(0);
    637 }
    638 
    639 /*
    640  * sched_kpri:
    641  *
    642  *	Scale a priority level to a kernel priority level, usually
    643  *	for an LWP that is about to sleep.
    644  */
    645 pri_t
    646 sched_kpri(struct lwp *l)
    647 {
    648 	/*
    649 	 * Scale user priorities (127 -> 50) up to kernel priorities
    650 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
    651 	 * for high priority kthreads.  Kernel priorities passed in
    652 	 * are left "as is".  XXX This is somewhat arbitrary.
    653 	 */
    654 	static const uint8_t kpri_tab[] = {
    655 		 0,   1,   2,   3,   4,   5,   6,   7,
    656 		 8,   9,  10,  11,  12,  13,  14,  15,
    657 		16,  17,  18,  19,  20,  21,  22,  23,
    658 		24,  25,  26,  27,  28,  29,  30,  31,
    659 		32,  33,  34,  35,  36,  37,  38,  39,
    660 		40,  41,  42,  43,  44,  45,  46,  47,
    661 		48,  49,   8,   8,   9,   9,  10,  10,
    662 		11,  11,  12,  12,  13,  14,  14,  15,
    663 		15,  16,  16,  17,  17,  18,  18,  19,
    664 		20,  20,  21,  21,  22,  22,  23,  23,
    665 		24,  24,  25,  26,  26,  27,  27,  28,
    666 		28,  29,  29,  30,  30,  31,  32,  32,
    667 		33,  33,  34,  34,  35,  35,  36,  36,
    668 		37,  38,  38,  39,  39,  40,  40,  41,
    669 		41,  42,  42,  43,  44,  44,  45,  45,
    670 		46,  46,  47,  47,  48,  48,  49,  49,
    671 	};
    672 
    673 	return (pri_t)kpri_tab[l->l_usrpri];
    674 }
    675 
    676 /*
    677  * sched_unsleep:
    678  *
    679  *	The is called when the LWP has not been awoken normally but instead
    680  *	interrupted: for example, if the sleep timed out.  Because of this,
    681  *	it's not a valid action for running or idle LWPs.
    682  */
    683 static void
    684 sched_unsleep(struct lwp *l)
    685 {
    686 
    687 	lwp_unlock(l);
    688 	panic("sched_unsleep");
    689 }
    690 
    691 inline void
    692 resched_cpu(struct lwp *l)
    693 {
    694 	struct cpu_info *ci;
    695 	const pri_t pri = lwp_eprio(l);
    696 
    697 	/*
    698 	 * XXXSMP
    699 	 * Since l->l_cpu persists across a context switch,
    700 	 * this gives us *very weak* processor affinity, in
    701 	 * that we notify the CPU on which the process last
    702 	 * ran that it should try to switch.
    703 	 *
    704 	 * This does not guarantee that the process will run on
    705 	 * that processor next, because another processor might
    706 	 * grab it the next time it performs a context switch.
    707 	 *
    708 	 * This also does not handle the case where its last
    709 	 * CPU is running a higher-priority process, but every
    710 	 * other CPU is running a lower-priority process.  There
    711 	 * are ways to handle this situation, but they're not
    712 	 * currently very pretty, and we also need to weigh the
    713 	 * cost of moving a process from one CPU to another.
    714 	 *
    715 	 * XXXSMP
    716 	 * There is also the issue of locking the other CPU's
    717 	 * sched state, which we currently do not do.
    718 	 */
    719 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    720 	if (pri < ci->ci_schedstate.spc_curpriority)
    721 		cpu_need_resched(ci, 0);
    722 }
    723 
    724 static void
    725 sched_changepri(struct lwp *l, pri_t pri)
    726 {
    727 
    728 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
    729 
    730 	l->l_usrpri = pri;
    731 	if (l->l_priority < PUSER)
    732 		return;
    733 
    734 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    735 		l->l_priority = pri;
    736 		return;
    737 	}
    738 
    739 	sched_dequeue(l);
    740 	l->l_priority = pri;
    741 	sched_enqueue(l);
    742 	resched_cpu(l);
    743 }
    744 
    745 static void
    746 sched_lendpri(struct lwp *l, pri_t pri)
    747 {
    748 
    749 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
    750 
    751 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    752 		l->l_inheritedprio = pri;
    753 		return;
    754 	}
    755 
    756 	sched_dequeue(l);
    757 	l->l_inheritedprio = pri;
    758 	sched_enqueue(l);
    759 	resched_cpu(l);
    760 }
    761 
    762 struct lwp *
    763 syncobj_noowner(wchan_t wchan)
    764 {
    765 
    766 	return NULL;
    767 }
    768