Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.177.2.27
      1 /*	$NetBSD: kern_synch.c,v 1.177.2.27 2007/04/19 04:19:44 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.177.2.27 2007/04/19 04:19:44 ad Exp $");
     79 
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #if defined(PERFCTRS)
     92 #include <sys/pmc.h>
     93 #endif
     94 #include <sys/cpu.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/syscall_stats.h>
     98 #include <sys/sleepq.h>
     99 #include <sys/lockdebug.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 struct callout sched_pstats_ch = CALLOUT_INITIALIZER_SETFUNC(sched_pstats, NULL);
    104 unsigned int sched_pstats_ticks;
    105 
    106 int	lbolt;			/* once a second sleep address */
    107 
    108 static void	sched_unsleep(struct lwp *);
    109 static void	sched_changepri(struct lwp *, pri_t);
    110 static void	sched_lendpri(struct lwp *, pri_t);
    111 
    112 syncobj_t sleep_syncobj = {
    113 	SOBJ_SLEEPQ_SORTED,
    114 	sleepq_unsleep,
    115 	sleepq_changepri,
    116 	sleepq_lendpri,
    117 	syncobj_noowner,
    118 };
    119 
    120 syncobj_t sched_syncobj = {
    121 	SOBJ_SLEEPQ_SORTED,
    122 	sched_unsleep,
    123 	sched_changepri,
    124 	sched_lendpri,
    125 	syncobj_noowner,
    126 };
    127 
    128 /*
    129  * During autoconfiguration or after a panic, a sleep will simply lower the
    130  * priority briefly to allow interrupts, then return.  The priority to be
    131  * used (safepri) is machine-dependent, thus this value is initialized and
    132  * maintained in the machine-dependent layers.  This priority will typically
    133  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    134  * it can be made higher to block network software interrupts after panics.
    135  */
    136 int	safepri;
    137 
    138 /*
    139  * OBSOLETE INTERFACE
    140  *
    141  * General sleep call.  Suspends the current process until a wakeup is
    142  * performed on the specified identifier.  The process will then be made
    143  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    144  * means no timeout).  If pri includes PCATCH flag, signals are checked
    145  * before and after sleeping, else signals are not checked.  Returns 0 if
    146  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    147  * signal needs to be delivered, ERESTART is returned if the current system
    148  * call should be restarted if possible, and EINTR is returned if the system
    149  * call should be interrupted by the signal (return EINTR).
    150  *
    151  * The interlock is held until we are on a sleep queue. The interlock will
    152  * be locked before returning back to the caller unless the PNORELOCK flag
    153  * is specified, in which case the interlock will always be unlocked upon
    154  * return.
    155  */
    156 int
    157 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    158 	volatile struct simplelock *interlock)
    159 {
    160 	struct lwp *l = curlwp;
    161 	sleepq_t *sq;
    162 	int error;
    163 
    164 	if (sleepq_dontsleep(l)) {
    165 		(void)sleepq_abort(NULL, 0);
    166 		if ((priority & PNORELOCK) != 0)
    167 			simple_unlock(interlock);
    168 		return 0;
    169 	}
    170 
    171 	sq = sleeptab_lookup(&sleeptab, ident);
    172 	sleepq_enter(sq, l);
    173 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    174 
    175 	if (interlock != NULL) {
    176 		LOCK_ASSERT(simple_lock_held(interlock));
    177 		simple_unlock(interlock);
    178 	}
    179 
    180 	error = sleepq_block(timo, priority & PCATCH);
    181 
    182 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    183 		simple_lock(interlock);
    184 
    185 	return error;
    186 }
    187 
    188 int
    189 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    190 	kmutex_t *mtx)
    191 {
    192 	struct lwp *l = curlwp;
    193 	sleepq_t *sq;
    194 	int error;
    195 
    196 	if (sleepq_dontsleep(l)) {
    197 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    198 		return 0;
    199 	}
    200 
    201 	sq = sleeptab_lookup(&sleeptab, ident);
    202 	sleepq_enter(sq, l);
    203 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    204 	mutex_exit(mtx);
    205 	error = sleepq_block(timo, priority & PCATCH);
    206 
    207 	if ((priority & PNORELOCK) == 0)
    208 		mutex_enter(mtx);
    209 
    210 	return error;
    211 }
    212 
    213 /*
    214  * General sleep call for situations where a wake-up is not expected.
    215  */
    216 int
    217 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    218 {
    219 	struct lwp *l = curlwp;
    220 	sleepq_t *sq;
    221 	int error;
    222 
    223 	if (sleepq_dontsleep(l))
    224 		return sleepq_abort(NULL, 0);
    225 
    226 	if (mtx != NULL)
    227 		mutex_exit(mtx);
    228 	sq = sleeptab_lookup(&sleeptab, l);
    229 	sleepq_enter(sq, l);
    230 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
    231 	error = sleepq_block(timo, intr);
    232 	if (mtx != NULL)
    233 		mutex_enter(mtx);
    234 
    235 	return error;
    236 }
    237 
    238 /*
    239  * OBSOLETE INTERFACE
    240  *
    241  * Make all processes sleeping on the specified identifier runnable.
    242  */
    243 void
    244 wakeup(wchan_t ident)
    245 {
    246 	sleepq_t *sq;
    247 
    248 	if (cold)
    249 		return;
    250 
    251 	sq = sleeptab_lookup(&sleeptab, ident);
    252 	sleepq_wake(sq, ident, (u_int)-1);
    253 }
    254 
    255 /*
    256  * OBSOLETE INTERFACE
    257  *
    258  * Make the highest priority process first in line on the specified
    259  * identifier runnable.
    260  */
    261 void
    262 wakeup_one(wchan_t ident)
    263 {
    264 	sleepq_t *sq;
    265 
    266 	if (cold)
    267 		return;
    268 
    269 	sq = sleeptab_lookup(&sleeptab, ident);
    270 	sleepq_wake(sq, ident, 1);
    271 }
    272 
    273 
    274 /*
    275  * General yield call.  Puts the current process back on its run queue and
    276  * performs a voluntary context switch.  Should only be called when the
    277  * current process explicitly requests it (eg sched_yield(2) in compat code).
    278  */
    279 void
    280 yield(void)
    281 {
    282 	struct lwp *l = curlwp;
    283 
    284 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    285 	lwp_lock(l);
    286 	if (l->l_stat == LSONPROC) {
    287 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    288 		l->l_priority = l->l_usrpri;
    289 	}
    290 	l->l_nvcsw++;
    291 	(void)mi_switch(l);
    292 	KERNEL_LOCK(l->l_biglocks, l);
    293 }
    294 
    295 /*
    296  * General preemption call.  Puts the current process back on its run queue
    297  * and performs an involuntary context switch.
    298  */
    299 void
    300 preempt(void)
    301 {
    302 	struct lwp *l = curlwp;
    303 
    304 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    305 	lwp_lock(l);
    306 	if (l->l_stat == LSONPROC) {
    307 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    308 		l->l_priority = l->l_usrpri;
    309 	}
    310 	l->l_nivcsw++;
    311 	(void)mi_switch(l);
    312 	KERNEL_LOCK(l->l_biglocks, l);
    313 }
    314 
    315 /*
    316  * Compute the amount of time during which the current lwp was running.
    317  *
    318  * - update l_rtime unless it's an idle lwp.
    319  * - update spc_runtime for the next lwp.
    320  */
    321 
    322 static inline void
    323 updatertime(struct lwp *l, struct schedstate_percpu *spc)
    324 {
    325 	struct timeval tv;
    326 	long s, u;
    327 
    328 	if ((l->l_flag & LW_IDLE) != 0) {
    329 		microtime(&spc->spc_runtime);
    330 		return;
    331 	}
    332 
    333 	microtime(&tv);
    334 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    335 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    336 	if (u < 0) {
    337 		u += 1000000;
    338 		s--;
    339 	} else if (u >= 1000000) {
    340 		u -= 1000000;
    341 		s++;
    342 	}
    343 	l->l_rtime.tv_usec = u;
    344 	l->l_rtime.tv_sec = s;
    345 
    346 	spc->spc_runtime = tv;
    347 }
    348 
    349 /*
    350  * The machine independent parts of context switch.
    351  *
    352  * Returns 1 if another process was actually run.
    353  */
    354 int
    355 mi_switch(struct lwp *l)
    356 {
    357 	struct schedstate_percpu *spc;
    358 	struct lwp *newl;
    359 	int retval, oldspl;
    360 
    361 	LOCK_ASSERT(lwp_locked(l, NULL));
    362 
    363 #ifdef LOCKDEBUG
    364 	spinlock_switchcheck();
    365 	simple_lock_switchcheck();
    366 #endif
    367 #ifdef KSTACK_CHECK_MAGIC
    368 	kstack_check_magic(l);
    369 #endif
    370 
    371 	/*
    372 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    373 	 * are after is the run time and that's guarenteed to have been last
    374 	 * updated by this CPU.
    375 	 */
    376 	KDASSERT(l->l_cpu == curcpu());
    377 	spc = &l->l_cpu->ci_schedstate;
    378 
    379 	/* Count time spent in current system call */
    380 	SYSCALL_TIME_SLEEP(l);
    381 
    382 	/*
    383 	 * XXXSMP If we are using h/w performance counters, save context.
    384 	 */
    385 #if PERFCTRS
    386 	if (PMC_ENABLED(l->l_proc)) {
    387 		pmc_save_context(l->l_proc);
    388 	}
    389 #endif
    390 
    391 	/*
    392 	 * If on the CPU and we have gotten this far, then we must yield.
    393 	 */
    394 	KASSERT(l->l_stat != LSRUN);
    395 	if (l->l_stat == LSONPROC) {
    396 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    397 		l->l_stat = LSRUN;
    398 		if ((l->l_flag & LW_IDLE) == 0) {
    399 			sched_enqueue(l, true);
    400 		}
    401 	}
    402 
    403 	/*
    404 	 * Process is about to yield the CPU; clear the appropriate
    405 	 * scheduling flags.
    406 	 */
    407 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    408 
    409 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    410 
    411 	/*
    412 	 * Acquire the spc_mutex if necessary.
    413 	 */
    414 	if (l->l_mutex != spc->spc_mutex) {
    415 		mutex_spin_enter(spc->spc_mutex);
    416 	}
    417 
    418 	/*
    419 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    420 	 * If no LWP is runnable, switch to the idle LWP.
    421 	 */
    422 	newl = sched_nextlwp();
    423 	if (newl) {
    424 		sched_dequeue(newl);
    425 	} else {
    426 		newl = l->l_cpu->ci_data.cpu_idlelwp;
    427 		KASSERT(newl != NULL);
    428 	}
    429 	KASSERT(lwp_locked(newl, spc->spc_mutex));
    430 	newl->l_stat = LSONPROC;
    431 	newl->l_cpu = l->l_cpu;
    432 	newl->l_flag |= LW_RUNNING;
    433 	cpu_did_resched();
    434 
    435 	if (l->l_mutex != spc->spc_mutex) {
    436 		mutex_spin_exit(spc->spc_mutex);
    437 	}
    438 
    439 	updatertime(l, spc);
    440 	if (l != newl) {
    441 		struct lwp *prevlwp;
    442 
    443 		/* Unlocked, but for statistics only. */
    444 		uvmexp.swtch++;
    445 
    446 		/* Save old VM context. */
    447 		pmap_deactivate(l);
    448 
    449 		/* Switch to the new LWP.. */
    450 		l->l_flag &= ~LW_RUNNING;
    451 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    452 		prevlwp = cpu_switchto(l, newl);
    453 
    454 		/*
    455 		 * .. we have switched away and are now back so we must
    456 		 * be the new curlwp.  prevlwp is who we replaced.
    457 		 */
    458 		curlwp = l;
    459 		if (prevlwp != NULL) {
    460 			curcpu()->ci_mtx_oldspl = oldspl;
    461 			lwp_unlock(prevlwp);
    462 		} else {
    463 			splx(oldspl);
    464 		}
    465 
    466 		/* Restore VM context. */
    467 		pmap_activate(l);
    468 		retval = 1;
    469 	} else {
    470 		/* Nothing to do - just unlock and return. */
    471 		lwp_unlock(l);
    472 		retval = 0;
    473 	}
    474 
    475 	KASSERT(l == curlwp);
    476 	KASSERT(l->l_stat == LSONPROC);
    477 
    478 	/*
    479 	 * XXXSMP If we are using h/w performance counters, restore context.
    480 	 */
    481 #if PERFCTRS
    482 	if (PMC_ENABLED(l->l_proc)) {
    483 		pmc_restore_context(l->l_proc);
    484 	}
    485 #endif
    486 
    487 	/*
    488 	 * We're running again; record our new start time.  We might
    489 	 * be running on a new CPU now, so don't use the cached
    490 	 * schedstate_percpu pointer.
    491 	 */
    492 	SYSCALL_TIME_WAKEUP(l);
    493 	KDASSERT(l->l_cpu == curcpu());
    494 	LOCKDEBUG_BARRIER(NULL, 1);
    495 
    496 	return retval;
    497 }
    498 
    499 /*
    500  * Change process state to be runnable, placing it on the run queue if it is
    501  * in memory, and awakening the swapper if it isn't in memory.
    502  *
    503  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    504  */
    505 void
    506 setrunnable(struct lwp *l)
    507 {
    508 	struct proc *p = l->l_proc;
    509 	sigset_t *ss;
    510 
    511 	KASSERT((l->l_flag & LW_IDLE) == 0);
    512 	KASSERT(mutex_owned(&p->p_smutex));
    513 	KASSERT(lwp_locked(l, NULL));
    514 
    515 	switch (l->l_stat) {
    516 	case LSSTOP:
    517 		/*
    518 		 * If we're being traced (possibly because someone attached us
    519 		 * while we were stopped), check for a signal from the debugger.
    520 		 */
    521 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    522 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    523 				ss = &l->l_sigpend.sp_set;
    524 			else
    525 				ss = &p->p_sigpend.sp_set;
    526 			sigaddset(ss, p->p_xstat);
    527 			signotify(l);
    528 		}
    529 		p->p_nrlwps++;
    530 		break;
    531 	case LSSUSPENDED:
    532 		l->l_flag &= ~LW_WSUSPEND;
    533 		p->p_nrlwps++;
    534 		break;
    535 	case LSSLEEP:
    536 		KASSERT(l->l_wchan != NULL);
    537 		break;
    538 	default:
    539 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    540 	}
    541 
    542 	/*
    543 	 * If the LWP was sleeping interruptably, then it's OK to start it
    544 	 * again.  If not, mark it as still sleeping.
    545 	 */
    546 	if (l->l_wchan != NULL) {
    547 		l->l_stat = LSSLEEP;
    548 		/* lwp_unsleep() will release the lock. */
    549 		lwp_unsleep(l);
    550 		return;
    551 	}
    552 
    553 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    554 
    555 	/*
    556 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    557 	 * about to call mi_switch(), in which case it will yield.
    558 	 */
    559 	if ((l->l_flag & LW_RUNNING) != 0) {
    560 		l->l_stat = LSONPROC;
    561 		l->l_slptime = 0;
    562 		lwp_unlock(l);
    563 		return;
    564 	}
    565 
    566 	/*
    567 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    568 	 * to bring it back in.  Otherwise, enter it into a run queue.
    569 	 */
    570 	sched_setrunnable(l);
    571 	l->l_stat = LSRUN;
    572 	l->l_slptime = 0;
    573 
    574 	if (l->l_flag & LW_INMEM) {
    575 		sched_enqueue(l, false);
    576 		resched_cpu(l);
    577 		lwp_unlock(l);
    578 	} else {
    579 		lwp_unlock(l);
    580 		uvm_kick_scheduler();
    581 	}
    582 }
    583 
    584 /*
    585  * suspendsched:
    586  *
    587  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    588  */
    589 void
    590 suspendsched(void)
    591 {
    592 #ifdef MULTIPROCESSOR
    593 	CPU_INFO_ITERATOR cii;
    594 	struct cpu_info *ci;
    595 #endif
    596 	struct lwp *l;
    597 	struct proc *p;
    598 
    599 	/*
    600 	 * We do this by process in order not to violate the locking rules.
    601 	 */
    602 	mutex_enter(&proclist_mutex);
    603 	PROCLIST_FOREACH(p, &allproc) {
    604 		mutex_enter(&p->p_smutex);
    605 
    606 		if ((p->p_flag & PK_SYSTEM) != 0) {
    607 			mutex_exit(&p->p_smutex);
    608 			continue;
    609 		}
    610 
    611 		p->p_stat = SSTOP;
    612 
    613 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    614 			if (l == curlwp)
    615 				continue;
    616 
    617 			lwp_lock(l);
    618 
    619 			/*
    620 			 * Set L_WREBOOT so that the LWP will suspend itself
    621 			 * when it tries to return to user mode.  We want to
    622 			 * try and get to get as many LWPs as possible to
    623 			 * the user / kernel boundary, so that they will
    624 			 * release any locks that they hold.
    625 			 */
    626 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    627 
    628 			if (l->l_stat == LSSLEEP &&
    629 			    (l->l_flag & LW_SINTR) != 0) {
    630 				/* setrunnable() will release the lock. */
    631 				setrunnable(l);
    632 				continue;
    633 			}
    634 
    635 			lwp_unlock(l);
    636 		}
    637 
    638 		mutex_exit(&p->p_smutex);
    639 	}
    640 	mutex_exit(&proclist_mutex);
    641 
    642 	/*
    643 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    644 	 * They'll trap into the kernel and suspend themselves in userret().
    645 	 */
    646 #ifdef MULTIPROCESSOR
    647 	for (CPU_INFO_FOREACH(cii, ci))
    648 		cpu_need_resched(ci, 0);
    649 #else
    650 	cpu_need_resched(curcpu(), 0);
    651 #endif
    652 }
    653 
    654 /*
    655  * sched_kpri:
    656  *
    657  *	Scale a priority level to a kernel priority level, usually
    658  *	for an LWP that is about to sleep.
    659  */
    660 pri_t
    661 sched_kpri(struct lwp *l)
    662 {
    663 	/*
    664 	 * Scale user priorities (127 -> 50) up to kernel priorities
    665 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
    666 	 * for high priority kthreads.  Kernel priorities passed in
    667 	 * are left "as is".  XXX This is somewhat arbitrary.
    668 	 */
    669 	static const uint8_t kpri_tab[] = {
    670 		 0,   1,   2,   3,   4,   5,   6,   7,
    671 		 8,   9,  10,  11,  12,  13,  14,  15,
    672 		16,  17,  18,  19,  20,  21,  22,  23,
    673 		24,  25,  26,  27,  28,  29,  30,  31,
    674 		32,  33,  34,  35,  36,  37,  38,  39,
    675 		40,  41,  42,  43,  44,  45,  46,  47,
    676 		48,  49,   8,   8,   9,   9,  10,  10,
    677 		11,  11,  12,  12,  13,  14,  14,  15,
    678 		15,  16,  16,  17,  17,  18,  18,  19,
    679 		20,  20,  21,  21,  22,  22,  23,  23,
    680 		24,  24,  25,  26,  26,  27,  27,  28,
    681 		28,  29,  29,  30,  30,  31,  32,  32,
    682 		33,  33,  34,  34,  35,  35,  36,  36,
    683 		37,  38,  38,  39,  39,  40,  40,  41,
    684 		41,  42,  42,  43,  44,  44,  45,  45,
    685 		46,  46,  47,  47,  48,  48,  49,  49,
    686 	};
    687 
    688 	return (pri_t)kpri_tab[l->l_usrpri];
    689 }
    690 
    691 /*
    692  * sched_unsleep:
    693  *
    694  *	The is called when the LWP has not been awoken normally but instead
    695  *	interrupted: for example, if the sleep timed out.  Because of this,
    696  *	it's not a valid action for running or idle LWPs.
    697  */
    698 static void
    699 sched_unsleep(struct lwp *l)
    700 {
    701 
    702 	lwp_unlock(l);
    703 	panic("sched_unsleep");
    704 }
    705 
    706 inline void
    707 resched_cpu(struct lwp *l)
    708 {
    709 	struct cpu_info *ci;
    710 	const pri_t pri = lwp_eprio(l);
    711 
    712 	/*
    713 	 * XXXSMP
    714 	 * Since l->l_cpu persists across a context switch,
    715 	 * this gives us *very weak* processor affinity, in
    716 	 * that we notify the CPU on which the process last
    717 	 * ran that it should try to switch.
    718 	 *
    719 	 * This does not guarantee that the process will run on
    720 	 * that processor next, because another processor might
    721 	 * grab it the next time it performs a context switch.
    722 	 *
    723 	 * This also does not handle the case where its last
    724 	 * CPU is running a higher-priority process, but every
    725 	 * other CPU is running a lower-priority process.  There
    726 	 * are ways to handle this situation, but they're not
    727 	 * currently very pretty, and we also need to weigh the
    728 	 * cost of moving a process from one CPU to another.
    729 	 */
    730 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    731 	if (pri < ci->ci_schedstate.spc_curpriority)
    732 		cpu_need_resched(ci, 0);
    733 }
    734 
    735 static void
    736 sched_changepri(struct lwp *l, pri_t pri)
    737 {
    738 
    739 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    740 
    741 	l->l_usrpri = pri;
    742 	if (l->l_priority < PUSER)
    743 		return;
    744 
    745 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    746 		l->l_priority = pri;
    747 		return;
    748 	}
    749 
    750 	sched_dequeue(l);
    751 	l->l_priority = pri;
    752 	sched_enqueue(l, false);
    753 	resched_cpu(l);
    754 }
    755 
    756 static void
    757 sched_lendpri(struct lwp *l, pri_t pri)
    758 {
    759 
    760 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    761 
    762 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    763 		l->l_inheritedprio = pri;
    764 		return;
    765 	}
    766 
    767 	sched_dequeue(l);
    768 	l->l_inheritedprio = pri;
    769 	sched_enqueue(l, false);
    770 	resched_cpu(l);
    771 }
    772 
    773 struct lwp *
    774 syncobj_noowner(wchan_t wchan)
    775 {
    776 
    777 	return NULL;
    778 }
    779 
    780 
    781 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    782 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    783 
    784 /*
    785  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    786  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    787  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    788  *
    789  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    790  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    791  *
    792  * If you dont want to bother with the faster/more-accurate formula, you
    793  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    794  * (more general) method of calculating the %age of CPU used by a process.
    795  */
    796 #define	CCPU_SHIFT	(FSHIFT + 1)
    797 
    798 /*
    799  * sched_pstats:
    800  *
    801  * Update process statistics and check CPU resource allocation.
    802  * Call scheduler-specific hook to eventually adjust process/LWP
    803  * priorities.
    804  *
    805  *	XXXSMP This needs to be reorganised in order to reduce the locking
    806  *	burden.
    807  */
    808 /* ARGSUSED */
    809 void
    810 sched_pstats(void *arg)
    811 {
    812 	struct rlimit *rlim;
    813 	struct lwp *l;
    814 	struct proc *p;
    815 	int minslp, sig, clkhz;
    816 	long runtm;
    817 
    818 	sched_pstats_ticks++;
    819 
    820 	mutex_enter(&proclist_mutex);
    821 	PROCLIST_FOREACH(p, &allproc) {
    822 		/*
    823 		 * Increment time in/out of memory and sleep time (if
    824 		 * sleeping).  We ignore overflow; with 16-bit int's
    825 		 * (remember them?) overflow takes 45 days.
    826 		 */
    827 		minslp = 2;
    828 		mutex_enter(&p->p_smutex);
    829 		runtm = p->p_rtime.tv_sec;
    830 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    831 			if ((l->l_flag & LW_IDLE) != 0)
    832 				continue;
    833 			lwp_lock(l);
    834 			runtm += l->l_rtime.tv_sec;
    835 			l->l_swtime++;
    836 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    837 			    l->l_stat == LSSUSPENDED) {
    838 				l->l_slptime++;
    839 				minslp = min(minslp, l->l_slptime);
    840 			} else
    841 				minslp = 0;
    842 			lwp_unlock(l);
    843 		}
    844 
    845 		/*
    846 		 * Check if the process exceeds its CPU resource allocation.
    847 		 * If over max, kill it.
    848 		 */
    849 		rlim = &p->p_rlimit[RLIMIT_CPU];
    850 		sig = 0;
    851 		if (runtm >= rlim->rlim_cur) {
    852 			if (runtm >= rlim->rlim_max)
    853 				sig = SIGKILL;
    854 			else {
    855 				sig = SIGXCPU;
    856 				if (rlim->rlim_cur < rlim->rlim_max)
    857 					rlim->rlim_cur += 5;
    858 			}
    859 		}
    860 
    861 		mutex_spin_enter(&p->p_stmutex);
    862 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    863 		if (minslp < 1) {
    864 			/*
    865 			 * p_pctcpu is only for ps.
    866 			 */
    867 			clkhz = stathz != 0 ? stathz : hz;
    868 #if	(FSHIFT >= CCPU_SHIFT)
    869 			p->p_pctcpu += (clkhz == 100)?
    870 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    871 				100 * (((fixpt_t) p->p_cpticks)
    872 				       << (FSHIFT - CCPU_SHIFT)) / clkhz;
    873 #else
    874 			p->p_pctcpu += ((FSCALE - ccpu) *
    875 					(p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    876 #endif
    877 			p->p_cpticks = 0;
    878 		}
    879 
    880 		sched_pstats_hook(p, minslp);
    881 		mutex_spin_exit(&p->p_stmutex);
    882 		mutex_exit(&p->p_smutex);
    883 		if (sig) {
    884 			psignal(p, sig);
    885 		}
    886 	}
    887 	mutex_exit(&proclist_mutex);
    888 	uvm_meter();
    889 	wakeup(&lbolt);
    890 	callout_schedule(&sched_pstats_ch, hz);
    891 }
    892