kern_synch.c revision 1.177.2.28 1 /* $NetBSD: kern_synch.c,v 1.177.2.28 2007/04/21 15:50:17 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.177.2.28 2007/04/21 15:50:17 ad Exp $");
79
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100
101 #include <uvm/uvm_extern.h>
102
103 struct callout sched_pstats_ch = CALLOUT_INITIALIZER_SETFUNC(sched_pstats, NULL);
104 unsigned int sched_pstats_ticks;
105
106 int lbolt; /* once a second sleep address */
107
108 static void sched_unsleep(struct lwp *);
109 static void sched_changepri(struct lwp *, pri_t);
110 static void sched_lendpri(struct lwp *, pri_t);
111
112 syncobj_t sleep_syncobj = {
113 SOBJ_SLEEPQ_SORTED,
114 sleepq_unsleep,
115 sleepq_changepri,
116 sleepq_lendpri,
117 syncobj_noowner,
118 };
119
120 syncobj_t sched_syncobj = {
121 SOBJ_SLEEPQ_SORTED,
122 sched_unsleep,
123 sched_changepri,
124 sched_lendpri,
125 syncobj_noowner,
126 };
127
128 /*
129 * During autoconfiguration or after a panic, a sleep will simply lower the
130 * priority briefly to allow interrupts, then return. The priority to be
131 * used (safepri) is machine-dependent, thus this value is initialized and
132 * maintained in the machine-dependent layers. This priority will typically
133 * be 0, or the lowest priority that is safe for use on the interrupt stack;
134 * it can be made higher to block network software interrupts after panics.
135 */
136 int safepri;
137
138 /*
139 * OBSOLETE INTERFACE
140 *
141 * General sleep call. Suspends the current process until a wakeup is
142 * performed on the specified identifier. The process will then be made
143 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
144 * means no timeout). If pri includes PCATCH flag, signals are checked
145 * before and after sleeping, else signals are not checked. Returns 0 if
146 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
147 * signal needs to be delivered, ERESTART is returned if the current system
148 * call should be restarted if possible, and EINTR is returned if the system
149 * call should be interrupted by the signal (return EINTR).
150 *
151 * The interlock is held until we are on a sleep queue. The interlock will
152 * be locked before returning back to the caller unless the PNORELOCK flag
153 * is specified, in which case the interlock will always be unlocked upon
154 * return.
155 */
156 int
157 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
158 volatile struct simplelock *interlock)
159 {
160 struct lwp *l = curlwp;
161 sleepq_t *sq;
162 int error;
163
164 if (sleepq_dontsleep(l)) {
165 (void)sleepq_abort(NULL, 0);
166 if ((priority & PNORELOCK) != 0)
167 simple_unlock(interlock);
168 return 0;
169 }
170
171 sq = sleeptab_lookup(&sleeptab, ident);
172 sleepq_enter(sq, l);
173 sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
174
175 if (interlock != NULL) {
176 LOCK_ASSERT(simple_lock_held(interlock));
177 simple_unlock(interlock);
178 }
179
180 error = sleepq_block(timo, priority & PCATCH);
181
182 if (interlock != NULL && (priority & PNORELOCK) == 0)
183 simple_lock(interlock);
184
185 return error;
186 }
187
188 int
189 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
190 kmutex_t *mtx)
191 {
192 struct lwp *l = curlwp;
193 sleepq_t *sq;
194 int error;
195
196 if (sleepq_dontsleep(l)) {
197 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
198 return 0;
199 }
200
201 sq = sleeptab_lookup(&sleeptab, ident);
202 sleepq_enter(sq, l);
203 sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
204 mutex_exit(mtx);
205 error = sleepq_block(timo, priority & PCATCH);
206
207 if ((priority & PNORELOCK) == 0)
208 mutex_enter(mtx);
209
210 return error;
211 }
212
213 /*
214 * General sleep call for situations where a wake-up is not expected.
215 */
216 int
217 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
218 {
219 struct lwp *l = curlwp;
220 sleepq_t *sq;
221 int error;
222
223 if (sleepq_dontsleep(l))
224 return sleepq_abort(NULL, 0);
225
226 if (mtx != NULL)
227 mutex_exit(mtx);
228 sq = sleeptab_lookup(&sleeptab, l);
229 sleepq_enter(sq, l);
230 sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
231 error = sleepq_block(timo, intr);
232 if (mtx != NULL)
233 mutex_enter(mtx);
234
235 return error;
236 }
237
238 /*
239 * OBSOLETE INTERFACE
240 *
241 * Make all processes sleeping on the specified identifier runnable.
242 */
243 void
244 wakeup(wchan_t ident)
245 {
246 sleepq_t *sq;
247
248 if (cold)
249 return;
250
251 sq = sleeptab_lookup(&sleeptab, ident);
252 sleepq_wake(sq, ident, (u_int)-1);
253 }
254
255 /*
256 * OBSOLETE INTERFACE
257 *
258 * Make the highest priority process first in line on the specified
259 * identifier runnable.
260 */
261 void
262 wakeup_one(wchan_t ident)
263 {
264 sleepq_t *sq;
265
266 if (cold)
267 return;
268
269 sq = sleeptab_lookup(&sleeptab, ident);
270 sleepq_wake(sq, ident, 1);
271 }
272
273
274 /*
275 * General yield call. Puts the current process back on its run queue and
276 * performs a voluntary context switch. Should only be called when the
277 * current process explicitly requests it (eg sched_yield(2) in compat code).
278 */
279 void
280 yield(void)
281 {
282 struct lwp *l = curlwp;
283
284 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
285 lwp_lock(l);
286 if (l->l_stat == LSONPROC) {
287 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
288 l->l_priority = l->l_usrpri;
289 }
290 (void)mi_switch(l);
291 KERNEL_LOCK(l->l_biglocks, l);
292 }
293
294 /*
295 * General preemption call. Puts the current process back on its run queue
296 * and performs an involuntary context switch.
297 */
298 void
299 preempt(void)
300 {
301 struct lwp *l = curlwp;
302
303 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
304 lwp_lock(l);
305 if (l->l_stat == LSONPROC) {
306 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
307 l->l_priority = l->l_usrpri;
308 }
309 l->l_nivcsw++;
310 (void)mi_switch(l);
311 KERNEL_LOCK(l->l_biglocks, l);
312 }
313
314 /*
315 * Compute the amount of time during which the current lwp was running.
316 *
317 * - update l_rtime unless it's an idle lwp.
318 * - update spc_runtime for the next lwp.
319 */
320
321 static inline void
322 updatertime(struct lwp *l, struct schedstate_percpu *spc)
323 {
324 struct timeval tv;
325 long s, u;
326
327 if ((l->l_flag & LW_IDLE) != 0) {
328 microtime(&spc->spc_runtime);
329 return;
330 }
331
332 microtime(&tv);
333 u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
334 s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
335 if (u < 0) {
336 u += 1000000;
337 s--;
338 } else if (u >= 1000000) {
339 u -= 1000000;
340 s++;
341 }
342 l->l_rtime.tv_usec = u;
343 l->l_rtime.tv_sec = s;
344
345 spc->spc_runtime = tv;
346 }
347
348 /*
349 * The machine independent parts of context switch.
350 *
351 * Returns 1 if another process was actually run.
352 */
353 int
354 mi_switch(struct lwp *l)
355 {
356 struct schedstate_percpu *spc;
357 struct lwp *newl;
358 int retval, oldspl;
359
360 LOCK_ASSERT(lwp_locked(l, NULL));
361
362 #ifdef LOCKDEBUG
363 spinlock_switchcheck();
364 simple_lock_switchcheck();
365 #endif
366 #ifdef KSTACK_CHECK_MAGIC
367 kstack_check_magic(l);
368 #endif
369
370 /*
371 * It's safe to read the per CPU schedstate unlocked here, as all we
372 * are after is the run time and that's guarenteed to have been last
373 * updated by this CPU.
374 */
375 KDASSERT(l->l_cpu == curcpu());
376 spc = &l->l_cpu->ci_schedstate;
377
378 /* Count time spent in current system call */
379 SYSCALL_TIME_SLEEP(l);
380
381 /*
382 * XXXSMP If we are using h/w performance counters, save context.
383 */
384 #if PERFCTRS
385 if (PMC_ENABLED(l->l_proc)) {
386 pmc_save_context(l->l_proc);
387 }
388 #endif
389
390 /*
391 * If on the CPU and we have gotten this far, then we must yield.
392 */
393 KASSERT(l->l_stat != LSRUN);
394 if (l->l_stat == LSONPROC) {
395 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
396 if ((l->l_flag & LW_IDLE) == 0) {
397 l->l_stat = LSRUN;
398 sched_enqueue(l, true);
399 } else
400 l->l_stat = LSIDL;
401 }
402
403 /*
404 * Process is about to yield the CPU; clear the appropriate
405 * scheduling flags.
406 */
407 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
408
409 LOCKDEBUG_BARRIER(l->l_mutex, 1);
410
411 /*
412 * Acquire the spc_mutex if necessary.
413 */
414 if (l->l_mutex != spc->spc_mutex) {
415 mutex_spin_enter(spc->spc_mutex);
416 }
417
418 /*
419 * Let sched_nextlwp() select the LWP to run the CPU next.
420 * If no LWP is runnable, switch to the idle LWP.
421 */
422 newl = sched_nextlwp();
423 if (newl) {
424 sched_dequeue(newl);
425 } else {
426 newl = l->l_cpu->ci_data.cpu_idlelwp;
427 KASSERT(newl != NULL);
428 }
429 KASSERT(lwp_locked(newl, spc->spc_mutex));
430 newl->l_stat = LSONPROC;
431 newl->l_cpu = l->l_cpu;
432 newl->l_flag |= LW_RUNNING;
433 cpu_did_resched();
434
435 if (l->l_mutex != spc->spc_mutex) {
436 mutex_spin_exit(spc->spc_mutex);
437 }
438
439 updatertime(l, spc);
440 if (l != newl) {
441 struct lwp *prevlwp;
442
443 /* Unlocked, but for statistics only. */
444 uvmexp.swtch++;
445
446 /* Save old VM context. */
447 pmap_deactivate(l);
448
449 /* Switch to the new LWP.. */
450 l->l_ncsw++;
451 l->l_flag &= ~LW_RUNNING;
452 oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
453 prevlwp = cpu_switchto(l, newl);
454
455 /*
456 * .. we have switched away and are now back so we must
457 * be the new curlwp. prevlwp is who we replaced.
458 */
459 curlwp = l;
460 if (prevlwp != NULL) {
461 curcpu()->ci_mtx_oldspl = oldspl;
462 lwp_unlock(prevlwp);
463 } else {
464 splx(oldspl);
465 }
466
467 /* Restore VM context. */
468 pmap_activate(l);
469 retval = 1;
470 } else {
471 /* Nothing to do - just unlock and return. */
472 lwp_unlock(l);
473 retval = 0;
474 }
475
476 KASSERT(l == curlwp);
477 KASSERT(l->l_stat == LSONPROC);
478
479 /*
480 * XXXSMP If we are using h/w performance counters, restore context.
481 */
482 #if PERFCTRS
483 if (PMC_ENABLED(l->l_proc)) {
484 pmc_restore_context(l->l_proc);
485 }
486 #endif
487
488 /*
489 * We're running again; record our new start time. We might
490 * be running on a new CPU now, so don't use the cached
491 * schedstate_percpu pointer.
492 */
493 SYSCALL_TIME_WAKEUP(l);
494 KDASSERT(l->l_cpu == curcpu());
495 LOCKDEBUG_BARRIER(NULL, 1);
496
497 return retval;
498 }
499
500 /*
501 * Change process state to be runnable, placing it on the run queue if it is
502 * in memory, and awakening the swapper if it isn't in memory.
503 *
504 * Call with the process and LWP locked. Will return with the LWP unlocked.
505 */
506 void
507 setrunnable(struct lwp *l)
508 {
509 struct proc *p = l->l_proc;
510 sigset_t *ss;
511
512 KASSERT((l->l_flag & LW_IDLE) == 0);
513 KASSERT(mutex_owned(&p->p_smutex));
514 KASSERT(lwp_locked(l, NULL));
515
516 switch (l->l_stat) {
517 case LSSTOP:
518 /*
519 * If we're being traced (possibly because someone attached us
520 * while we were stopped), check for a signal from the debugger.
521 */
522 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
523 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
524 ss = &l->l_sigpend.sp_set;
525 else
526 ss = &p->p_sigpend.sp_set;
527 sigaddset(ss, p->p_xstat);
528 signotify(l);
529 }
530 p->p_nrlwps++;
531 break;
532 case LSSUSPENDED:
533 l->l_flag &= ~LW_WSUSPEND;
534 p->p_nrlwps++;
535 break;
536 case LSSLEEP:
537 KASSERT(l->l_wchan != NULL);
538 break;
539 default:
540 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
541 }
542
543 /*
544 * If the LWP was sleeping interruptably, then it's OK to start it
545 * again. If not, mark it as still sleeping.
546 */
547 if (l->l_wchan != NULL) {
548 l->l_stat = LSSLEEP;
549 /* lwp_unsleep() will release the lock. */
550 lwp_unsleep(l);
551 return;
552 }
553
554 LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
555
556 /*
557 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
558 * about to call mi_switch(), in which case it will yield.
559 */
560 if ((l->l_flag & LW_RUNNING) != 0) {
561 l->l_stat = LSONPROC;
562 l->l_slptime = 0;
563 lwp_unlock(l);
564 return;
565 }
566
567 /*
568 * Set the LWP runnable. If it's swapped out, we need to wake the swapper
569 * to bring it back in. Otherwise, enter it into a run queue.
570 */
571 sched_setrunnable(l);
572 l->l_stat = LSRUN;
573 l->l_slptime = 0;
574
575 if (l->l_flag & LW_INMEM) {
576 sched_enqueue(l, false);
577 resched_cpu(l);
578 lwp_unlock(l);
579 } else {
580 lwp_unlock(l);
581 uvm_kick_scheduler();
582 }
583 }
584
585 /*
586 * suspendsched:
587 *
588 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
589 */
590 void
591 suspendsched(void)
592 {
593 #ifdef MULTIPROCESSOR
594 CPU_INFO_ITERATOR cii;
595 struct cpu_info *ci;
596 #endif
597 struct lwp *l;
598 struct proc *p;
599
600 /*
601 * We do this by process in order not to violate the locking rules.
602 */
603 mutex_enter(&proclist_mutex);
604 PROCLIST_FOREACH(p, &allproc) {
605 mutex_enter(&p->p_smutex);
606
607 if ((p->p_flag & PK_SYSTEM) != 0) {
608 mutex_exit(&p->p_smutex);
609 continue;
610 }
611
612 p->p_stat = SSTOP;
613
614 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
615 if (l == curlwp)
616 continue;
617
618 lwp_lock(l);
619
620 /*
621 * Set L_WREBOOT so that the LWP will suspend itself
622 * when it tries to return to user mode. We want to
623 * try and get to get as many LWPs as possible to
624 * the user / kernel boundary, so that they will
625 * release any locks that they hold.
626 */
627 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
628
629 if (l->l_stat == LSSLEEP &&
630 (l->l_flag & LW_SINTR) != 0) {
631 /* setrunnable() will release the lock. */
632 setrunnable(l);
633 continue;
634 }
635
636 lwp_unlock(l);
637 }
638
639 mutex_exit(&p->p_smutex);
640 }
641 mutex_exit(&proclist_mutex);
642
643 /*
644 * Kick all CPUs to make them preempt any LWPs running in user mode.
645 * They'll trap into the kernel and suspend themselves in userret().
646 */
647 #ifdef MULTIPROCESSOR
648 for (CPU_INFO_FOREACH(cii, ci))
649 cpu_need_resched(ci, 0);
650 #else
651 cpu_need_resched(curcpu(), 0);
652 #endif
653 }
654
655 /*
656 * sched_kpri:
657 *
658 * Scale a priority level to a kernel priority level, usually
659 * for an LWP that is about to sleep.
660 */
661 pri_t
662 sched_kpri(struct lwp *l)
663 {
664 /*
665 * Scale user priorities (127 -> 50) up to kernel priorities
666 * in the range (49 -> 8). Reserve the top 8 kernel priorities
667 * for high priority kthreads. Kernel priorities passed in
668 * are left "as is". XXX This is somewhat arbitrary.
669 */
670 static const uint8_t kpri_tab[] = {
671 0, 1, 2, 3, 4, 5, 6, 7,
672 8, 9, 10, 11, 12, 13, 14, 15,
673 16, 17, 18, 19, 20, 21, 22, 23,
674 24, 25, 26, 27, 28, 29, 30, 31,
675 32, 33, 34, 35, 36, 37, 38, 39,
676 40, 41, 42, 43, 44, 45, 46, 47,
677 48, 49, 8, 8, 9, 9, 10, 10,
678 11, 11, 12, 12, 13, 14, 14, 15,
679 15, 16, 16, 17, 17, 18, 18, 19,
680 20, 20, 21, 21, 22, 22, 23, 23,
681 24, 24, 25, 26, 26, 27, 27, 28,
682 28, 29, 29, 30, 30, 31, 32, 32,
683 33, 33, 34, 34, 35, 35, 36, 36,
684 37, 38, 38, 39, 39, 40, 40, 41,
685 41, 42, 42, 43, 44, 44, 45, 45,
686 46, 46, 47, 47, 48, 48, 49, 49,
687 };
688
689 return (pri_t)kpri_tab[l->l_usrpri];
690 }
691
692 /*
693 * sched_unsleep:
694 *
695 * The is called when the LWP has not been awoken normally but instead
696 * interrupted: for example, if the sleep timed out. Because of this,
697 * it's not a valid action for running or idle LWPs.
698 */
699 static void
700 sched_unsleep(struct lwp *l)
701 {
702
703 lwp_unlock(l);
704 panic("sched_unsleep");
705 }
706
707 inline void
708 resched_cpu(struct lwp *l)
709 {
710 struct cpu_info *ci;
711 const pri_t pri = lwp_eprio(l);
712
713 /*
714 * XXXSMP
715 * Since l->l_cpu persists across a context switch,
716 * this gives us *very weak* processor affinity, in
717 * that we notify the CPU on which the process last
718 * ran that it should try to switch.
719 *
720 * This does not guarantee that the process will run on
721 * that processor next, because another processor might
722 * grab it the next time it performs a context switch.
723 *
724 * This also does not handle the case where its last
725 * CPU is running a higher-priority process, but every
726 * other CPU is running a lower-priority process. There
727 * are ways to handle this situation, but they're not
728 * currently very pretty, and we also need to weigh the
729 * cost of moving a process from one CPU to another.
730 */
731 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
732 if (pri < ci->ci_schedstate.spc_curpriority)
733 cpu_need_resched(ci, 0);
734 }
735
736 static void
737 sched_changepri(struct lwp *l, pri_t pri)
738 {
739
740 LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
741
742 l->l_usrpri = pri;
743 if (l->l_priority < PUSER)
744 return;
745
746 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
747 l->l_priority = pri;
748 return;
749 }
750
751 sched_dequeue(l);
752 l->l_priority = pri;
753 sched_enqueue(l, false);
754 resched_cpu(l);
755 }
756
757 static void
758 sched_lendpri(struct lwp *l, pri_t pri)
759 {
760
761 LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
762
763 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
764 l->l_inheritedprio = pri;
765 return;
766 }
767
768 sched_dequeue(l);
769 l->l_inheritedprio = pri;
770 sched_enqueue(l, false);
771 resched_cpu(l);
772 }
773
774 struct lwp *
775 syncobj_noowner(wchan_t wchan)
776 {
777
778 return NULL;
779 }
780
781
782 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
783 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
784
785 /*
786 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
787 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
788 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
789 *
790 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
791 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
792 *
793 * If you dont want to bother with the faster/more-accurate formula, you
794 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
795 * (more general) method of calculating the %age of CPU used by a process.
796 */
797 #define CCPU_SHIFT (FSHIFT + 1)
798
799 /*
800 * sched_pstats:
801 *
802 * Update process statistics and check CPU resource allocation.
803 * Call scheduler-specific hook to eventually adjust process/LWP
804 * priorities.
805 *
806 * XXXSMP This needs to be reorganised in order to reduce the locking
807 * burden.
808 */
809 /* ARGSUSED */
810 void
811 sched_pstats(void *arg)
812 {
813 struct rlimit *rlim;
814 struct lwp *l;
815 struct proc *p;
816 int minslp, sig, clkhz;
817 long runtm;
818
819 sched_pstats_ticks++;
820
821 mutex_enter(&proclist_mutex);
822 PROCLIST_FOREACH(p, &allproc) {
823 /*
824 * Increment time in/out of memory and sleep time (if
825 * sleeping). We ignore overflow; with 16-bit int's
826 * (remember them?) overflow takes 45 days.
827 */
828 minslp = 2;
829 mutex_enter(&p->p_smutex);
830 mutex_spin_enter(&p->p_stmutex);
831 runtm = p->p_rtime.tv_sec;
832 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
833 if ((l->l_flag & LW_IDLE) != 0)
834 continue;
835 lwp_lock(l);
836 runtm += l->l_rtime.tv_sec;
837 l->l_swtime++;
838 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
839 l->l_stat == LSSUSPENDED) {
840 l->l_slptime++;
841 minslp = min(minslp, l->l_slptime);
842 } else
843 minslp = 0;
844 lwp_unlock(l);
845
846 /*
847 * p_pctcpu is only for ps.
848 */
849 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
850 if (l->l_slptime < 1) {
851 clkhz = stathz != 0 ? stathz : hz;
852 #if (FSHIFT >= CCPU_SHIFT)
853 l->l_pctcpu += (clkhz == 100) ?
854 ((fixpt_t)l->l_cpticks) <<
855 (FSHIFT - CCPU_SHIFT) :
856 100 * (((fixpt_t) p->p_cpticks)
857 << (FSHIFT - CCPU_SHIFT)) / clkhz;
858 #else
859 l->l_pctcpu += ((FSCALE - ccpu) *
860 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
861 #endif
862 l->l_cpticks = 0;
863 }
864 }
865 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
866 sched_pstats_hook(p, minslp);
867 mutex_spin_exit(&p->p_stmutex);
868
869 /*
870 * Check if the process exceeds its CPU resource allocation.
871 * If over max, kill it.
872 */
873 rlim = &p->p_rlimit[RLIMIT_CPU];
874 sig = 0;
875 if (runtm >= rlim->rlim_cur) {
876 if (runtm >= rlim->rlim_max)
877 sig = SIGKILL;
878 else {
879 sig = SIGXCPU;
880 if (rlim->rlim_cur < rlim->rlim_max)
881 rlim->rlim_cur += 5;
882 }
883 }
884 mutex_exit(&p->p_smutex);
885 if (sig) {
886 psignal(p, sig);
887 }
888 }
889 mutex_exit(&proclist_mutex);
890 uvm_meter();
891 wakeup(&lbolt);
892 callout_schedule(&sched_pstats_ch, hz);
893 }
894