Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.177.2.28
      1 /*	$NetBSD: kern_synch.c,v 1.177.2.28 2007/04/21 15:50:17 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.177.2.28 2007/04/21 15:50:17 ad Exp $");
     79 
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #if defined(PERFCTRS)
     92 #include <sys/pmc.h>
     93 #endif
     94 #include <sys/cpu.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/syscall_stats.h>
     98 #include <sys/sleepq.h>
     99 #include <sys/lockdebug.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 struct callout sched_pstats_ch = CALLOUT_INITIALIZER_SETFUNC(sched_pstats, NULL);
    104 unsigned int sched_pstats_ticks;
    105 
    106 int	lbolt;			/* once a second sleep address */
    107 
    108 static void	sched_unsleep(struct lwp *);
    109 static void	sched_changepri(struct lwp *, pri_t);
    110 static void	sched_lendpri(struct lwp *, pri_t);
    111 
    112 syncobj_t sleep_syncobj = {
    113 	SOBJ_SLEEPQ_SORTED,
    114 	sleepq_unsleep,
    115 	sleepq_changepri,
    116 	sleepq_lendpri,
    117 	syncobj_noowner,
    118 };
    119 
    120 syncobj_t sched_syncobj = {
    121 	SOBJ_SLEEPQ_SORTED,
    122 	sched_unsleep,
    123 	sched_changepri,
    124 	sched_lendpri,
    125 	syncobj_noowner,
    126 };
    127 
    128 /*
    129  * During autoconfiguration or after a panic, a sleep will simply lower the
    130  * priority briefly to allow interrupts, then return.  The priority to be
    131  * used (safepri) is machine-dependent, thus this value is initialized and
    132  * maintained in the machine-dependent layers.  This priority will typically
    133  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    134  * it can be made higher to block network software interrupts after panics.
    135  */
    136 int	safepri;
    137 
    138 /*
    139  * OBSOLETE INTERFACE
    140  *
    141  * General sleep call.  Suspends the current process until a wakeup is
    142  * performed on the specified identifier.  The process will then be made
    143  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    144  * means no timeout).  If pri includes PCATCH flag, signals are checked
    145  * before and after sleeping, else signals are not checked.  Returns 0 if
    146  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    147  * signal needs to be delivered, ERESTART is returned if the current system
    148  * call should be restarted if possible, and EINTR is returned if the system
    149  * call should be interrupted by the signal (return EINTR).
    150  *
    151  * The interlock is held until we are on a sleep queue. The interlock will
    152  * be locked before returning back to the caller unless the PNORELOCK flag
    153  * is specified, in which case the interlock will always be unlocked upon
    154  * return.
    155  */
    156 int
    157 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    158 	volatile struct simplelock *interlock)
    159 {
    160 	struct lwp *l = curlwp;
    161 	sleepq_t *sq;
    162 	int error;
    163 
    164 	if (sleepq_dontsleep(l)) {
    165 		(void)sleepq_abort(NULL, 0);
    166 		if ((priority & PNORELOCK) != 0)
    167 			simple_unlock(interlock);
    168 		return 0;
    169 	}
    170 
    171 	sq = sleeptab_lookup(&sleeptab, ident);
    172 	sleepq_enter(sq, l);
    173 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    174 
    175 	if (interlock != NULL) {
    176 		LOCK_ASSERT(simple_lock_held(interlock));
    177 		simple_unlock(interlock);
    178 	}
    179 
    180 	error = sleepq_block(timo, priority & PCATCH);
    181 
    182 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    183 		simple_lock(interlock);
    184 
    185 	return error;
    186 }
    187 
    188 int
    189 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    190 	kmutex_t *mtx)
    191 {
    192 	struct lwp *l = curlwp;
    193 	sleepq_t *sq;
    194 	int error;
    195 
    196 	if (sleepq_dontsleep(l)) {
    197 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    198 		return 0;
    199 	}
    200 
    201 	sq = sleeptab_lookup(&sleeptab, ident);
    202 	sleepq_enter(sq, l);
    203 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    204 	mutex_exit(mtx);
    205 	error = sleepq_block(timo, priority & PCATCH);
    206 
    207 	if ((priority & PNORELOCK) == 0)
    208 		mutex_enter(mtx);
    209 
    210 	return error;
    211 }
    212 
    213 /*
    214  * General sleep call for situations where a wake-up is not expected.
    215  */
    216 int
    217 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    218 {
    219 	struct lwp *l = curlwp;
    220 	sleepq_t *sq;
    221 	int error;
    222 
    223 	if (sleepq_dontsleep(l))
    224 		return sleepq_abort(NULL, 0);
    225 
    226 	if (mtx != NULL)
    227 		mutex_exit(mtx);
    228 	sq = sleeptab_lookup(&sleeptab, l);
    229 	sleepq_enter(sq, l);
    230 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
    231 	error = sleepq_block(timo, intr);
    232 	if (mtx != NULL)
    233 		mutex_enter(mtx);
    234 
    235 	return error;
    236 }
    237 
    238 /*
    239  * OBSOLETE INTERFACE
    240  *
    241  * Make all processes sleeping on the specified identifier runnable.
    242  */
    243 void
    244 wakeup(wchan_t ident)
    245 {
    246 	sleepq_t *sq;
    247 
    248 	if (cold)
    249 		return;
    250 
    251 	sq = sleeptab_lookup(&sleeptab, ident);
    252 	sleepq_wake(sq, ident, (u_int)-1);
    253 }
    254 
    255 /*
    256  * OBSOLETE INTERFACE
    257  *
    258  * Make the highest priority process first in line on the specified
    259  * identifier runnable.
    260  */
    261 void
    262 wakeup_one(wchan_t ident)
    263 {
    264 	sleepq_t *sq;
    265 
    266 	if (cold)
    267 		return;
    268 
    269 	sq = sleeptab_lookup(&sleeptab, ident);
    270 	sleepq_wake(sq, ident, 1);
    271 }
    272 
    273 
    274 /*
    275  * General yield call.  Puts the current process back on its run queue and
    276  * performs a voluntary context switch.  Should only be called when the
    277  * current process explicitly requests it (eg sched_yield(2) in compat code).
    278  */
    279 void
    280 yield(void)
    281 {
    282 	struct lwp *l = curlwp;
    283 
    284 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    285 	lwp_lock(l);
    286 	if (l->l_stat == LSONPROC) {
    287 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    288 		l->l_priority = l->l_usrpri;
    289 	}
    290 	(void)mi_switch(l);
    291 	KERNEL_LOCK(l->l_biglocks, l);
    292 }
    293 
    294 /*
    295  * General preemption call.  Puts the current process back on its run queue
    296  * and performs an involuntary context switch.
    297  */
    298 void
    299 preempt(void)
    300 {
    301 	struct lwp *l = curlwp;
    302 
    303 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    304 	lwp_lock(l);
    305 	if (l->l_stat == LSONPROC) {
    306 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    307 		l->l_priority = l->l_usrpri;
    308 	}
    309 	l->l_nivcsw++;
    310 	(void)mi_switch(l);
    311 	KERNEL_LOCK(l->l_biglocks, l);
    312 }
    313 
    314 /*
    315  * Compute the amount of time during which the current lwp was running.
    316  *
    317  * - update l_rtime unless it's an idle lwp.
    318  * - update spc_runtime for the next lwp.
    319  */
    320 
    321 static inline void
    322 updatertime(struct lwp *l, struct schedstate_percpu *spc)
    323 {
    324 	struct timeval tv;
    325 	long s, u;
    326 
    327 	if ((l->l_flag & LW_IDLE) != 0) {
    328 		microtime(&spc->spc_runtime);
    329 		return;
    330 	}
    331 
    332 	microtime(&tv);
    333 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    334 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    335 	if (u < 0) {
    336 		u += 1000000;
    337 		s--;
    338 	} else if (u >= 1000000) {
    339 		u -= 1000000;
    340 		s++;
    341 	}
    342 	l->l_rtime.tv_usec = u;
    343 	l->l_rtime.tv_sec = s;
    344 
    345 	spc->spc_runtime = tv;
    346 }
    347 
    348 /*
    349  * The machine independent parts of context switch.
    350  *
    351  * Returns 1 if another process was actually run.
    352  */
    353 int
    354 mi_switch(struct lwp *l)
    355 {
    356 	struct schedstate_percpu *spc;
    357 	struct lwp *newl;
    358 	int retval, oldspl;
    359 
    360 	LOCK_ASSERT(lwp_locked(l, NULL));
    361 
    362 #ifdef LOCKDEBUG
    363 	spinlock_switchcheck();
    364 	simple_lock_switchcheck();
    365 #endif
    366 #ifdef KSTACK_CHECK_MAGIC
    367 	kstack_check_magic(l);
    368 #endif
    369 
    370 	/*
    371 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    372 	 * are after is the run time and that's guarenteed to have been last
    373 	 * updated by this CPU.
    374 	 */
    375 	KDASSERT(l->l_cpu == curcpu());
    376 	spc = &l->l_cpu->ci_schedstate;
    377 
    378 	/* Count time spent in current system call */
    379 	SYSCALL_TIME_SLEEP(l);
    380 
    381 	/*
    382 	 * XXXSMP If we are using h/w performance counters, save context.
    383 	 */
    384 #if PERFCTRS
    385 	if (PMC_ENABLED(l->l_proc)) {
    386 		pmc_save_context(l->l_proc);
    387 	}
    388 #endif
    389 
    390 	/*
    391 	 * If on the CPU and we have gotten this far, then we must yield.
    392 	 */
    393 	KASSERT(l->l_stat != LSRUN);
    394 	if (l->l_stat == LSONPROC) {
    395 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    396 		if ((l->l_flag & LW_IDLE) == 0) {
    397 			l->l_stat = LSRUN;
    398 			sched_enqueue(l, true);
    399 		} else
    400 			l->l_stat = LSIDL;
    401 	}
    402 
    403 	/*
    404 	 * Process is about to yield the CPU; clear the appropriate
    405 	 * scheduling flags.
    406 	 */
    407 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    408 
    409 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    410 
    411 	/*
    412 	 * Acquire the spc_mutex if necessary.
    413 	 */
    414 	if (l->l_mutex != spc->spc_mutex) {
    415 		mutex_spin_enter(spc->spc_mutex);
    416 	}
    417 
    418 	/*
    419 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    420 	 * If no LWP is runnable, switch to the idle LWP.
    421 	 */
    422 	newl = sched_nextlwp();
    423 	if (newl) {
    424 		sched_dequeue(newl);
    425 	} else {
    426 		newl = l->l_cpu->ci_data.cpu_idlelwp;
    427 		KASSERT(newl != NULL);
    428 	}
    429 	KASSERT(lwp_locked(newl, spc->spc_mutex));
    430 	newl->l_stat = LSONPROC;
    431 	newl->l_cpu = l->l_cpu;
    432 	newl->l_flag |= LW_RUNNING;
    433 	cpu_did_resched();
    434 
    435 	if (l->l_mutex != spc->spc_mutex) {
    436 		mutex_spin_exit(spc->spc_mutex);
    437 	}
    438 
    439 	updatertime(l, spc);
    440 	if (l != newl) {
    441 		struct lwp *prevlwp;
    442 
    443 		/* Unlocked, but for statistics only. */
    444 		uvmexp.swtch++;
    445 
    446 		/* Save old VM context. */
    447 		pmap_deactivate(l);
    448 
    449 		/* Switch to the new LWP.. */
    450 		l->l_ncsw++;
    451 		l->l_flag &= ~LW_RUNNING;
    452 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    453 		prevlwp = cpu_switchto(l, newl);
    454 
    455 		/*
    456 		 * .. we have switched away and are now back so we must
    457 		 * be the new curlwp.  prevlwp is who we replaced.
    458 		 */
    459 		curlwp = l;
    460 		if (prevlwp != NULL) {
    461 			curcpu()->ci_mtx_oldspl = oldspl;
    462 			lwp_unlock(prevlwp);
    463 		} else {
    464 			splx(oldspl);
    465 		}
    466 
    467 		/* Restore VM context. */
    468 		pmap_activate(l);
    469 		retval = 1;
    470 	} else {
    471 		/* Nothing to do - just unlock and return. */
    472 		lwp_unlock(l);
    473 		retval = 0;
    474 	}
    475 
    476 	KASSERT(l == curlwp);
    477 	KASSERT(l->l_stat == LSONPROC);
    478 
    479 	/*
    480 	 * XXXSMP If we are using h/w performance counters, restore context.
    481 	 */
    482 #if PERFCTRS
    483 	if (PMC_ENABLED(l->l_proc)) {
    484 		pmc_restore_context(l->l_proc);
    485 	}
    486 #endif
    487 
    488 	/*
    489 	 * We're running again; record our new start time.  We might
    490 	 * be running on a new CPU now, so don't use the cached
    491 	 * schedstate_percpu pointer.
    492 	 */
    493 	SYSCALL_TIME_WAKEUP(l);
    494 	KDASSERT(l->l_cpu == curcpu());
    495 	LOCKDEBUG_BARRIER(NULL, 1);
    496 
    497 	return retval;
    498 }
    499 
    500 /*
    501  * Change process state to be runnable, placing it on the run queue if it is
    502  * in memory, and awakening the swapper if it isn't in memory.
    503  *
    504  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    505  */
    506 void
    507 setrunnable(struct lwp *l)
    508 {
    509 	struct proc *p = l->l_proc;
    510 	sigset_t *ss;
    511 
    512 	KASSERT((l->l_flag & LW_IDLE) == 0);
    513 	KASSERT(mutex_owned(&p->p_smutex));
    514 	KASSERT(lwp_locked(l, NULL));
    515 
    516 	switch (l->l_stat) {
    517 	case LSSTOP:
    518 		/*
    519 		 * If we're being traced (possibly because someone attached us
    520 		 * while we were stopped), check for a signal from the debugger.
    521 		 */
    522 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    523 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    524 				ss = &l->l_sigpend.sp_set;
    525 			else
    526 				ss = &p->p_sigpend.sp_set;
    527 			sigaddset(ss, p->p_xstat);
    528 			signotify(l);
    529 		}
    530 		p->p_nrlwps++;
    531 		break;
    532 	case LSSUSPENDED:
    533 		l->l_flag &= ~LW_WSUSPEND;
    534 		p->p_nrlwps++;
    535 		break;
    536 	case LSSLEEP:
    537 		KASSERT(l->l_wchan != NULL);
    538 		break;
    539 	default:
    540 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    541 	}
    542 
    543 	/*
    544 	 * If the LWP was sleeping interruptably, then it's OK to start it
    545 	 * again.  If not, mark it as still sleeping.
    546 	 */
    547 	if (l->l_wchan != NULL) {
    548 		l->l_stat = LSSLEEP;
    549 		/* lwp_unsleep() will release the lock. */
    550 		lwp_unsleep(l);
    551 		return;
    552 	}
    553 
    554 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    555 
    556 	/*
    557 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    558 	 * about to call mi_switch(), in which case it will yield.
    559 	 */
    560 	if ((l->l_flag & LW_RUNNING) != 0) {
    561 		l->l_stat = LSONPROC;
    562 		l->l_slptime = 0;
    563 		lwp_unlock(l);
    564 		return;
    565 	}
    566 
    567 	/*
    568 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    569 	 * to bring it back in.  Otherwise, enter it into a run queue.
    570 	 */
    571 	sched_setrunnable(l);
    572 	l->l_stat = LSRUN;
    573 	l->l_slptime = 0;
    574 
    575 	if (l->l_flag & LW_INMEM) {
    576 		sched_enqueue(l, false);
    577 		resched_cpu(l);
    578 		lwp_unlock(l);
    579 	} else {
    580 		lwp_unlock(l);
    581 		uvm_kick_scheduler();
    582 	}
    583 }
    584 
    585 /*
    586  * suspendsched:
    587  *
    588  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    589  */
    590 void
    591 suspendsched(void)
    592 {
    593 #ifdef MULTIPROCESSOR
    594 	CPU_INFO_ITERATOR cii;
    595 	struct cpu_info *ci;
    596 #endif
    597 	struct lwp *l;
    598 	struct proc *p;
    599 
    600 	/*
    601 	 * We do this by process in order not to violate the locking rules.
    602 	 */
    603 	mutex_enter(&proclist_mutex);
    604 	PROCLIST_FOREACH(p, &allproc) {
    605 		mutex_enter(&p->p_smutex);
    606 
    607 		if ((p->p_flag & PK_SYSTEM) != 0) {
    608 			mutex_exit(&p->p_smutex);
    609 			continue;
    610 		}
    611 
    612 		p->p_stat = SSTOP;
    613 
    614 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    615 			if (l == curlwp)
    616 				continue;
    617 
    618 			lwp_lock(l);
    619 
    620 			/*
    621 			 * Set L_WREBOOT so that the LWP will suspend itself
    622 			 * when it tries to return to user mode.  We want to
    623 			 * try and get to get as many LWPs as possible to
    624 			 * the user / kernel boundary, so that they will
    625 			 * release any locks that they hold.
    626 			 */
    627 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    628 
    629 			if (l->l_stat == LSSLEEP &&
    630 			    (l->l_flag & LW_SINTR) != 0) {
    631 				/* setrunnable() will release the lock. */
    632 				setrunnable(l);
    633 				continue;
    634 			}
    635 
    636 			lwp_unlock(l);
    637 		}
    638 
    639 		mutex_exit(&p->p_smutex);
    640 	}
    641 	mutex_exit(&proclist_mutex);
    642 
    643 	/*
    644 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    645 	 * They'll trap into the kernel and suspend themselves in userret().
    646 	 */
    647 #ifdef MULTIPROCESSOR
    648 	for (CPU_INFO_FOREACH(cii, ci))
    649 		cpu_need_resched(ci, 0);
    650 #else
    651 	cpu_need_resched(curcpu(), 0);
    652 #endif
    653 }
    654 
    655 /*
    656  * sched_kpri:
    657  *
    658  *	Scale a priority level to a kernel priority level, usually
    659  *	for an LWP that is about to sleep.
    660  */
    661 pri_t
    662 sched_kpri(struct lwp *l)
    663 {
    664 	/*
    665 	 * Scale user priorities (127 -> 50) up to kernel priorities
    666 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
    667 	 * for high priority kthreads.  Kernel priorities passed in
    668 	 * are left "as is".  XXX This is somewhat arbitrary.
    669 	 */
    670 	static const uint8_t kpri_tab[] = {
    671 		 0,   1,   2,   3,   4,   5,   6,   7,
    672 		 8,   9,  10,  11,  12,  13,  14,  15,
    673 		16,  17,  18,  19,  20,  21,  22,  23,
    674 		24,  25,  26,  27,  28,  29,  30,  31,
    675 		32,  33,  34,  35,  36,  37,  38,  39,
    676 		40,  41,  42,  43,  44,  45,  46,  47,
    677 		48,  49,   8,   8,   9,   9,  10,  10,
    678 		11,  11,  12,  12,  13,  14,  14,  15,
    679 		15,  16,  16,  17,  17,  18,  18,  19,
    680 		20,  20,  21,  21,  22,  22,  23,  23,
    681 		24,  24,  25,  26,  26,  27,  27,  28,
    682 		28,  29,  29,  30,  30,  31,  32,  32,
    683 		33,  33,  34,  34,  35,  35,  36,  36,
    684 		37,  38,  38,  39,  39,  40,  40,  41,
    685 		41,  42,  42,  43,  44,  44,  45,  45,
    686 		46,  46,  47,  47,  48,  48,  49,  49,
    687 	};
    688 
    689 	return (pri_t)kpri_tab[l->l_usrpri];
    690 }
    691 
    692 /*
    693  * sched_unsleep:
    694  *
    695  *	The is called when the LWP has not been awoken normally but instead
    696  *	interrupted: for example, if the sleep timed out.  Because of this,
    697  *	it's not a valid action for running or idle LWPs.
    698  */
    699 static void
    700 sched_unsleep(struct lwp *l)
    701 {
    702 
    703 	lwp_unlock(l);
    704 	panic("sched_unsleep");
    705 }
    706 
    707 inline void
    708 resched_cpu(struct lwp *l)
    709 {
    710 	struct cpu_info *ci;
    711 	const pri_t pri = lwp_eprio(l);
    712 
    713 	/*
    714 	 * XXXSMP
    715 	 * Since l->l_cpu persists across a context switch,
    716 	 * this gives us *very weak* processor affinity, in
    717 	 * that we notify the CPU on which the process last
    718 	 * ran that it should try to switch.
    719 	 *
    720 	 * This does not guarantee that the process will run on
    721 	 * that processor next, because another processor might
    722 	 * grab it the next time it performs a context switch.
    723 	 *
    724 	 * This also does not handle the case where its last
    725 	 * CPU is running a higher-priority process, but every
    726 	 * other CPU is running a lower-priority process.  There
    727 	 * are ways to handle this situation, but they're not
    728 	 * currently very pretty, and we also need to weigh the
    729 	 * cost of moving a process from one CPU to another.
    730 	 */
    731 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    732 	if (pri < ci->ci_schedstate.spc_curpriority)
    733 		cpu_need_resched(ci, 0);
    734 }
    735 
    736 static void
    737 sched_changepri(struct lwp *l, pri_t pri)
    738 {
    739 
    740 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    741 
    742 	l->l_usrpri = pri;
    743 	if (l->l_priority < PUSER)
    744 		return;
    745 
    746 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    747 		l->l_priority = pri;
    748 		return;
    749 	}
    750 
    751 	sched_dequeue(l);
    752 	l->l_priority = pri;
    753 	sched_enqueue(l, false);
    754 	resched_cpu(l);
    755 }
    756 
    757 static void
    758 sched_lendpri(struct lwp *l, pri_t pri)
    759 {
    760 
    761 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    762 
    763 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    764 		l->l_inheritedprio = pri;
    765 		return;
    766 	}
    767 
    768 	sched_dequeue(l);
    769 	l->l_inheritedprio = pri;
    770 	sched_enqueue(l, false);
    771 	resched_cpu(l);
    772 }
    773 
    774 struct lwp *
    775 syncobj_noowner(wchan_t wchan)
    776 {
    777 
    778 	return NULL;
    779 }
    780 
    781 
    782 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    783 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    784 
    785 /*
    786  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    787  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    788  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    789  *
    790  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    791  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    792  *
    793  * If you dont want to bother with the faster/more-accurate formula, you
    794  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    795  * (more general) method of calculating the %age of CPU used by a process.
    796  */
    797 #define	CCPU_SHIFT	(FSHIFT + 1)
    798 
    799 /*
    800  * sched_pstats:
    801  *
    802  * Update process statistics and check CPU resource allocation.
    803  * Call scheduler-specific hook to eventually adjust process/LWP
    804  * priorities.
    805  *
    806  *	XXXSMP This needs to be reorganised in order to reduce the locking
    807  *	burden.
    808  */
    809 /* ARGSUSED */
    810 void
    811 sched_pstats(void *arg)
    812 {
    813 	struct rlimit *rlim;
    814 	struct lwp *l;
    815 	struct proc *p;
    816 	int minslp, sig, clkhz;
    817 	long runtm;
    818 
    819 	sched_pstats_ticks++;
    820 
    821 	mutex_enter(&proclist_mutex);
    822 	PROCLIST_FOREACH(p, &allproc) {
    823 		/*
    824 		 * Increment time in/out of memory and sleep time (if
    825 		 * sleeping).  We ignore overflow; with 16-bit int's
    826 		 * (remember them?) overflow takes 45 days.
    827 		 */
    828 		minslp = 2;
    829 		mutex_enter(&p->p_smutex);
    830 		mutex_spin_enter(&p->p_stmutex);
    831 		runtm = p->p_rtime.tv_sec;
    832 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    833 			if ((l->l_flag & LW_IDLE) != 0)
    834 				continue;
    835 			lwp_lock(l);
    836 			runtm += l->l_rtime.tv_sec;
    837 			l->l_swtime++;
    838 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    839 			    l->l_stat == LSSUSPENDED) {
    840 				l->l_slptime++;
    841 				minslp = min(minslp, l->l_slptime);
    842 			} else
    843 				minslp = 0;
    844 			lwp_unlock(l);
    845 
    846 			/*
    847 			 * p_pctcpu is only for ps.
    848 			 */
    849 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    850 			if (l->l_slptime < 1) {
    851 				clkhz = stathz != 0 ? stathz : hz;
    852 #if	(FSHIFT >= CCPU_SHIFT)
    853 				l->l_pctcpu += (clkhz == 100) ?
    854 				    ((fixpt_t)l->l_cpticks) <<
    855 				        (FSHIFT - CCPU_SHIFT) :
    856 				    100 * (((fixpt_t) p->p_cpticks)
    857 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    858 #else
    859 				l->l_pctcpu += ((FSCALE - ccpu) *
    860 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    861 #endif
    862 				l->l_cpticks = 0;
    863 			}
    864 		}
    865 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    866 		sched_pstats_hook(p, minslp);
    867 		mutex_spin_exit(&p->p_stmutex);
    868 
    869 		/*
    870 		 * Check if the process exceeds its CPU resource allocation.
    871 		 * If over max, kill it.
    872 		 */
    873 		rlim = &p->p_rlimit[RLIMIT_CPU];
    874 		sig = 0;
    875 		if (runtm >= rlim->rlim_cur) {
    876 			if (runtm >= rlim->rlim_max)
    877 				sig = SIGKILL;
    878 			else {
    879 				sig = SIGXCPU;
    880 				if (rlim->rlim_cur < rlim->rlim_max)
    881 					rlim->rlim_cur += 5;
    882 			}
    883 		}
    884 		mutex_exit(&p->p_smutex);
    885 		if (sig) {
    886 			psignal(p, sig);
    887 		}
    888 	}
    889 	mutex_exit(&proclist_mutex);
    890 	uvm_meter();
    891 	wakeup(&lbolt);
    892 	callout_schedule(&sched_pstats_ch, hz);
    893 }
    894