Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.177.2.25
      1 
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.177.2.25 2007/04/18 10:14:55 yamt Exp $");
     79 
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #if defined(PERFCTRS)
     92 #include <sys/pmc.h>
     93 #endif
     94 #include <sys/cpu.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/syscall_stats.h>
     98 #include <sys/sleepq.h>
     99 #include <sys/lockdebug.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 struct callout sched_pstats_ch = CALLOUT_INITIALIZER_SETFUNC(sched_pstats, NULL);
    104 unsigned int sched_pstats_ticks;
    105 
    106 int	lbolt;			/* once a second sleep address */
    107 
    108 static void	sched_unsleep(struct lwp *);
    109 static void	sched_changepri(struct lwp *, pri_t);
    110 static void	sched_lendpri(struct lwp *, pri_t);
    111 
    112 syncobj_t sleep_syncobj = {
    113 	SOBJ_SLEEPQ_SORTED,
    114 	sleepq_unsleep,
    115 	sleepq_changepri,
    116 	sleepq_lendpri,
    117 	syncobj_noowner,
    118 };
    119 
    120 syncobj_t sched_syncobj = {
    121 	SOBJ_SLEEPQ_SORTED,
    122 	sched_unsleep,
    123 	sched_changepri,
    124 	sched_lendpri,
    125 	syncobj_noowner,
    126 };
    127 
    128 /*
    129  * During autoconfiguration or after a panic, a sleep will simply lower the
    130  * priority briefly to allow interrupts, then return.  The priority to be
    131  * used (safepri) is machine-dependent, thus this value is initialized and
    132  * maintained in the machine-dependent layers.  This priority will typically
    133  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    134  * it can be made higher to block network software interrupts after panics.
    135  */
    136 int	safepri;
    137 
    138 /*
    139  * OBSOLETE INTERFACE
    140  *
    141  * General sleep call.  Suspends the current process until a wakeup is
    142  * performed on the specified identifier.  The process will then be made
    143  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    144  * means no timeout).  If pri includes PCATCH flag, signals are checked
    145  * before and after sleeping, else signals are not checked.  Returns 0 if
    146  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    147  * signal needs to be delivered, ERESTART is returned if the current system
    148  * call should be restarted if possible, and EINTR is returned if the system
    149  * call should be interrupted by the signal (return EINTR).
    150  *
    151  * The interlock is held until we are on a sleep queue. The interlock will
    152  * be locked before returning back to the caller unless the PNORELOCK flag
    153  * is specified, in which case the interlock will always be unlocked upon
    154  * return.
    155  */
    156 int
    157 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    158 	volatile struct simplelock *interlock)
    159 {
    160 	struct lwp *l = curlwp;
    161 	sleepq_t *sq;
    162 	int error, catch;
    163 
    164 	if (sleepq_dontsleep(l)) {
    165 		(void)sleepq_abort(NULL, 0);
    166 		if ((priority & PNORELOCK) != 0)
    167 			simple_unlock(interlock);
    168 		return 0;
    169 	}
    170 
    171 	sq = sleeptab_lookup(&sleeptab, ident);
    172 	sleepq_enter(sq, l);
    173 
    174 	if (interlock != NULL) {
    175 		LOCK_ASSERT(simple_lock_held(interlock));
    176 		simple_unlock(interlock);
    177 	}
    178 
    179 	catch = priority & PCATCH;
    180 	sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
    181 	    &sleep_syncobj);
    182 	error = sleepq_unblock(timo, catch);
    183 
    184 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    185 		simple_lock(interlock);
    186 
    187 	return error;
    188 }
    189 
    190 int
    191 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    192 	kmutex_t *mtx)
    193 {
    194 	struct lwp *l = curlwp;
    195 	sleepq_t *sq;
    196 	int error, catch;
    197 
    198 	if (sleepq_dontsleep(l)) {
    199 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    200 		return 0;
    201 	}
    202 
    203 	sq = sleeptab_lookup(&sleeptab, ident);
    204 	sleepq_enter(sq, l);
    205 	mutex_exit(mtx);
    206 
    207 	catch = priority & PCATCH;
    208 	sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
    209 	    &sleep_syncobj);
    210 	error = sleepq_unblock(timo, catch);
    211 
    212 	if ((priority & PNORELOCK) == 0)
    213 		mutex_enter(mtx);
    214 
    215 	return error;
    216 }
    217 
    218 /*
    219  * General sleep call for situations where a wake-up is not expected.
    220  */
    221 int
    222 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    223 {
    224 	struct lwp *l = curlwp;
    225 	sleepq_t *sq;
    226 	int error;
    227 
    228 	if (sleepq_dontsleep(l))
    229 		return sleepq_abort(NULL, 0);
    230 
    231 	if (mtx != NULL)
    232 		mutex_exit(mtx);
    233 	sq = sleeptab_lookup(&sleeptab, l);
    234 	sleepq_enter(sq, l);
    235 	sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
    236 	error = sleepq_unblock(timo, intr);
    237 	if (mtx != NULL)
    238 		mutex_enter(mtx);
    239 
    240 	return error;
    241 }
    242 
    243 /*
    244  * OBSOLETE INTERFACE
    245  *
    246  * Make all processes sleeping on the specified identifier runnable.
    247  */
    248 void
    249 wakeup(wchan_t ident)
    250 {
    251 	sleepq_t *sq;
    252 
    253 	if (cold)
    254 		return;
    255 
    256 	sq = sleeptab_lookup(&sleeptab, ident);
    257 	sleepq_wake(sq, ident, (u_int)-1);
    258 }
    259 
    260 /*
    261  * OBSOLETE INTERFACE
    262  *
    263  * Make the highest priority process first in line on the specified
    264  * identifier runnable.
    265  */
    266 void
    267 wakeup_one(wchan_t ident)
    268 {
    269 	sleepq_t *sq;
    270 
    271 	if (cold)
    272 		return;
    273 
    274 	sq = sleeptab_lookup(&sleeptab, ident);
    275 	sleepq_wake(sq, ident, 1);
    276 }
    277 
    278 
    279 /*
    280  * General yield call.  Puts the current process back on its run queue and
    281  * performs a voluntary context switch.  Should only be called when the
    282  * current process explicitly requests it (eg sched_yield(2) in compat code).
    283  */
    284 void
    285 yield(void)
    286 {
    287 	struct lwp *l = curlwp;
    288 
    289 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    290 	lwp_lock(l);
    291 	if (l->l_stat == LSONPROC) {
    292 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    293 		l->l_priority = l->l_usrpri;
    294 	}
    295 	l->l_nvcsw++;
    296 	(void)mi_switch(l);
    297 	KERNEL_LOCK(l->l_biglocks, l);
    298 }
    299 
    300 /*
    301  * General preemption call.  Puts the current process back on its run queue
    302  * and performs an involuntary context switch.
    303  */
    304 void
    305 preempt(void)
    306 {
    307 	struct lwp *l = curlwp;
    308 
    309 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    310 	lwp_lock(l);
    311 	if (l->l_stat == LSONPROC) {
    312 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    313 		l->l_priority = l->l_usrpri;
    314 	}
    315 	l->l_nivcsw++;
    316 	(void)mi_switch(l);
    317 	KERNEL_LOCK(l->l_biglocks, l);
    318 }
    319 
    320 /*
    321  * Compute the amount of time during which the current lwp was running.
    322  *
    323  * - update l_rtime unless it's an idle lwp.
    324  * - update spc_runtime for the next lwp.
    325  */
    326 
    327 static inline void
    328 updatertime(struct lwp *l, struct schedstate_percpu *spc)
    329 {
    330 	struct timeval tv;
    331 	long s, u;
    332 
    333 	if ((l->l_flag & LW_IDLE) != 0) {
    334 		microtime(&spc->spc_runtime);
    335 		return;
    336 	}
    337 
    338 	microtime(&tv);
    339 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    340 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    341 	if (u < 0) {
    342 		u += 1000000;
    343 		s--;
    344 	} else if (u >= 1000000) {
    345 		u -= 1000000;
    346 		s++;
    347 	}
    348 	l->l_rtime.tv_usec = u;
    349 	l->l_rtime.tv_sec = s;
    350 
    351 	spc->spc_runtime = tv;
    352 }
    353 
    354 /*
    355  * The machine independent parts of context switch.
    356  *
    357  * Returns 1 if another process was actually run.
    358  */
    359 int
    360 mi_switch(struct lwp *l)
    361 {
    362 	struct schedstate_percpu *spc;
    363 	struct lwp *newl;
    364 	int retval, oldspl;
    365 
    366 	LOCK_ASSERT(lwp_locked(l, NULL));
    367 
    368 #ifdef LOCKDEBUG
    369 	spinlock_switchcheck();
    370 	simple_lock_switchcheck();
    371 #endif
    372 #ifdef KSTACK_CHECK_MAGIC
    373 	kstack_check_magic(l);
    374 #endif
    375 
    376 	/*
    377 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    378 	 * are after is the run time and that's guarenteed to have been last
    379 	 * updated by this CPU.
    380 	 */
    381 	KDASSERT(l->l_cpu == curcpu());
    382 	spc = &l->l_cpu->ci_schedstate;
    383 
    384 	/* Count time spent in current system call */
    385 	SYSCALL_TIME_SLEEP(l);
    386 
    387 	/*
    388 	 * XXXSMP If we are using h/w performance counters, save context.
    389 	 */
    390 #if PERFCTRS
    391 	if (PMC_ENABLED(l->l_proc)) {
    392 		pmc_save_context(l->l_proc);
    393 	}
    394 #endif
    395 
    396 	/*
    397 	 * If on the CPU and we have gotten this far, then we must yield.
    398 	 */
    399 	KASSERT(l->l_stat != LSRUN);
    400 	if (l->l_stat == LSONPROC) {
    401 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    402 		l->l_stat = LSRUN;
    403 		if ((l->l_flag & LW_IDLE) == 0) {
    404 			sched_enqueue(l, true);
    405 		}
    406 	}
    407 
    408 	/*
    409 	 * Process is about to yield the CPU; clear the appropriate
    410 	 * scheduling flags.
    411 	 */
    412 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    413 
    414 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    415 
    416 	/*
    417 	 * Acquire the spc_mutex if necessary.
    418 	 */
    419 	if (l->l_mutex != spc->spc_mutex) {
    420 		mutex_spin_enter(spc->spc_mutex);
    421 	}
    422 
    423 	/*
    424 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    425 	 * If no LWP is runnable, switch to the idle LWP.
    426 	 */
    427 	newl = sched_nextlwp();
    428 	if (newl) {
    429 		sched_dequeue(newl);
    430 	} else {
    431 		newl = l->l_cpu->ci_data.cpu_idlelwp;
    432 		KASSERT(newl != NULL);
    433 	}
    434 	KASSERT(lwp_locked(newl, spc->spc_mutex));
    435 	newl->l_stat = LSONPROC;
    436 	newl->l_cpu = l->l_cpu;
    437 	newl->l_flag |= LW_RUNNING;
    438 	cpu_did_resched();
    439 
    440 	if (l->l_mutex != spc->spc_mutex) {
    441 		mutex_spin_exit(spc->spc_mutex);
    442 	}
    443 
    444 	updatertime(l, spc);
    445 	if (l != newl) {
    446 		struct lwp *prevlwp;
    447 
    448 		/* Unlocked, but for statistics only. */
    449 		uvmexp.swtch++;
    450 
    451 		/* Save old VM context. */
    452 		pmap_deactivate(l);
    453 
    454 		/* Switch to the new LWP.. */
    455 		l->l_flag &= ~LW_RUNNING;
    456 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    457 		prevlwp = cpu_switchto(l, newl);
    458 
    459 		/*
    460 		 * .. we have switched away and are now back so we must
    461 		 * be the new curlwp.  prevlwp is who we replaced.
    462 		 */
    463 		curlwp = l;
    464 		if (prevlwp != NULL) {
    465 			curcpu()->ci_mtx_oldspl = oldspl;
    466 			lwp_unlock(prevlwp);
    467 		} else {
    468 			splx(oldspl);
    469 		}
    470 
    471 		/* Restore VM context. */
    472 		pmap_activate(l);
    473 		retval = 1;
    474 	} else {
    475 		/* Nothing to do - just unlock and return. */
    476 		lwp_unlock(l);
    477 		retval = 0;
    478 	}
    479 
    480 	KASSERT(l == curlwp);
    481 	KASSERT(l->l_stat == LSONPROC);
    482 
    483 	/*
    484 	 * XXXSMP If we are using h/w performance counters, restore context.
    485 	 */
    486 #if PERFCTRS
    487 	if (PMC_ENABLED(l->l_proc)) {
    488 		pmc_restore_context(l->l_proc);
    489 	}
    490 #endif
    491 
    492 	/*
    493 	 * We're running again; record our new start time.  We might
    494 	 * be running on a new CPU now, so don't use the cached
    495 	 * schedstate_percpu pointer.
    496 	 */
    497 	SYSCALL_TIME_WAKEUP(l);
    498 	KDASSERT(l->l_cpu == curcpu());
    499 	LOCKDEBUG_BARRIER(NULL, 1);
    500 
    501 	return retval;
    502 }
    503 
    504 /*
    505  * Change process state to be runnable, placing it on the run queue if it is
    506  * in memory, and awakening the swapper if it isn't in memory.
    507  *
    508  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    509  */
    510 void
    511 setrunnable(struct lwp *l)
    512 {
    513 	struct proc *p = l->l_proc;
    514 	sigset_t *ss;
    515 
    516 	KASSERT((l->l_flag & LW_IDLE) == 0);
    517 	KASSERT(mutex_owned(&p->p_smutex));
    518 	KASSERT(lwp_locked(l, NULL));
    519 
    520 	switch (l->l_stat) {
    521 	case LSSTOP:
    522 		/*
    523 		 * If we're being traced (possibly because someone attached us
    524 		 * while we were stopped), check for a signal from the debugger.
    525 		 */
    526 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    527 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    528 				ss = &l->l_sigpend.sp_set;
    529 			else
    530 				ss = &p->p_sigpend.sp_set;
    531 			sigaddset(ss, p->p_xstat);
    532 			signotify(l);
    533 		}
    534 		p->p_nrlwps++;
    535 		break;
    536 	case LSSUSPENDED:
    537 		l->l_flag &= ~LW_WSUSPEND;
    538 		p->p_nrlwps++;
    539 		break;
    540 	case LSSLEEP:
    541 		KASSERT(l->l_wchan != NULL);
    542 		break;
    543 	default:
    544 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    545 	}
    546 
    547 	/*
    548 	 * If the LWP was sleeping interruptably, then it's OK to start it
    549 	 * again.  If not, mark it as still sleeping.
    550 	 */
    551 	if (l->l_wchan != NULL) {
    552 		l->l_stat = LSSLEEP;
    553 		/* lwp_unsleep() will release the lock. */
    554 		lwp_unsleep(l);
    555 		return;
    556 	}
    557 
    558 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    559 
    560 	/*
    561 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    562 	 * about to call mi_switch(), in which case it will yield.
    563 	 */
    564 	if ((l->l_flag & LW_RUNNING) != 0) {
    565 		l->l_stat = LSONPROC;
    566 		l->l_slptime = 0;
    567 		lwp_unlock(l);
    568 		return;
    569 	}
    570 
    571 	/*
    572 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    573 	 * to bring it back in.  Otherwise, enter it into a run queue.
    574 	 */
    575 	sched_setrunnable(l);
    576 	l->l_stat = LSRUN;
    577 	l->l_slptime = 0;
    578 
    579 	if (l->l_flag & LW_INMEM) {
    580 		sched_enqueue(l, false);
    581 		resched_cpu(l);
    582 		lwp_unlock(l);
    583 	} else {
    584 		lwp_unlock(l);
    585 		uvm_kick_scheduler();
    586 	}
    587 }
    588 
    589 /*
    590  * suspendsched:
    591  *
    592  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    593  */
    594 void
    595 suspendsched(void)
    596 {
    597 #ifdef MULTIPROCESSOR
    598 	CPU_INFO_ITERATOR cii;
    599 	struct cpu_info *ci;
    600 #endif
    601 	struct lwp *l;
    602 	struct proc *p;
    603 
    604 	/*
    605 	 * We do this by process in order not to violate the locking rules.
    606 	 */
    607 	mutex_enter(&proclist_mutex);
    608 	PROCLIST_FOREACH(p, &allproc) {
    609 		mutex_enter(&p->p_smutex);
    610 
    611 		if ((p->p_flag & PK_SYSTEM) != 0) {
    612 			mutex_exit(&p->p_smutex);
    613 			continue;
    614 		}
    615 
    616 		p->p_stat = SSTOP;
    617 
    618 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    619 			if (l == curlwp)
    620 				continue;
    621 
    622 			lwp_lock(l);
    623 
    624 			/*
    625 			 * Set L_WREBOOT so that the LWP will suspend itself
    626 			 * when it tries to return to user mode.  We want to
    627 			 * try and get to get as many LWPs as possible to
    628 			 * the user / kernel boundary, so that they will
    629 			 * release any locks that they hold.
    630 			 */
    631 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    632 
    633 			if (l->l_stat == LSSLEEP &&
    634 			    (l->l_flag & LW_SINTR) != 0) {
    635 				/* setrunnable() will release the lock. */
    636 				setrunnable(l);
    637 				continue;
    638 			}
    639 
    640 			lwp_unlock(l);
    641 		}
    642 
    643 		mutex_exit(&p->p_smutex);
    644 	}
    645 	mutex_exit(&proclist_mutex);
    646 
    647 	/*
    648 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    649 	 * They'll trap into the kernel and suspend themselves in userret().
    650 	 */
    651 #ifdef MULTIPROCESSOR
    652 	for (CPU_INFO_FOREACH(cii, ci))
    653 		cpu_need_resched(ci, 0);
    654 #else
    655 	cpu_need_resched(curcpu(), 0);
    656 #endif
    657 }
    658 
    659 /*
    660  * sched_kpri:
    661  *
    662  *	Scale a priority level to a kernel priority level, usually
    663  *	for an LWP that is about to sleep.
    664  */
    665 pri_t
    666 sched_kpri(struct lwp *l)
    667 {
    668 	/*
    669 	 * Scale user priorities (127 -> 50) up to kernel priorities
    670 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
    671 	 * for high priority kthreads.  Kernel priorities passed in
    672 	 * are left "as is".  XXX This is somewhat arbitrary.
    673 	 */
    674 	static const uint8_t kpri_tab[] = {
    675 		 0,   1,   2,   3,   4,   5,   6,   7,
    676 		 8,   9,  10,  11,  12,  13,  14,  15,
    677 		16,  17,  18,  19,  20,  21,  22,  23,
    678 		24,  25,  26,  27,  28,  29,  30,  31,
    679 		32,  33,  34,  35,  36,  37,  38,  39,
    680 		40,  41,  42,  43,  44,  45,  46,  47,
    681 		48,  49,   8,   8,   9,   9,  10,  10,
    682 		11,  11,  12,  12,  13,  14,  14,  15,
    683 		15,  16,  16,  17,  17,  18,  18,  19,
    684 		20,  20,  21,  21,  22,  22,  23,  23,
    685 		24,  24,  25,  26,  26,  27,  27,  28,
    686 		28,  29,  29,  30,  30,  31,  32,  32,
    687 		33,  33,  34,  34,  35,  35,  36,  36,
    688 		37,  38,  38,  39,  39,  40,  40,  41,
    689 		41,  42,  42,  43,  44,  44,  45,  45,
    690 		46,  46,  47,  47,  48,  48,  49,  49,
    691 	};
    692 
    693 	return (pri_t)kpri_tab[l->l_usrpri];
    694 }
    695 
    696 /*
    697  * sched_unsleep:
    698  *
    699  *	The is called when the LWP has not been awoken normally but instead
    700  *	interrupted: for example, if the sleep timed out.  Because of this,
    701  *	it's not a valid action for running or idle LWPs.
    702  */
    703 static void
    704 sched_unsleep(struct lwp *l)
    705 {
    706 
    707 	lwp_unlock(l);
    708 	panic("sched_unsleep");
    709 }
    710 
    711 inline void
    712 resched_cpu(struct lwp *l)
    713 {
    714 	struct cpu_info *ci;
    715 	const pri_t pri = lwp_eprio(l);
    716 
    717 	/*
    718 	 * XXXSMP
    719 	 * Since l->l_cpu persists across a context switch,
    720 	 * this gives us *very weak* processor affinity, in
    721 	 * that we notify the CPU on which the process last
    722 	 * ran that it should try to switch.
    723 	 *
    724 	 * This does not guarantee that the process will run on
    725 	 * that processor next, because another processor might
    726 	 * grab it the next time it performs a context switch.
    727 	 *
    728 	 * This also does not handle the case where its last
    729 	 * CPU is running a higher-priority process, but every
    730 	 * other CPU is running a lower-priority process.  There
    731 	 * are ways to handle this situation, but they're not
    732 	 * currently very pretty, and we also need to weigh the
    733 	 * cost of moving a process from one CPU to another.
    734 	 */
    735 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    736 	if (pri < ci->ci_schedstate.spc_curpriority)
    737 		cpu_need_resched(ci, 0);
    738 }
    739 
    740 static void
    741 sched_changepri(struct lwp *l, pri_t pri)
    742 {
    743 
    744 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    745 
    746 	l->l_usrpri = pri;
    747 	if (l->l_priority < PUSER)
    748 		return;
    749 
    750 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    751 		l->l_priority = pri;
    752 		return;
    753 	}
    754 
    755 	sched_dequeue(l);
    756 	l->l_priority = pri;
    757 	sched_enqueue(l, false);
    758 	resched_cpu(l);
    759 }
    760 
    761 static void
    762 sched_lendpri(struct lwp *l, pri_t pri)
    763 {
    764 
    765 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    766 
    767 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    768 		l->l_inheritedprio = pri;
    769 		return;
    770 	}
    771 
    772 	sched_dequeue(l);
    773 	l->l_inheritedprio = pri;
    774 	sched_enqueue(l, false);
    775 	resched_cpu(l);
    776 }
    777 
    778 struct lwp *
    779 syncobj_noowner(wchan_t wchan)
    780 {
    781 
    782 	return NULL;
    783 }
    784 
    785 
    786 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    787 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    788 
    789 /*
    790  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    791  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    792  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    793  *
    794  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    795  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    796  *
    797  * If you dont want to bother with the faster/more-accurate formula, you
    798  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    799  * (more general) method of calculating the %age of CPU used by a process.
    800  */
    801 #define	CCPU_SHIFT	(FSHIFT + 1)
    802 
    803 /*
    804  * sched_pstats:
    805  *
    806  * Update process statistics and check CPU resource allocation.
    807  * Call scheduler-specific hook to eventually adjust process/LWP
    808  * priorities.
    809  *
    810  *	XXXSMP This needs to be reorganised in order to reduce the locking
    811  *	burden.
    812  */
    813 /* ARGSUSED */
    814 void
    815 sched_pstats(void *arg)
    816 {
    817 	struct rlimit *rlim;
    818 	struct lwp *l;
    819 	struct proc *p;
    820 	int minslp, sig, clkhz;
    821 	long runtm;
    822 
    823 	sched_pstats_ticks++;
    824 
    825 	mutex_enter(&proclist_mutex);
    826 	PROCLIST_FOREACH(p, &allproc) {
    827 		/*
    828 		 * Increment time in/out of memory and sleep time (if
    829 		 * sleeping).  We ignore overflow; with 16-bit int's
    830 		 * (remember them?) overflow takes 45 days.
    831 		 */
    832 		minslp = 2;
    833 		mutex_enter(&p->p_smutex);
    834 		runtm = p->p_rtime.tv_sec;
    835 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    836 			if ((l->l_flag & LW_IDLE) != 0)
    837 				continue;
    838 			lwp_lock(l);
    839 			runtm += l->l_rtime.tv_sec;
    840 			l->l_swtime++;
    841 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    842 			    l->l_stat == LSSUSPENDED) {
    843 				l->l_slptime++;
    844 				minslp = min(minslp, l->l_slptime);
    845 			} else
    846 				minslp = 0;
    847 			lwp_unlock(l);
    848 		}
    849 
    850 		/*
    851 		 * Check if the process exceeds its CPU resource allocation.
    852 		 * If over max, kill it.
    853 		 */
    854 		rlim = &p->p_rlimit[RLIMIT_CPU];
    855 		sig = 0;
    856 		if (runtm >= rlim->rlim_cur) {
    857 			if (runtm >= rlim->rlim_max)
    858 				sig = SIGKILL;
    859 			else {
    860 				sig = SIGXCPU;
    861 				if (rlim->rlim_cur < rlim->rlim_max)
    862 					rlim->rlim_cur += 5;
    863 			}
    864 		}
    865 
    866 		mutex_spin_enter(&p->p_stmutex);
    867 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    868 		if (minslp < 1) {
    869 			/*
    870 			 * p_pctcpu is only for ps.
    871 			 */
    872 			clkhz = stathz != 0 ? stathz : hz;
    873 #if	(FSHIFT >= CCPU_SHIFT)
    874 			p->p_pctcpu += (clkhz == 100)?
    875 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    876 				100 * (((fixpt_t) p->p_cpticks)
    877 				       << (FSHIFT - CCPU_SHIFT)) / clkhz;
    878 #else
    879 			p->p_pctcpu += ((FSCALE - ccpu) *
    880 					(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    881 #endif
    882 			p->p_cpticks = 0;
    883 		}
    884 
    885 		sched_pstats_hook(p, minslp);
    886 		mutex_spin_exit(&p->p_stmutex);
    887 		mutex_exit(&p->p_smutex);
    888 		if (sig) {
    889 			psignal(p, sig);
    890 		}
    891 	}
    892 	mutex_exit(&proclist_mutex);
    893 	uvm_meter();
    894 	wakeup(&lbolt);
    895 	callout_schedule(&sched_pstats_ch, hz);
    896 }
    897