Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.177.2.2
      1 /*	$NetBSD: kern_synch.c,v 1.177.2.2 2007/02/17 11:00:52 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. Neither the name of the University nor the names of its contributors
     58  *    may be used to endorse or promote products derived from this software
     59  *    without specific prior written permission.
     60  *
     61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71  * SUCH DAMAGE.
     72  *
     73  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.177.2.2 2007/02/17 11:00:52 yamt Exp $");
     78 
     79 #include "opt_ddb.h"
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/proc.h>
     91 #include <sys/kernel.h>
     92 #include <sys/buf.h>
     93 #if defined(PERFCTRS)
     94 #include <sys/pmc.h>
     95 #endif
     96 #include <sys/signalvar.h>
     97 #include <sys/resourcevar.h>
     98 #include <sys/sched.h>
     99 #include <sys/kauth.h>
    100 #include <sys/sleepq.h>
    101 #include <sys/lockdebug.h>
    102 
    103 #include <uvm/uvm_extern.h>
    104 
    105 #include <machine/cpu.h>
    106 
    107 int	lbolt;			/* once a second sleep address */
    108 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    109 
    110 /*
    111  * The global scheduler state.
    112  */
    113 kmutex_t	sched_mutex;		/* global sched state mutex */
    114 struct prochd	sched_qs[RUNQUE_NQS];	/* run queues */
    115 volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    116 
    117 void	schedcpu(void *);
    118 void	updatepri(struct lwp *);
    119 
    120 void	sched_unsleep(struct lwp *);
    121 void	sched_changepri(struct lwp *, int);
    122 
    123 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    124 static unsigned int schedcpu_ticks;
    125 
    126 syncobj_t sleep_syncobj = {
    127 	SOBJ_SLEEPQ_SORTED,
    128 	sleepq_unsleep,
    129 	sleepq_changepri
    130 };
    131 
    132 syncobj_t sched_syncobj = {
    133 	SOBJ_SLEEPQ_SORTED,
    134 	sched_unsleep,
    135 	sched_changepri
    136 };
    137 
    138 /*
    139  * Force switch among equal priority processes every 100ms.
    140  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    141  */
    142 /* ARGSUSED */
    143 void
    144 roundrobin(struct cpu_info *ci)
    145 {
    146 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    147 
    148 	spc->spc_rrticks = rrticks;
    149 
    150 	if (!CURCPU_IDLE_P()) {
    151 		if (spc->spc_flags & SPCF_SEENRR) {
    152 			/*
    153 			 * The process has already been through a roundrobin
    154 			 * without switching and may be hogging the CPU.
    155 			 * Indicate that the process should yield.
    156 			 */
    157 			spc->spc_flags |= SPCF_SHOULDYIELD;
    158 		} else
    159 			spc->spc_flags |= SPCF_SEENRR;
    160 	}
    161 	cpu_need_resched(curcpu());
    162 }
    163 
    164 #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    165 #define	NICE_WEIGHT 2			/* priorities per nice level */
    166 
    167 #define	ESTCPU_SHIFT	11
    168 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    169 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    170 
    171 /*
    172  * Constants for digital decay and forget:
    173  *	90% of (p_estcpu) usage in 5 * loadav time
    174  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    175  *          Note that, as ps(1) mentions, this can let percentages
    176  *          total over 100% (I've seen 137.9% for 3 processes).
    177  *
    178  * Note that hardclock updates p_estcpu and p_cpticks independently.
    179  *
    180  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    181  * That is, the system wants to compute a value of decay such
    182  * that the following for loop:
    183  * 	for (i = 0; i < (5 * loadavg); i++)
    184  * 		p_estcpu *= decay;
    185  * will compute
    186  * 	p_estcpu *= 0.1;
    187  * for all values of loadavg:
    188  *
    189  * Mathematically this loop can be expressed by saying:
    190  * 	decay ** (5 * loadavg) ~= .1
    191  *
    192  * The system computes decay as:
    193  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    194  *
    195  * We wish to prove that the system's computation of decay
    196  * will always fulfill the equation:
    197  * 	decay ** (5 * loadavg) ~= .1
    198  *
    199  * If we compute b as:
    200  * 	b = 2 * loadavg
    201  * then
    202  * 	decay = b / (b + 1)
    203  *
    204  * We now need to prove two things:
    205  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    206  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    207  *
    208  * Facts:
    209  *         For x close to zero, exp(x) =~ 1 + x, since
    210  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    211  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    212  *         For x close to zero, ln(1+x) =~ x, since
    213  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    214  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    215  *         ln(.1) =~ -2.30
    216  *
    217  * Proof of (1):
    218  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    219  *	solving for factor,
    220  *      ln(factor) =~ (-2.30/5*loadav), or
    221  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    222  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    223  *
    224  * Proof of (2):
    225  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    226  *	solving for power,
    227  *      power*ln(b/(b+1)) =~ -2.30, or
    228  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    229  *
    230  * Actual power values for the implemented algorithm are as follows:
    231  *      loadav: 1       2       3       4
    232  *      power:  5.68    10.32   14.94   19.55
    233  */
    234 
    235 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    236 #define	loadfactor(loadav)	(2 * (loadav))
    237 
    238 static fixpt_t
    239 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    240 {
    241 
    242 	if (estcpu == 0) {
    243 		return 0;
    244 	}
    245 
    246 #if !defined(_LP64)
    247 	/* avoid 64bit arithmetics. */
    248 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    249 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    250 		return estcpu * loadfac / (loadfac + FSCALE);
    251 	}
    252 #endif /* !defined(_LP64) */
    253 
    254 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    255 }
    256 
    257 /*
    258  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    259  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    260  * less than (1 << ESTCPU_SHIFT).
    261  *
    262  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    263  */
    264 static fixpt_t
    265 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    266 {
    267 
    268 	if ((n << FSHIFT) >= 7 * loadfac) {
    269 		return 0;
    270 	}
    271 
    272 	while (estcpu != 0 && n > 1) {
    273 		estcpu = decay_cpu(loadfac, estcpu);
    274 		n--;
    275 	}
    276 
    277 	return estcpu;
    278 }
    279 
    280 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    281 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    282 
    283 /*
    284  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    285  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    286  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    287  *
    288  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    289  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    290  *
    291  * If you dont want to bother with the faster/more-accurate formula, you
    292  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    293  * (more general) method of calculating the %age of CPU used by a process.
    294  */
    295 #define	CCPU_SHIFT	11
    296 
    297 /*
    298  * schedcpu:
    299  *
    300  *	Recompute process priorities, every hz ticks.
    301  *
    302  *	XXXSMP This needs to be reorganised in order to reduce the locking
    303  *	burden.
    304  */
    305 /* ARGSUSED */
    306 void
    307 schedcpu(void *arg)
    308 {
    309 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    310 	struct rlimit *rlim;
    311 	struct lwp *l;
    312 	struct proc *p;
    313 	int minslp, clkhz, sig;
    314 	long runtm;
    315 
    316 	schedcpu_ticks++;
    317 
    318 	mutex_enter(&proclist_mutex);
    319 	PROCLIST_FOREACH(p, &allproc) {
    320 		/*
    321 		 * Increment time in/out of memory and sleep time (if
    322 		 * sleeping).  We ignore overflow; with 16-bit int's
    323 		 * (remember them?) overflow takes 45 days.
    324 		 */
    325 		minslp = 2;
    326 		mutex_enter(&p->p_smutex);
    327 		runtm = p->p_rtime.tv_sec;
    328 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    329 			if ((l->l_flag & L_IDLE) != 0)
    330 				continue;
    331 			lwp_lock(l);
    332 			runtm += l->l_rtime.tv_sec;
    333 			l->l_swtime++;
    334 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    335 			    l->l_stat == LSSUSPENDED) {
    336 				l->l_slptime++;
    337 				minslp = min(minslp, l->l_slptime);
    338 			} else
    339 				minslp = 0;
    340 			lwp_unlock(l);
    341 		}
    342 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    343 
    344 		/*
    345 		 * Check if the process exceeds its CPU resource allocation.
    346 		 * If over max, kill it.
    347 		 */
    348 		rlim = &p->p_rlimit[RLIMIT_CPU];
    349 		sig = 0;
    350 		if (runtm >= rlim->rlim_cur) {
    351 			if (runtm >= rlim->rlim_max)
    352 				sig = SIGKILL;
    353 			else {
    354 				sig = SIGXCPU;
    355 				if (rlim->rlim_cur < rlim->rlim_max)
    356 					rlim->rlim_cur += 5;
    357 			}
    358 		}
    359 
    360 		/*
    361 		 * If the process has run for more than autonicetime, reduce
    362 		 * priority to give others a chance.
    363 		 */
    364 		if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
    365 		    && kauth_cred_geteuid(p->p_cred)) {
    366 			mutex_spin_enter(&p->p_stmutex);
    367 			p->p_nice = autoniceval + NZERO;
    368 			resetprocpriority(p);
    369 			mutex_spin_exit(&p->p_stmutex);
    370 		}
    371 
    372 		/*
    373 		 * If the process has slept the entire second,
    374 		 * stop recalculating its priority until it wakes up.
    375 		 */
    376 		if (minslp <= 1) {
    377 			/*
    378 			 * p_pctcpu is only for ps.
    379 			 */
    380 			mutex_spin_enter(&p->p_stmutex);
    381 			clkhz = stathz != 0 ? stathz : hz;
    382 #if	(FSHIFT >= CCPU_SHIFT)
    383 			p->p_pctcpu += (clkhz == 100)?
    384 			    ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    385 			    100 * (((fixpt_t) p->p_cpticks)
    386 			    << (FSHIFT - CCPU_SHIFT)) / clkhz;
    387 #else
    388 			p->p_pctcpu += ((FSCALE - ccpu) *
    389 			    (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    390 #endif
    391 			p->p_cpticks = 0;
    392 			p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    393 
    394 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    395 				if ((l->l_flag & L_IDLE) != 0)
    396 					continue;
    397 				lwp_lock(l);
    398 				if (l->l_slptime <= 1 &&
    399 				    l->l_priority >= PUSER)
    400 					resetpriority(l);
    401 				lwp_unlock(l);
    402 			}
    403 			mutex_spin_exit(&p->p_stmutex);
    404 		}
    405 
    406 		mutex_exit(&p->p_smutex);
    407 		if (sig) {
    408 			psignal(p, sig);
    409 		}
    410 	}
    411 	mutex_exit(&proclist_mutex);
    412 	uvm_meter();
    413 	wakeup((caddr_t)&lbolt);
    414 	callout_schedule(&schedcpu_ch, hz);
    415 }
    416 
    417 /*
    418  * Recalculate the priority of a process after it has slept for a while.
    419  */
    420 void
    421 updatepri(struct lwp *l)
    422 {
    423 	struct proc *p = l->l_proc;
    424 	fixpt_t loadfac;
    425 
    426 	LOCK_ASSERT(lwp_locked(l, NULL));
    427 	KASSERT(l->l_slptime > 1);
    428 
    429 	loadfac = loadfactor(averunnable.ldavg[0]);
    430 
    431 	l->l_slptime--; /* the first time was done in schedcpu */
    432 	/* XXX NJWLWP */
    433 	/* XXXSMP occasionally unlocked, should be per-LWP */
    434 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    435 	resetpriority(l);
    436 }
    437 
    438 /*
    439  * During autoconfiguration or after a panic, a sleep will simply lower the
    440  * priority briefly to allow interrupts, then return.  The priority to be
    441  * used (safepri) is machine-dependent, thus this value is initialized and
    442  * maintained in the machine-dependent layers.  This priority will typically
    443  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    444  * it can be made higher to block network software interrupts after panics.
    445  */
    446 int	safepri;
    447 
    448 /*
    449  * OBSOLETE INTERFACE
    450  *
    451  * General sleep call.  Suspends the current process until a wakeup is
    452  * performed on the specified identifier.  The process will then be made
    453  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    454  * means no timeout).  If pri includes PCATCH flag, signals are checked
    455  * before and after sleeping, else signals are not checked.  Returns 0 if
    456  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    457  * signal needs to be delivered, ERESTART is returned if the current system
    458  * call should be restarted if possible, and EINTR is returned if the system
    459  * call should be interrupted by the signal (return EINTR).
    460  *
    461  * The interlock is held until we are on a sleep queue. The interlock will
    462  * be locked before returning back to the caller unless the PNORELOCK flag
    463  * is specified, in which case the interlock will always be unlocked upon
    464  * return.
    465  */
    466 int
    467 ltsleep(wchan_t ident, int priority, const char *wmesg, int timo,
    468 	volatile struct simplelock *interlock)
    469 {
    470 	struct lwp *l = curlwp;
    471 	sleepq_t *sq;
    472 	int error, catch;
    473 
    474 	if (sleepq_dontsleep(l)) {
    475 		(void)sleepq_abort(NULL, 0);
    476 		if ((priority & PNORELOCK) != 0)
    477 			simple_unlock(interlock);
    478 		return 0;
    479 	}
    480 
    481 	sq = sleeptab_lookup(&sleeptab, ident);
    482 	sleepq_enter(sq, l);
    483 
    484 	if (interlock != NULL) {
    485 		LOCK_ASSERT(simple_lock_held(interlock));
    486 		simple_unlock(interlock);
    487 	}
    488 
    489 	catch = priority & PCATCH;
    490 	sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
    491 	    &sleep_syncobj);
    492 	error = sleepq_unblock(timo, catch);
    493 
    494 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    495 		simple_lock(interlock);
    496 
    497 	return error;
    498 }
    499 
    500 /*
    501  * General sleep call for situations where a wake-up is not expected.
    502  */
    503 int
    504 kpause(const char *wmesg, boolean_t intr, int timo, kmutex_t *mtx)
    505 {
    506 	struct lwp *l = curlwp;
    507 	sleepq_t *sq;
    508 	int error;
    509 
    510 	if (sleepq_dontsleep(l))
    511 		return sleepq_abort(NULL, 0);
    512 
    513 	if (mtx != NULL)
    514 		mutex_exit(mtx);
    515 	sq = sleeptab_lookup(&sleeptab, l);
    516 	sleepq_enter(sq, l);
    517 	sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
    518 	error = sleepq_unblock(timo, intr);
    519 	if (mtx != NULL)
    520 		mutex_enter(mtx);
    521 
    522 	return error;
    523 }
    524 
    525 /*
    526  * OBSOLETE INTERFACE
    527  *
    528  * Make all processes sleeping on the specified identifier runnable.
    529  */
    530 void
    531 wakeup(wchan_t ident)
    532 {
    533 	sleepq_t *sq;
    534 
    535 	if (cold)
    536 		return;
    537 
    538 	sq = sleeptab_lookup(&sleeptab, ident);
    539 	sleepq_wake(sq, ident, (u_int)-1);
    540 }
    541 
    542 /*
    543  * OBSOLETE INTERFACE
    544  *
    545  * Make the highest priority process first in line on the specified
    546  * identifier runnable.
    547  */
    548 void
    549 wakeup_one(wchan_t ident)
    550 {
    551 	sleepq_t *sq;
    552 
    553 	if (cold)
    554 		return;
    555 
    556 	sq = sleeptab_lookup(&sleeptab, ident);
    557 	sleepq_wake(sq, ident, 1);
    558 }
    559 
    560 
    561 /*
    562  * General yield call.  Puts the current process back on its run queue and
    563  * performs a voluntary context switch.  Should only be called when the
    564  * current process explicitly requests it (eg sched_yield(2) in compat code).
    565  */
    566 void
    567 yield(void)
    568 {
    569 	struct lwp *l = curlwp;
    570 
    571 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    572 	lwp_lock(l);
    573 	if (l->l_stat == LSONPROC) {
    574 		KASSERT(lwp_locked(l, &sched_mutex));
    575 		l->l_priority = l->l_usrpri;
    576 	}
    577 	l->l_nvcsw++;
    578 	mi_switch(l, NULL);
    579 	KERNEL_LOCK(l->l_biglocks, l);
    580 }
    581 
    582 /*
    583  * General preemption call.  Puts the current process back on its run queue
    584  * and performs an involuntary context switch.
    585  */
    586 void
    587 preempt(void)
    588 {
    589 	struct lwp *l = curlwp;
    590 
    591 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    592 	lwp_lock(l);
    593 	if (l->l_stat == LSONPROC) {
    594 		KASSERT(lwp_locked(l, &sched_mutex));
    595 		l->l_priority = l->l_usrpri;
    596 	}
    597 	l->l_nivcsw++;
    598 	(void)mi_switch(l, NULL);
    599 	KERNEL_LOCK(l->l_biglocks, l);
    600 }
    601 
    602 /*
    603  * sched_switch_unlock: update 'curlwp' and release old lwp.
    604  */
    605 
    606 void
    607 sched_switch_unlock(struct lwp *old, struct lwp *new)
    608 {
    609 
    610 	KASSERT(old == NULL || old == curlwp);
    611 
    612 	if (old != NULL) {
    613 		LOCKDEBUG_BARRIER(&old->l_mutex, 1);
    614 	} else {
    615 		LOCKDEBUG_BARRIER(NULL, 1);
    616 	}
    617 
    618 	curlwp = new;
    619 	if (old != NULL) {
    620 		lwp_unlock(old);
    621 	}
    622 	spl0();
    623 }
    624 
    625 /*
    626  * The machine independent parts of context switch.  Switch to "new"
    627  * if non-NULL, otherwise let cpu_switch choose the next lwp.
    628  *
    629  * Returns 1 if another process was actually run.
    630  */
    631 int
    632 mi_switch(struct lwp *l, struct lwp *newl)
    633 {
    634 	struct schedstate_percpu *spc;
    635 	struct timeval tv;
    636 	int retval, oldspl;
    637 	long s, u;
    638 
    639 	LOCK_ASSERT(lwp_locked(l, NULL));
    640 
    641 #ifdef LOCKDEBUG
    642 	spinlock_switchcheck();
    643 	simple_lock_switchcheck();
    644 #endif
    645 #ifdef KSTACK_CHECK_MAGIC
    646 	kstack_check_magic(l);
    647 #endif
    648 
    649 	/*
    650 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    651 	 * are after is the run time and that's guarenteed to have been last
    652 	 * updated by this CPU.
    653 	 */
    654 	KDASSERT(l->l_cpu == curcpu());
    655 	spc = &l->l_cpu->ci_schedstate;
    656 
    657 	if ((l->l_flag & L_IDLE) == 0) {
    658 		/*
    659 		 * Compute the amount of time during which the current
    660 		 * process was running.
    661 		 */
    662 		microtime(&tv);
    663 		u = l->l_rtime.tv_usec +
    664 		    (tv.tv_usec - spc->spc_runtime.tv_usec);
    665 		s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    666 		if (u < 0) {
    667 			u += 1000000;
    668 			s--;
    669 		} else if (u >= 1000000) {
    670 			u -= 1000000;
    671 			s++;
    672 		}
    673 		l->l_rtime.tv_usec = u;
    674 		l->l_rtime.tv_sec = s;
    675 	}
    676 
    677 	/*
    678 	 * XXXSMP If we are using h/w performance counters, save context.
    679 	 */
    680 #if PERFCTRS
    681 	if (PMC_ENABLED(l->l_proc)) {
    682 		pmc_save_context(l->l_proc);
    683 	}
    684 #endif
    685 
    686 	/*
    687 	 * If on the CPU and we have gotten this far, then we must yield.
    688 	 */
    689 	KASSERT(l->l_stat != LSRUN);
    690 	if (l->l_stat == LSONPROC) {
    691 		KASSERT(lwp_locked(l, &sched_mutex));
    692 		l->l_stat = LSRUN;
    693 		if ((l->l_flag & L_IDLE) == 0) {
    694 			setrunqueue(l);
    695 		}
    696 	}
    697 	uvmexp.swtch++;
    698 
    699 	/*
    700 	 * Process is about to yield the CPU; clear the appropriate
    701 	 * scheduling flags.
    702 	 */
    703 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    704 
    705 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    706 
    707 	/*
    708 	 * Switch to the new LWP if necessary.
    709 	 * When we run again, we'll return back here.
    710 	 */
    711 	oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    712 
    713 	/*
    714 	 * Acquire the sched_mutex if necessary.
    715 	 */
    716 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    717 	if (l->l_mutex != &sched_mutex) {
    718 		mutex_enter(&sched_mutex);
    719 	}
    720 #endif
    721 
    722 	if (newl == NULL) {
    723 		newl = nextrunqueue();
    724 	}
    725 	if (newl != NULL) {
    726 		KASSERT(lwp_locked(newl, &sched_mutex));
    727 		remrunqueue(newl);
    728 	} else {
    729 		newl = l->l_cpu->ci_data.cpu_idlelwp;
    730 		KASSERT(newl != NULL);
    731 	}
    732 
    733 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    734 	if (l->l_mutex != &sched_mutex) {
    735 		mutex_exit(&sched_mutex);
    736 	}
    737 #endif
    738 
    739 	newl->l_stat = LSONPROC;
    740 	if (l != newl) {
    741 		struct lwp *prevlwp;
    742 
    743 		uvmexp.swtch++;
    744 		pmap_deactivate(l);
    745 		newl->l_cpu = l->l_cpu;
    746 		prevlwp = cpu_switchto(l, newl);
    747 		sched_switch_unlock(prevlwp, l);
    748 		pmap_activate(l);
    749 		retval = 1;
    750 	} else {
    751 		sched_switch_unlock(l, l);
    752 		retval = 0;
    753 	}
    754 
    755 	KASSERT(l == curlwp);
    756 	KASSERT(l->l_stat == LSONPROC);
    757 
    758 	/*
    759 	 * XXXSMP If we are using h/w performance counters, restore context.
    760 	 */
    761 #if PERFCTRS
    762 	if (PMC_ENABLED(l->l_proc)) {
    763 		pmc_restore_context(l->l_proc);
    764 	}
    765 #endif
    766 
    767 	/*
    768 	 * We're running again; record our new start time.  We might
    769 	 * be running on a new CPU now, so don't use the cached
    770 	 * schedstate_percpu pointer.
    771 	 */
    772 	KDASSERT(l->l_cpu == curcpu());
    773 	if ((l->l_flag & L_IDLE) == 0) {
    774 		microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    775 	}
    776 
    777 	(void)splsched();
    778 	splx(oldspl);
    779 	return retval;
    780 }
    781 
    782 /*
    783  * Initialize the (doubly-linked) run queues
    784  * to be empty.
    785  */
    786 void
    787 rqinit()
    788 {
    789 	int i;
    790 
    791 	for (i = 0; i < RUNQUE_NQS; i++)
    792 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    793 		    (struct lwp *)&sched_qs[i];
    794 
    795 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    796 }
    797 
    798 static inline void
    799 resched_lwp(struct lwp *l, u_char pri)
    800 {
    801 	struct cpu_info *ci;
    802 
    803 	/*
    804 	 * XXXSMP
    805 	 * Since l->l_cpu persists across a context switch,
    806 	 * this gives us *very weak* processor affinity, in
    807 	 * that we notify the CPU on which the process last
    808 	 * ran that it should try to switch.
    809 	 *
    810 	 * This does not guarantee that the process will run on
    811 	 * that processor next, because another processor might
    812 	 * grab it the next time it performs a context switch.
    813 	 *
    814 	 * This also does not handle the case where its last
    815 	 * CPU is running a higher-priority process, but every
    816 	 * other CPU is running a lower-priority process.  There
    817 	 * are ways to handle this situation, but they're not
    818 	 * currently very pretty, and we also need to weigh the
    819 	 * cost of moving a process from one CPU to another.
    820 	 *
    821 	 * XXXSMP
    822 	 * There is also the issue of locking the other CPU's
    823 	 * sched state, which we currently do not do.
    824 	 */
    825 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    826 	if (pri < ci->ci_schedstate.spc_curpriority)
    827 		cpu_need_resched(ci);
    828 }
    829 
    830 /*
    831  * Change process state to be runnable, placing it on the run queue if it is
    832  * in memory, and awakening the swapper if it isn't in memory.
    833  *
    834  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    835  */
    836 void
    837 setrunnable(struct lwp *l)
    838 {
    839 	struct proc *p = l->l_proc;
    840 	sigset_t *ss;
    841 
    842 	KASSERT((l->l_flag & L_IDLE) == 0);
    843 	LOCK_ASSERT(mutex_owned(&p->p_smutex));
    844 	LOCK_ASSERT(lwp_locked(l, NULL));
    845 
    846 	switch (l->l_stat) {
    847 	case LSSTOP:
    848 		/*
    849 		 * If we're being traced (possibly because someone attached us
    850 		 * while we were stopped), check for a signal from the debugger.
    851 		 */
    852 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    853 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    854 				ss = &l->l_sigpend.sp_set;
    855 			else
    856 				ss = &p->p_sigpend.sp_set;
    857 			sigaddset(ss, p->p_xstat);
    858 			signotify(l);
    859 		}
    860 		p->p_nrlwps++;
    861 		break;
    862 	case LSSUSPENDED:
    863 		l->l_flag &= ~L_WSUSPEND;
    864 		p->p_nrlwps++;
    865 		break;
    866 	case LSSLEEP:
    867 		KASSERT(l->l_wchan != NULL);
    868 		break;
    869 	default:
    870 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    871 	}
    872 
    873 	/*
    874 	 * If the LWP was sleeping interruptably, then it's OK to start it
    875 	 * again.  If not, mark it as still sleeping.
    876 	 */
    877 	if (l->l_wchan != NULL) {
    878 		l->l_stat = LSSLEEP;
    879 		if ((l->l_flag & L_SINTR) != 0)
    880 			lwp_unsleep(l);
    881 		else {
    882 			lwp_unlock(l);
    883 #ifdef DIAGNOSTIC
    884 			panic("setrunnable: !L_SINTR");
    885 #endif
    886 		}
    887 		return;
    888 	}
    889 
    890 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
    891 
    892 	/*
    893 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    894 	 * about to call mi_switch(), in which case it will yield.
    895 	 *
    896 	 * XXXSMP Will need to change for preemption.
    897 	 */
    898 #ifdef MULTIPROCESSOR
    899 	if (l->l_cpu->ci_curlwp == l) {
    900 #else
    901 	if (l == curlwp) {
    902 #endif
    903 		l->l_stat = LSONPROC;
    904 		l->l_slptime = 0;
    905 		lwp_unlock(l);
    906 		return;
    907 	}
    908 
    909 	/*
    910 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    911 	 * to bring it back in.  Otherwise, enter it into a run queue.
    912 	 */
    913 	if (l->l_slptime > 1)
    914 		updatepri(l);
    915 	l->l_stat = LSRUN;
    916 	l->l_slptime = 0;
    917 
    918 	if (l->l_flag & L_INMEM) {
    919 		setrunqueue(l);
    920 		resched_lwp(l, l->l_priority);
    921 		lwp_unlock(l);
    922 	} else {
    923 		lwp_unlock(l);
    924 		uvm_kick_scheduler();
    925 	}
    926 }
    927 
    928 boolean_t
    929 sched_curcpu_runnable_p(void)
    930 {
    931 
    932 	return sched_whichqs != 0;
    933 }
    934 
    935 /*
    936  * Compute the priority of a process when running in user mode.
    937  * Arrange to reschedule if the resulting priority is better
    938  * than that of the current process.
    939  */
    940 void
    941 resetpriority(struct lwp *l)
    942 {
    943 	unsigned int newpriority;
    944 	struct proc *p = l->l_proc;
    945 
    946 	/* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
    947 	LOCK_ASSERT(lwp_locked(l, NULL));
    948 
    949 	if ((l->l_flag & L_SYSTEM) != 0)
    950 		return;
    951 
    952 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
    953 	    NICE_WEIGHT * (p->p_nice - NZERO);
    954 	newpriority = min(newpriority, MAXPRI);
    955 	lwp_changepri(l, newpriority);
    956 }
    957 
    958 /*
    959  * Recompute priority for all LWPs in a process.
    960  */
    961 void
    962 resetprocpriority(struct proc *p)
    963 {
    964 	struct lwp *l;
    965 
    966 	LOCK_ASSERT(mutex_owned(&p->p_stmutex));
    967 
    968 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    969 		lwp_lock(l);
    970 		resetpriority(l);
    971 		lwp_unlock(l);
    972 	}
    973 }
    974 
    975 /*
    976  * We adjust the priority of the current process.  The priority of a process
    977  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    978  * is increased here.  The formula for computing priorities (in kern_synch.c)
    979  * will compute a different value each time p_estcpu increases. This can
    980  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    981  * queue will not change.  The CPU usage estimator ramps up quite quickly
    982  * when the process is running (linearly), and decays away exponentially, at
    983  * a rate which is proportionally slower when the system is busy.  The basic
    984  * principle is that the system will 90% forget that the process used a lot
    985  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    986  * processes which haven't run much recently, and to round-robin among other
    987  * processes.
    988  */
    989 
    990 void
    991 schedclock(struct lwp *l)
    992 {
    993 	struct proc *p = l->l_proc;
    994 
    995 	KASSERT(!CURCPU_IDLE_P());
    996 	mutex_spin_enter(&p->p_stmutex);
    997 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    998 	lwp_lock(l);
    999 	resetpriority(l);
   1000 	mutex_spin_exit(&p->p_stmutex);
   1001 	if ((l->l_flag & L_SYSTEM) == 0 && l->l_priority >= PUSER)
   1002 		l->l_priority = l->l_usrpri;
   1003 	lwp_unlock(l);
   1004 }
   1005 
   1006 /*
   1007  * suspendsched:
   1008  *
   1009  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1010  */
   1011 void
   1012 suspendsched(void)
   1013 {
   1014 #ifdef MULTIPROCESSOR
   1015 	CPU_INFO_ITERATOR cii;
   1016 	struct cpu_info *ci;
   1017 #endif
   1018 	struct lwp *l;
   1019 	struct proc *p;
   1020 
   1021 	/*
   1022 	 * We do this by process in order not to violate the locking rules.
   1023 	 */
   1024 	mutex_enter(&proclist_mutex);
   1025 	PROCLIST_FOREACH(p, &allproc) {
   1026 		mutex_enter(&p->p_smutex);
   1027 
   1028 		if ((p->p_flag & P_SYSTEM) != 0) {
   1029 			mutex_exit(&p->p_smutex);
   1030 			continue;
   1031 		}
   1032 
   1033 		p->p_stat = SSTOP;
   1034 
   1035 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1036 			if (l == curlwp)
   1037 				continue;
   1038 
   1039 			lwp_lock(l);
   1040 
   1041 			/*
   1042 			 * Set L_WREBOOT so that the LWP will suspend itself
   1043 			 * when it tries to return to user mode.  We want to
   1044 			 * try and get to get as many LWPs as possible to
   1045 			 * the user / kernel boundary, so that they will
   1046 			 * release any locks that they hold.
   1047 			 */
   1048 			l->l_flag |= (L_WREBOOT | L_WSUSPEND);
   1049 
   1050 			if (l->l_stat == LSSLEEP &&
   1051 			    (l->l_flag & L_SINTR) != 0) {
   1052 				/* setrunnable() will release the lock. */
   1053 				setrunnable(l);
   1054 				continue;
   1055 			}
   1056 
   1057 			lwp_unlock(l);
   1058 		}
   1059 
   1060 		mutex_exit(&p->p_smutex);
   1061 	}
   1062 	mutex_exit(&proclist_mutex);
   1063 
   1064 	/*
   1065 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1066 	 * They'll trap into the kernel and suspend themselves in userret().
   1067 	 */
   1068 	sched_lock(0);
   1069 #ifdef MULTIPROCESSOR
   1070 	for (CPU_INFO_FOREACH(cii, ci))
   1071 		cpu_need_resched(ci);
   1072 #else
   1073 	cpu_need_resched(curcpu());
   1074 #endif
   1075 	sched_unlock(0);
   1076 }
   1077 
   1078 /*
   1079  * scheduler_fork_hook:
   1080  *
   1081  *	Inherit the parent's scheduler history.
   1082  */
   1083 void
   1084 scheduler_fork_hook(struct proc *parent, struct proc *child)
   1085 {
   1086 
   1087 	LOCK_ASSERT(mutex_owned(&parent->p_smutex));
   1088 
   1089 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1090 	child->p_forktime = schedcpu_ticks;
   1091 }
   1092 
   1093 /*
   1094  * scheduler_wait_hook:
   1095  *
   1096  *	Chargeback parents for the sins of their children.
   1097  */
   1098 void
   1099 scheduler_wait_hook(struct proc *parent, struct proc *child)
   1100 {
   1101 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1102 	fixpt_t estcpu;
   1103 
   1104 	/* XXX Only if parent != init?? */
   1105 
   1106 	mutex_spin_enter(&parent->p_stmutex);
   1107 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1108 	    schedcpu_ticks - child->p_forktime);
   1109 	if (child->p_estcpu > estcpu)
   1110 		parent->p_estcpu =
   1111 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1112 	mutex_spin_exit(&parent->p_stmutex);
   1113 }
   1114 
   1115 /*
   1116  * sched_kpri:
   1117  *
   1118  *	Scale a priority level to a kernel priority level, usually
   1119  *	for an LWP that is about to sleep.
   1120  */
   1121 int
   1122 sched_kpri(struct lwp *l)
   1123 {
   1124 	/*
   1125 	 * Scale user priorities (127 -> 50) up to kernel priorities
   1126 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
   1127 	 * for high priority kthreads.  Kernel priorities passed in
   1128 	 * are left "as is".  XXX This is somewhat arbitrary.
   1129 	 */
   1130 	static const uint8_t kpri_tab[] = {
   1131 		 0,   1,   2,   3,   4,   5,   6,   7,
   1132 		 8,   9,  10,  11,  12,  13,  14,  15,
   1133 		16,  17,  18,  19,  20,  21,  22,  23,
   1134 		24,  25,  26,  27,  28,  29,  30,  31,
   1135 		32,  33,  34,  35,  36,  37,  38,  39,
   1136 		40,  41,  42,  43,  44,  45,  46,  47,
   1137 		48,  49,   8,   8,   9,   9,  10,  10,
   1138 		11,  11,  12,  12,  13,  14,  14,  15,
   1139 		15,  16,  16,  17,  17,  18,  18,  19,
   1140 		20,  20,  21,  21,  22,  22,  23,  23,
   1141 		24,  24,  25,  26,  26,  27,  27,  28,
   1142 		28,  29,  29,  30,  30,  31,  32,  32,
   1143 		33,  33,  34,  34,  35,  35,  36,  36,
   1144 		37,  38,  38,  39,  39,  40,  40,  41,
   1145 		41,  42,  42,  43,  44,  44,  45,  45,
   1146 		46,  46,  47,  47,  48,  48,  49,  49,
   1147 	};
   1148 
   1149 	return kpri_tab[l->l_usrpri];
   1150 }
   1151 
   1152 /*
   1153  * sched_unsleep:
   1154  *
   1155  *	The is called when the LWP has not been awoken normally but instead
   1156  *	interrupted: for example, if the sleep timed out.  Because of this,
   1157  *	it's not a valid action for running or idle LWPs.
   1158  */
   1159 void
   1160 sched_unsleep(struct lwp *l)
   1161 {
   1162 
   1163 	lwp_unlock(l);
   1164 	panic("sched_unsleep");
   1165 }
   1166 
   1167 /*
   1168  * sched_changepri:
   1169  *
   1170  *	Adjust the priority of an LWP.
   1171  */
   1172 void
   1173 sched_changepri(struct lwp *l, int pri)
   1174 {
   1175 
   1176 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1177 
   1178 	l->l_usrpri = pri;
   1179 
   1180 	if (l->l_priority < PUSER)
   1181 		return;
   1182 	if (l->l_stat != LSRUN || (l->l_flag & L_INMEM) == 0 ||
   1183 	    (l->l_priority / PPQ) == (pri / PPQ)) {
   1184 		l->l_priority = pri;
   1185 		return;
   1186 	}
   1187 
   1188 	remrunqueue(l);
   1189 	l->l_priority = pri;
   1190 	setrunqueue(l);
   1191 	resched_lwp(l, pri);
   1192 }
   1193 
   1194 /*
   1195  * On some architectures, it's faster to use a MSB ordering for the priorites
   1196  * than the traditional LSB ordering.
   1197  */
   1198 #ifdef __HAVE_BIGENDIAN_BITOPS
   1199 #define	RQMASK(n) (0x80000000 >> (n))
   1200 #else
   1201 #define	RQMASK(n) (0x00000001 << (n))
   1202 #endif
   1203 
   1204 /*
   1205  * Low-level routines to access the run queue.  Optimised assembler
   1206  * routines can override these.
   1207  */
   1208 
   1209 #ifndef __HAVE_MD_RUNQUEUE
   1210 
   1211 /*
   1212  * The primitives that manipulate the run queues.  whichqs tells which
   1213  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1214  * into queues, remrunqueue removes them from queues.  The running process is
   1215  * on no queue, other processes are on a queue related to p->p_priority,
   1216  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1217  * available queues.
   1218  */
   1219 #ifdef RQDEBUG
   1220 static void
   1221 checkrunqueue(int whichq, struct lwp *l)
   1222 {
   1223 	const struct prochd * const rq = &sched_qs[whichq];
   1224 	struct lwp *l2;
   1225 	int found = 0;
   1226 	int die = 0;
   1227 	int empty = 1;
   1228 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
   1229 		if (l2->l_stat != LSRUN) {
   1230 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1231 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1232 		}
   1233 		if (l2->l_back->l_forw != l2) {
   1234 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1235 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1236 			    l2->l_back->l_forw);
   1237 			die = 1;
   1238 		}
   1239 		if (l2->l_forw->l_back != l2) {
   1240 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1241 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1242 			    l2->l_forw->l_back);
   1243 			die = 1;
   1244 		}
   1245 		if (l2 == l)
   1246 			found = 1;
   1247 		empty = 0;
   1248 	}
   1249 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1250 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1251 		    whichq, rq);
   1252 		die = 1;
   1253 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1254 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1255 		    "run-queue %p\n", whichq, rq);
   1256 		die = 1;
   1257 	}
   1258 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1259 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1260 		    whichq, l);
   1261 		die = 1;
   1262 	}
   1263 	if (l != NULL && empty) {
   1264 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1265 		    "active lwp %p\n", whichq, rq, l);
   1266 		die = 1;
   1267 	}
   1268 	if (l != NULL && !found) {
   1269 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1270 		    whichq, l, rq);
   1271 		die = 1;
   1272 	}
   1273 	if (die)
   1274 		panic("checkrunqueue: inconsistency found");
   1275 }
   1276 #endif /* RQDEBUG */
   1277 
   1278 void
   1279 setrunqueue(struct lwp *l)
   1280 {
   1281 	struct prochd *rq;
   1282 	struct lwp *prev;
   1283 	const int whichq = l->l_priority / PPQ;
   1284 
   1285 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1286 
   1287 #ifdef RQDEBUG
   1288 	checkrunqueue(whichq, NULL);
   1289 #endif
   1290 #ifdef DIAGNOSTIC
   1291 	if (l->l_back != NULL || l->l_stat != LSRUN)
   1292 		panic("setrunqueue");
   1293 #endif
   1294 	sched_whichqs |= RQMASK(whichq);
   1295 	rq = &sched_qs[whichq];
   1296 	prev = rq->ph_rlink;
   1297 	l->l_forw = (struct lwp *)rq;
   1298 	rq->ph_rlink = l;
   1299 	prev->l_forw = l;
   1300 	l->l_back = prev;
   1301 #ifdef RQDEBUG
   1302 	checkrunqueue(whichq, l);
   1303 #endif
   1304 }
   1305 
   1306 /*
   1307  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use remrunqueue(),
   1308  * drop of the effective priority level from kernel to user needs to be
   1309  * moved here from userret().  The assignment in userret() is currently
   1310  * done unlocked.
   1311  */
   1312 void
   1313 remrunqueue(struct lwp *l)
   1314 {
   1315 	struct lwp *prev, *next;
   1316 	const int whichq = l->l_priority / PPQ;
   1317 
   1318 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1319 
   1320 #ifdef RQDEBUG
   1321 	checkrunqueue(whichq, l);
   1322 #endif
   1323 
   1324 #if defined(DIAGNOSTIC)
   1325 	if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
   1326 		/* Shouldn't happen - interrupts disabled. */
   1327 		panic("remrunqueue: bit %d not set", whichq);
   1328 	}
   1329 #endif
   1330 	prev = l->l_back;
   1331 	l->l_back = NULL;
   1332 	next = l->l_forw;
   1333 	prev->l_forw = next;
   1334 	next->l_back = prev;
   1335 	if (prev == next)
   1336 		sched_whichqs &= ~RQMASK(whichq);
   1337 #ifdef RQDEBUG
   1338 	checkrunqueue(whichq, NULL);
   1339 #endif
   1340 }
   1341 
   1342 struct lwp *
   1343 nextrunqueue(void)
   1344 {
   1345 	const struct prochd *rq;
   1346 	struct lwp *l;
   1347 	int whichq;
   1348 
   1349 	if (sched_whichqs == 0) {
   1350 		return NULL;
   1351 	}
   1352 #ifdef __HAVE_BIGENDIAN_BITOPS
   1353 	for (whichq = 0; ; whichq++) {
   1354 		if ((sched_whichqs & RQMASK(whichq)) != 0) {
   1355 			break;
   1356 		}
   1357 	}
   1358 #else
   1359 	whichq = ffs(sched_whichqs) - 1;
   1360 #endif
   1361 	rq = &sched_qs[whichq];
   1362 	l = rq->ph_link;
   1363 	return l;
   1364 }
   1365 
   1366 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1367 
   1368 #if defined(DDB)
   1369 void
   1370 sched_print_runqueue(void (*pr)(const char *, ...))
   1371 {
   1372 	struct prochd *ph;
   1373 	struct lwp *l;
   1374 	int i, first;
   1375 
   1376 	for (i = 0; i < RUNQUE_NQS; i++)
   1377 	{
   1378 		first = 1;
   1379 		ph = &sched_qs[i];
   1380 		for (l = ph->ph_link; l != (void *)ph; l = l->l_forw) {
   1381 			if (first) {
   1382 				(*pr)("%c%d",
   1383 				    (sched_whichqs & RQMASK(i))
   1384 				    ? ' ' : '!', i);
   1385 				first = 0;
   1386 			}
   1387 			(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
   1388 			    l->l_proc->p_pid,
   1389 			    l->l_lid, l->l_proc->p_comm,
   1390 			    (int)l->l_priority, (int)l->l_usrpri);
   1391 		}
   1392 	}
   1393 }
   1394 #endif /* defined(DDB) */
   1395 #undef RQMASK
   1396