kern_synch.c revision 1.177.2.29 1 /* $NetBSD: kern_synch.c,v 1.177.2.29 2007/05/13 17:02:58 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.177.2.29 2007/05/13 17:02:58 ad Exp $");
79
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100
101 #include <uvm/uvm_extern.h>
102
103 struct callout sched_pstats_ch = CALLOUT_INITIALIZER_SETFUNC(sched_pstats, NULL);
104 unsigned int sched_pstats_ticks;
105
106 int lbolt; /* once a second sleep address */
107
108 static void sched_unsleep(struct lwp *);
109 static void sched_changepri(struct lwp *, pri_t);
110 static void sched_lendpri(struct lwp *, pri_t);
111
112 syncobj_t sleep_syncobj = {
113 SOBJ_SLEEPQ_SORTED,
114 sleepq_unsleep,
115 sleepq_changepri,
116 sleepq_lendpri,
117 syncobj_noowner,
118 };
119
120 syncobj_t sched_syncobj = {
121 SOBJ_SLEEPQ_SORTED,
122 sched_unsleep,
123 sched_changepri,
124 sched_lendpri,
125 syncobj_noowner,
126 };
127
128 /*
129 * During autoconfiguration or after a panic, a sleep will simply lower the
130 * priority briefly to allow interrupts, then return. The priority to be
131 * used (safepri) is machine-dependent, thus this value is initialized and
132 * maintained in the machine-dependent layers. This priority will typically
133 * be 0, or the lowest priority that is safe for use on the interrupt stack;
134 * it can be made higher to block network software interrupts after panics.
135 */
136 int safepri;
137
138 /*
139 * OBSOLETE INTERFACE
140 *
141 * General sleep call. Suspends the current process until a wakeup is
142 * performed on the specified identifier. The process will then be made
143 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
144 * means no timeout). If pri includes PCATCH flag, signals are checked
145 * before and after sleeping, else signals are not checked. Returns 0 if
146 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
147 * signal needs to be delivered, ERESTART is returned if the current system
148 * call should be restarted if possible, and EINTR is returned if the system
149 * call should be interrupted by the signal (return EINTR).
150 *
151 * The interlock is held until we are on a sleep queue. The interlock will
152 * be locked before returning back to the caller unless the PNORELOCK flag
153 * is specified, in which case the interlock will always be unlocked upon
154 * return.
155 */
156 int
157 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
158 volatile struct simplelock *interlock)
159 {
160 struct lwp *l = curlwp;
161 sleepq_t *sq;
162 int error;
163
164 if (sleepq_dontsleep(l)) {
165 (void)sleepq_abort(NULL, 0);
166 if ((priority & PNORELOCK) != 0)
167 simple_unlock(interlock);
168 return 0;
169 }
170
171 sq = sleeptab_lookup(&sleeptab, ident);
172 sleepq_enter(sq, l);
173 sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
174
175 if (interlock != NULL) {
176 LOCK_ASSERT(simple_lock_held(interlock));
177 simple_unlock(interlock);
178 }
179
180 error = sleepq_block(timo, priority & PCATCH);
181
182 if (interlock != NULL && (priority & PNORELOCK) == 0)
183 simple_lock(interlock);
184
185 return error;
186 }
187
188 int
189 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
190 kmutex_t *mtx)
191 {
192 struct lwp *l = curlwp;
193 sleepq_t *sq;
194 int error;
195
196 if (sleepq_dontsleep(l)) {
197 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
198 return 0;
199 }
200
201 sq = sleeptab_lookup(&sleeptab, ident);
202 sleepq_enter(sq, l);
203 sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
204 mutex_exit(mtx);
205 error = sleepq_block(timo, priority & PCATCH);
206
207 if ((priority & PNORELOCK) == 0)
208 mutex_enter(mtx);
209
210 return error;
211 }
212
213 /*
214 * General sleep call for situations where a wake-up is not expected.
215 */
216 int
217 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
218 {
219 struct lwp *l = curlwp;
220 sleepq_t *sq;
221 int error;
222
223 if (sleepq_dontsleep(l))
224 return sleepq_abort(NULL, 0);
225
226 if (mtx != NULL)
227 mutex_exit(mtx);
228 sq = sleeptab_lookup(&sleeptab, l);
229 sleepq_enter(sq, l);
230 sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
231 error = sleepq_block(timo, intr);
232 if (mtx != NULL)
233 mutex_enter(mtx);
234
235 return error;
236 }
237
238 /*
239 * OBSOLETE INTERFACE
240 *
241 * Make all processes sleeping on the specified identifier runnable.
242 */
243 void
244 wakeup(wchan_t ident)
245 {
246 sleepq_t *sq;
247
248 if (cold)
249 return;
250
251 sq = sleeptab_lookup(&sleeptab, ident);
252 sleepq_wake(sq, ident, (u_int)-1);
253 }
254
255 /*
256 * OBSOLETE INTERFACE
257 *
258 * Make the highest priority process first in line on the specified
259 * identifier runnable.
260 */
261 void
262 wakeup_one(wchan_t ident)
263 {
264 sleepq_t *sq;
265
266 if (cold)
267 return;
268
269 sq = sleeptab_lookup(&sleeptab, ident);
270 sleepq_wake(sq, ident, 1);
271 }
272
273
274 /*
275 * General yield call. Puts the current process back on its run queue and
276 * performs a voluntary context switch. Should only be called when the
277 * current process explicitly requests it (eg sched_yield(2) in compat code).
278 */
279 void
280 yield(void)
281 {
282 struct lwp *l = curlwp;
283
284 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
285 lwp_lock(l);
286 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
287 KASSERT(l->l_stat == LSONPROC);
288 l->l_priority = l->l_usrpri;
289 (void)mi_switch(l);
290 KERNEL_LOCK(l->l_biglocks, l);
291 }
292
293 /*
294 * General preemption call. Puts the current process back on its run queue
295 * and performs an involuntary context switch.
296 */
297 void
298 preempt(void)
299 {
300 struct lwp *l = curlwp;
301
302 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
303 lwp_lock(l);
304 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
305 KASSERT(l->l_stat == LSONPROC);
306 l->l_priority = l->l_usrpri;
307 l->l_nivcsw++;
308 (void)mi_switch(l);
309 KERNEL_LOCK(l->l_biglocks, l);
310 }
311
312 /*
313 * Compute the amount of time during which the current lwp was running.
314 *
315 * - update l_rtime unless it's an idle lwp.
316 * - update spc_runtime for the next lwp.
317 */
318
319 static inline void
320 updatertime(struct lwp *l, struct schedstate_percpu *spc)
321 {
322 struct timeval tv;
323 long s, u;
324
325 if ((l->l_flag & LW_IDLE) != 0) {
326 microtime(&spc->spc_runtime);
327 return;
328 }
329
330 microtime(&tv);
331 u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
332 s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
333 if (u < 0) {
334 u += 1000000;
335 s--;
336 } else if (u >= 1000000) {
337 u -= 1000000;
338 s++;
339 }
340 l->l_rtime.tv_usec = u;
341 l->l_rtime.tv_sec = s;
342
343 spc->spc_runtime = tv;
344 }
345
346 /*
347 * The machine independent parts of context switch.
348 *
349 * Returns 1 if another LWP was actually run.
350 */
351 int
352 mi_switch(struct lwp *l)
353 {
354 struct schedstate_percpu *spc;
355 struct lwp *newl;
356 int retval, oldspl;
357
358 KASSERT(lwp_locked(l, NULL));
359 LOCKDEBUG_BARRIER(l->l_mutex, 1);
360
361 #ifdef LOCKDEBUG
362 spinlock_switchcheck();
363 simple_lock_switchcheck();
364 #endif
365 #ifdef KSTACK_CHECK_MAGIC
366 kstack_check_magic(l);
367 #endif
368
369 /*
370 * It's safe to read the per CPU schedstate unlocked here, as all we
371 * are after is the run time and that's guarenteed to have been last
372 * updated by this CPU.
373 */
374 KDASSERT(l->l_cpu == curcpu());
375
376 /* Count time spent in current system call */
377 SYSCALL_TIME_SLEEP(l);
378
379 /*
380 * XXXSMP If we are using h/w performance counters, save context.
381 */
382 #if PERFCTRS
383 if (PMC_ENABLED(l->l_proc)) {
384 pmc_save_context(l->l_proc);
385 }
386 #endif
387 /*
388 * Process is about to yield the CPU; clear the appropriate
389 * scheduling flags.
390 */
391 spc = &l->l_cpu->ci_schedstate;
392 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
393 updatertime(l, spc);
394
395 /*
396 * If on the CPU and we have gotten this far, then we must yield.
397 */
398 mutex_spin_enter(spc->spc_mutex);
399 KASSERT(l->l_stat != LSRUN);
400 if (l->l_stat == LSONPROC) {
401 KASSERT(lwp_locked(l, &spc->spc_lwplock));
402 if ((l->l_flag & LW_IDLE) == 0) {
403 l->l_stat = LSRUN;
404 lwp_setlock(l, spc->spc_mutex);
405 sched_enqueue(l, true);
406 } else
407 l->l_stat = LSIDL;
408 }
409
410 /*
411 * Let sched_nextlwp() select the LWP to run the CPU next.
412 * If no LWP is runnable, switch to the idle LWP.
413 */
414 newl = sched_nextlwp();
415 if (newl) {
416 sched_dequeue(newl);
417 KASSERT(lwp_locked(newl, spc->spc_mutex));
418 newl->l_stat = LSONPROC;
419 newl->l_cpu = l->l_cpu;
420 newl->l_flag |= LW_RUNNING;
421 lwp_setlock(newl, &spc->spc_lwplock);
422 } else {
423 newl = l->l_cpu->ci_data.cpu_idlelwp;
424 newl->l_stat = LSONPROC;
425 newl->l_flag |= LW_RUNNING;
426 }
427 spc->spc_curpriority = newl->l_usrpri;
428 cpu_did_resched();
429
430 if (l != newl) {
431 struct lwp *prevlwp;
432
433 /*
434 * If the old LWP has been moved to a run queue above,
435 * drop the general purpose LWP lock: it's now locked
436 * by the scheduler lock.
437 *
438 * Otherwise, drop the scheduler lock. We're done with
439 * the run queues for now.
440 */
441 if (l->l_mutex == spc->spc_mutex) {
442 mutex_spin_exit(&spc->spc_lwplock);
443 } else {
444 mutex_spin_exit(spc->spc_mutex);
445 }
446
447 /* Unlocked, but for statistics only. */
448 uvmexp.swtch++;
449
450 /* Save old VM context. */
451 pmap_deactivate(l);
452
453 /* Switch to the new LWP.. */
454 l->l_ncsw++;
455 l->l_flag &= ~LW_RUNNING;
456 oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
457 prevlwp = cpu_switchto(l, newl);
458
459 /*
460 * .. we have switched away and are now back so we must
461 * be the new curlwp. prevlwp is who we replaced.
462 */
463 curlwp = l;
464 if (prevlwp != NULL) {
465 curcpu()->ci_mtx_oldspl = oldspl;
466 lwp_unlock(prevlwp);
467 } else {
468 splx(oldspl);
469 }
470
471 /* Restore VM context. */
472 pmap_activate(l);
473 retval = 1;
474 } else {
475 /* Nothing to do - just unlock and return. */
476 mutex_spin_exit(spc->spc_mutex);
477 lwp_unlock(l);
478 retval = 0;
479 }
480
481 KASSERT(l == curlwp);
482 KASSERT(l->l_stat == LSONPROC);
483
484 /*
485 * XXXSMP If we are using h/w performance counters, restore context.
486 */
487 #if PERFCTRS
488 if (PMC_ENABLED(l->l_proc)) {
489 pmc_restore_context(l->l_proc);
490 }
491 #endif
492
493 /*
494 * We're running again; record our new start time. We might
495 * be running on a new CPU now, so don't use the cached
496 * schedstate_percpu pointer.
497 */
498 SYSCALL_TIME_WAKEUP(l);
499 KDASSERT(l->l_cpu == curcpu());
500 LOCKDEBUG_BARRIER(NULL, 1);
501
502 return retval;
503 }
504
505 /*
506 * Change process state to be runnable, placing it on the run queue if it is
507 * in memory, and awakening the swapper if it isn't in memory.
508 *
509 * Call with the process and LWP locked. Will return with the LWP unlocked.
510 */
511 void
512 setrunnable(struct lwp *l)
513 {
514 struct proc *p = l->l_proc;
515 sigset_t *ss;
516
517 KASSERT((l->l_flag & LW_IDLE) == 0);
518 KASSERT(mutex_owned(&p->p_smutex));
519 KASSERT(lwp_locked(l, NULL));
520
521 switch (l->l_stat) {
522 case LSSTOP:
523 /*
524 * If we're being traced (possibly because someone attached us
525 * while we were stopped), check for a signal from the debugger.
526 */
527 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
528 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
529 ss = &l->l_sigpend.sp_set;
530 else
531 ss = &p->p_sigpend.sp_set;
532 sigaddset(ss, p->p_xstat);
533 signotify(l);
534 }
535 p->p_nrlwps++;
536 break;
537 case LSSUSPENDED:
538 l->l_flag &= ~LW_WSUSPEND;
539 p->p_nrlwps++;
540 break;
541 case LSSLEEP:
542 KASSERT(l->l_wchan != NULL);
543 break;
544 default:
545 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
546 }
547
548 /*
549 * If the LWP was sleeping interruptably, then it's OK to start it
550 * again. If not, mark it as still sleeping.
551 */
552 if (l->l_wchan != NULL) {
553 l->l_stat = LSSLEEP;
554 /* lwp_unsleep() will release the lock. */
555 lwp_unsleep(l);
556 return;
557 }
558
559 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
560
561 /*
562 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
563 * about to call mi_switch(), in which case it will yield.
564 */
565 if ((l->l_flag & LW_RUNNING) != 0) {
566 l->l_stat = LSONPROC;
567 l->l_slptime = 0;
568 lwp_unlock(l);
569 return;
570 }
571
572 /*
573 * Set the LWP runnable. If it's swapped out, we need to wake the swapper
574 * to bring it back in. Otherwise, enter it into a run queue.
575 */
576 spc_lock(l->l_cpu);
577 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
578 sched_setrunnable(l);
579 l->l_stat = LSRUN;
580 l->l_slptime = 0;
581
582 if (l->l_flag & LW_INMEM) {
583 sched_enqueue(l, false);
584 resched_cpu(l);
585 lwp_unlock(l);
586 } else {
587 lwp_unlock(l);
588 uvm_kick_scheduler();
589 }
590 }
591
592 /*
593 * suspendsched:
594 *
595 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
596 */
597 void
598 suspendsched(void)
599 {
600 #ifdef MULTIPROCESSOR
601 CPU_INFO_ITERATOR cii;
602 struct cpu_info *ci;
603 #endif
604 struct lwp *l;
605 struct proc *p;
606
607 /*
608 * We do this by process in order not to violate the locking rules.
609 */
610 mutex_enter(&proclist_mutex);
611 PROCLIST_FOREACH(p, &allproc) {
612 mutex_enter(&p->p_smutex);
613
614 if ((p->p_flag & PK_SYSTEM) != 0) {
615 mutex_exit(&p->p_smutex);
616 continue;
617 }
618
619 p->p_stat = SSTOP;
620
621 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
622 if (l == curlwp)
623 continue;
624
625 lwp_lock(l);
626
627 /*
628 * Set L_WREBOOT so that the LWP will suspend itself
629 * when it tries to return to user mode. We want to
630 * try and get to get as many LWPs as possible to
631 * the user / kernel boundary, so that they will
632 * release any locks that they hold.
633 */
634 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
635
636 if (l->l_stat == LSSLEEP &&
637 (l->l_flag & LW_SINTR) != 0) {
638 /* setrunnable() will release the lock. */
639 setrunnable(l);
640 continue;
641 }
642
643 lwp_unlock(l);
644 }
645
646 mutex_exit(&p->p_smutex);
647 }
648 mutex_exit(&proclist_mutex);
649
650 /*
651 * Kick all CPUs to make them preempt any LWPs running in user mode.
652 * They'll trap into the kernel and suspend themselves in userret().
653 */
654 #ifdef MULTIPROCESSOR
655 for (CPU_INFO_FOREACH(cii, ci))
656 cpu_need_resched(ci, 0);
657 #else
658 cpu_need_resched(curcpu(), 0);
659 #endif
660 }
661
662 /*
663 * sched_kpri:
664 *
665 * Scale a priority level to a kernel priority level, usually
666 * for an LWP that is about to sleep.
667 */
668 pri_t
669 sched_kpri(struct lwp *l)
670 {
671 /*
672 * Scale user priorities (127 -> 50) up to kernel priorities
673 * in the range (49 -> 8). Reserve the top 8 kernel priorities
674 * for high priority kthreads. Kernel priorities passed in
675 * are left "as is". XXX This is somewhat arbitrary.
676 */
677 static const uint8_t kpri_tab[] = {
678 0, 1, 2, 3, 4, 5, 6, 7,
679 8, 9, 10, 11, 12, 13, 14, 15,
680 16, 17, 18, 19, 20, 21, 22, 23,
681 24, 25, 26, 27, 28, 29, 30, 31,
682 32, 33, 34, 35, 36, 37, 38, 39,
683 40, 41, 42, 43, 44, 45, 46, 47,
684 48, 49, 8, 8, 9, 9, 10, 10,
685 11, 11, 12, 12, 13, 14, 14, 15,
686 15, 16, 16, 17, 17, 18, 18, 19,
687 20, 20, 21, 21, 22, 22, 23, 23,
688 24, 24, 25, 26, 26, 27, 27, 28,
689 28, 29, 29, 30, 30, 31, 32, 32,
690 33, 33, 34, 34, 35, 35, 36, 36,
691 37, 38, 38, 39, 39, 40, 40, 41,
692 41, 42, 42, 43, 44, 44, 45, 45,
693 46, 46, 47, 47, 48, 48, 49, 49,
694 };
695
696 return (pri_t)kpri_tab[l->l_usrpri];
697 }
698
699 /*
700 * sched_unsleep:
701 *
702 * The is called when the LWP has not been awoken normally but instead
703 * interrupted: for example, if the sleep timed out. Because of this,
704 * it's not a valid action for running or idle LWPs.
705 */
706 static void
707 sched_unsleep(struct lwp *l)
708 {
709
710 lwp_unlock(l);
711 panic("sched_unsleep");
712 }
713
714 inline void
715 resched_cpu(struct lwp *l)
716 {
717 struct cpu_info *ci;
718 const pri_t pri = lwp_eprio(l);
719
720 /*
721 * XXXSMP
722 * Since l->l_cpu persists across a context switch,
723 * this gives us *very weak* processor affinity, in
724 * that we notify the CPU on which the process last
725 * ran that it should try to switch.
726 *
727 * This does not guarantee that the process will run on
728 * that processor next, because another processor might
729 * grab it the next time it performs a context switch.
730 *
731 * This also does not handle the case where its last
732 * CPU is running a higher-priority process, but every
733 * other CPU is running a lower-priority process. There
734 * are ways to handle this situation, but they're not
735 * currently very pretty, and we also need to weigh the
736 * cost of moving a process from one CPU to another.
737 */
738 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
739 if (pri < ci->ci_schedstate.spc_curpriority)
740 cpu_need_resched(ci, 0);
741 }
742
743 static void
744 sched_changepri(struct lwp *l, pri_t pri)
745 {
746
747 KASSERT(lwp_locked(l, NULL));
748
749 l->l_usrpri = pri;
750 if (l->l_priority < PUSER)
751 return;
752
753 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
754 l->l_priority = pri;
755 return;
756 }
757
758 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
759
760 sched_dequeue(l);
761 l->l_priority = pri;
762 sched_enqueue(l, false);
763 resched_cpu(l);
764 }
765
766 static void
767 sched_lendpri(struct lwp *l, pri_t pri)
768 {
769
770 KASSERT(lwp_locked(l, NULL));
771
772 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
773 l->l_inheritedprio = pri;
774 return;
775 }
776
777 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
778
779 sched_dequeue(l);
780 l->l_inheritedprio = pri;
781 sched_enqueue(l, false);
782 resched_cpu(l);
783 }
784
785 struct lwp *
786 syncobj_noowner(wchan_t wchan)
787 {
788
789 return NULL;
790 }
791
792
793 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
794 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
795
796 /*
797 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
798 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
799 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
800 *
801 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
802 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
803 *
804 * If you dont want to bother with the faster/more-accurate formula, you
805 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
806 * (more general) method of calculating the %age of CPU used by a process.
807 */
808 #define CCPU_SHIFT (FSHIFT + 1)
809
810 /*
811 * sched_pstats:
812 *
813 * Update process statistics and check CPU resource allocation.
814 * Call scheduler-specific hook to eventually adjust process/LWP
815 * priorities.
816 *
817 * XXXSMP This needs to be reorganised in order to reduce the locking
818 * burden.
819 */
820 /* ARGSUSED */
821 void
822 sched_pstats(void *arg)
823 {
824 struct rlimit *rlim;
825 struct lwp *l;
826 struct proc *p;
827 int minslp, sig, clkhz;
828 long runtm;
829
830 sched_pstats_ticks++;
831
832 mutex_enter(&proclist_mutex);
833 PROCLIST_FOREACH(p, &allproc) {
834 /*
835 * Increment time in/out of memory and sleep time (if
836 * sleeping). We ignore overflow; with 16-bit int's
837 * (remember them?) overflow takes 45 days.
838 */
839 minslp = 2;
840 mutex_enter(&p->p_smutex);
841 mutex_spin_enter(&p->p_stmutex);
842 runtm = p->p_rtime.tv_sec;
843 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
844 if ((l->l_flag & LW_IDLE) != 0)
845 continue;
846 lwp_lock(l);
847 runtm += l->l_rtime.tv_sec;
848 l->l_swtime++;
849 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
850 l->l_stat == LSSUSPENDED) {
851 l->l_slptime++;
852 minslp = min(minslp, l->l_slptime);
853 } else
854 minslp = 0;
855 lwp_unlock(l);
856
857 /*
858 * p_pctcpu is only for ps.
859 */
860 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
861 if (l->l_slptime < 1) {
862 clkhz = stathz != 0 ? stathz : hz;
863 #if (FSHIFT >= CCPU_SHIFT)
864 l->l_pctcpu += (clkhz == 100) ?
865 ((fixpt_t)l->l_cpticks) <<
866 (FSHIFT - CCPU_SHIFT) :
867 100 * (((fixpt_t) p->p_cpticks)
868 << (FSHIFT - CCPU_SHIFT)) / clkhz;
869 #else
870 l->l_pctcpu += ((FSCALE - ccpu) *
871 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
872 #endif
873 l->l_cpticks = 0;
874 }
875 }
876 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
877 sched_pstats_hook(p, minslp);
878 mutex_spin_exit(&p->p_stmutex);
879
880 /*
881 * Check if the process exceeds its CPU resource allocation.
882 * If over max, kill it.
883 */
884 rlim = &p->p_rlimit[RLIMIT_CPU];
885 sig = 0;
886 if (runtm >= rlim->rlim_cur) {
887 if (runtm >= rlim->rlim_max)
888 sig = SIGKILL;
889 else {
890 sig = SIGXCPU;
891 if (rlim->rlim_cur < rlim->rlim_max)
892 rlim->rlim_cur += 5;
893 }
894 }
895 mutex_exit(&p->p_smutex);
896 if (sig) {
897 psignal(p, sig);
898 }
899 }
900 mutex_exit(&proclist_mutex);
901 uvm_meter();
902 wakeup(&lbolt);
903 callout_schedule(&sched_pstats_ch, hz);
904 }
905