kern_synch.c revision 1.181 1 /* $NetBSD: kern_synch.c,v 1.181 2007/02/19 22:14:15 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.181 2007/02/19 22:14:15 dsl Exp $");
78
79 #include "opt_ddb.h"
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/proc.h>
91 #include <sys/kernel.h>
92 #include <sys/buf.h>
93 #if defined(PERFCTRS)
94 #include <sys/pmc.h>
95 #endif
96 #include <sys/signalvar.h>
97 #include <sys/resourcevar.h>
98 #include <sys/sched.h>
99 #include <sys/syscall_stats.h>
100 #include <sys/kauth.h>
101 #include <sys/sleepq.h>
102 #include <sys/lockdebug.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <machine/cpu.h>
107
108 int lbolt; /* once a second sleep address */
109 int rrticks; /* number of hardclock ticks per roundrobin() */
110
111 /*
112 * The global scheduler state.
113 */
114 kmutex_t sched_mutex; /* global sched state mutex */
115 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
116 volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
117
118 void schedcpu(void *);
119 void updatepri(struct lwp *);
120
121 void sched_unsleep(struct lwp *);
122 void sched_changepri(struct lwp *, int);
123
124 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
125 static unsigned int schedcpu_ticks;
126
127 syncobj_t sleep_syncobj = {
128 SOBJ_SLEEPQ_SORTED,
129 sleepq_unsleep,
130 sleepq_changepri
131 };
132
133 syncobj_t sched_syncobj = {
134 SOBJ_SLEEPQ_SORTED,
135 sched_unsleep,
136 sched_changepri
137 };
138
139 /*
140 * Force switch among equal priority processes every 100ms.
141 * Called from hardclock every hz/10 == rrticks hardclock ticks.
142 */
143 /* ARGSUSED */
144 void
145 roundrobin(struct cpu_info *ci)
146 {
147 struct schedstate_percpu *spc = &ci->ci_schedstate;
148
149 spc->spc_rrticks = rrticks;
150
151 if (curlwp != NULL) {
152 if (spc->spc_flags & SPCF_SEENRR) {
153 /*
154 * The process has already been through a roundrobin
155 * without switching and may be hogging the CPU.
156 * Indicate that the process should yield.
157 */
158 spc->spc_flags |= SPCF_SHOULDYIELD;
159 } else
160 spc->spc_flags |= SPCF_SEENRR;
161 }
162 cpu_need_resched(curcpu());
163 }
164
165 #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
166 #define NICE_WEIGHT 2 /* priorities per nice level */
167
168 #define ESTCPU_SHIFT 11
169 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
170 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
171
172 /*
173 * Constants for digital decay and forget:
174 * 90% of (p_estcpu) usage in 5 * loadav time
175 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
176 * Note that, as ps(1) mentions, this can let percentages
177 * total over 100% (I've seen 137.9% for 3 processes).
178 *
179 * Note that hardclock updates p_estcpu and p_cpticks independently.
180 *
181 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
182 * That is, the system wants to compute a value of decay such
183 * that the following for loop:
184 * for (i = 0; i < (5 * loadavg); i++)
185 * p_estcpu *= decay;
186 * will compute
187 * p_estcpu *= 0.1;
188 * for all values of loadavg:
189 *
190 * Mathematically this loop can be expressed by saying:
191 * decay ** (5 * loadavg) ~= .1
192 *
193 * The system computes decay as:
194 * decay = (2 * loadavg) / (2 * loadavg + 1)
195 *
196 * We wish to prove that the system's computation of decay
197 * will always fulfill the equation:
198 * decay ** (5 * loadavg) ~= .1
199 *
200 * If we compute b as:
201 * b = 2 * loadavg
202 * then
203 * decay = b / (b + 1)
204 *
205 * We now need to prove two things:
206 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
207 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
208 *
209 * Facts:
210 * For x close to zero, exp(x) =~ 1 + x, since
211 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
212 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
213 * For x close to zero, ln(1+x) =~ x, since
214 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
215 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
216 * ln(.1) =~ -2.30
217 *
218 * Proof of (1):
219 * Solve (factor)**(power) =~ .1 given power (5*loadav):
220 * solving for factor,
221 * ln(factor) =~ (-2.30/5*loadav), or
222 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
223 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
224 *
225 * Proof of (2):
226 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
227 * solving for power,
228 * power*ln(b/(b+1)) =~ -2.30, or
229 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
230 *
231 * Actual power values for the implemented algorithm are as follows:
232 * loadav: 1 2 3 4
233 * power: 5.68 10.32 14.94 19.55
234 */
235
236 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
237 #define loadfactor(loadav) (2 * (loadav))
238
239 static fixpt_t
240 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
241 {
242
243 if (estcpu == 0) {
244 return 0;
245 }
246
247 #if !defined(_LP64)
248 /* avoid 64bit arithmetics. */
249 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
250 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
251 return estcpu * loadfac / (loadfac + FSCALE);
252 }
253 #endif /* !defined(_LP64) */
254
255 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
256 }
257
258 /*
259 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
260 * sleeping for at least seven times the loadfactor will decay p_estcpu to
261 * less than (1 << ESTCPU_SHIFT).
262 *
263 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
264 */
265 static fixpt_t
266 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
267 {
268
269 if ((n << FSHIFT) >= 7 * loadfac) {
270 return 0;
271 }
272
273 while (estcpu != 0 && n > 1) {
274 estcpu = decay_cpu(loadfac, estcpu);
275 n--;
276 }
277
278 return estcpu;
279 }
280
281 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
282 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
283
284 /*
285 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
286 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
287 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
288 *
289 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
290 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
291 *
292 * If you dont want to bother with the faster/more-accurate formula, you
293 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
294 * (more general) method of calculating the %age of CPU used by a process.
295 */
296 #define CCPU_SHIFT 11
297
298 /*
299 * schedcpu:
300 *
301 * Recompute process priorities, every hz ticks.
302 *
303 * XXXSMP This needs to be reorganised in order to reduce the locking
304 * burden.
305 */
306 /* ARGSUSED */
307 void
308 schedcpu(void *arg)
309 {
310 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
311 struct rlimit *rlim;
312 struct lwp *l;
313 struct proc *p;
314 int minslp, clkhz, sig;
315 long runtm;
316
317 schedcpu_ticks++;
318
319 mutex_enter(&proclist_mutex);
320 PROCLIST_FOREACH(p, &allproc) {
321 /*
322 * Increment time in/out of memory and sleep time (if
323 * sleeping). We ignore overflow; with 16-bit int's
324 * (remember them?) overflow takes 45 days.
325 */
326 minslp = 2;
327 mutex_enter(&p->p_smutex);
328 runtm = p->p_rtime.tv_sec;
329 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
330 lwp_lock(l);
331 runtm += l->l_rtime.tv_sec;
332 l->l_swtime++;
333 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
334 l->l_stat == LSSUSPENDED) {
335 l->l_slptime++;
336 minslp = min(minslp, l->l_slptime);
337 } else
338 minslp = 0;
339 lwp_unlock(l);
340 }
341 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
342
343 /*
344 * Check if the process exceeds its CPU resource allocation.
345 * If over max, kill it.
346 */
347 rlim = &p->p_rlimit[RLIMIT_CPU];
348 sig = 0;
349 if (runtm >= rlim->rlim_cur) {
350 if (runtm >= rlim->rlim_max)
351 sig = SIGKILL;
352 else {
353 sig = SIGXCPU;
354 if (rlim->rlim_cur < rlim->rlim_max)
355 rlim->rlim_cur += 5;
356 }
357 }
358
359 /*
360 * If the process has run for more than autonicetime, reduce
361 * priority to give others a chance.
362 */
363 if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
364 && kauth_cred_geteuid(p->p_cred)) {
365 mutex_spin_enter(&p->p_stmutex);
366 p->p_nice = autoniceval + NZERO;
367 resetprocpriority(p);
368 mutex_spin_exit(&p->p_stmutex);
369 }
370
371 /*
372 * If the process has slept the entire second,
373 * stop recalculating its priority until it wakes up.
374 */
375 if (minslp <= 1) {
376 /*
377 * p_pctcpu is only for ps.
378 */
379 mutex_spin_enter(&p->p_stmutex);
380 clkhz = stathz != 0 ? stathz : hz;
381 #if (FSHIFT >= CCPU_SHIFT)
382 p->p_pctcpu += (clkhz == 100)?
383 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
384 100 * (((fixpt_t) p->p_cpticks)
385 << (FSHIFT - CCPU_SHIFT)) / clkhz;
386 #else
387 p->p_pctcpu += ((FSCALE - ccpu) *
388 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
389 #endif
390 p->p_cpticks = 0;
391 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
392
393 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
394 lwp_lock(l);
395 if (l->l_slptime <= 1 &&
396 l->l_priority >= PUSER)
397 resetpriority(l);
398 lwp_unlock(l);
399 }
400 mutex_spin_exit(&p->p_stmutex);
401 }
402
403 mutex_exit(&p->p_smutex);
404 if (sig) {
405 psignal(p, sig);
406 }
407 }
408 mutex_exit(&proclist_mutex);
409 uvm_meter();
410 wakeup((caddr_t)&lbolt);
411 callout_schedule(&schedcpu_ch, hz);
412 }
413
414 /*
415 * Recalculate the priority of a process after it has slept for a while.
416 */
417 void
418 updatepri(struct lwp *l)
419 {
420 struct proc *p = l->l_proc;
421 fixpt_t loadfac;
422
423 LOCK_ASSERT(lwp_locked(l, NULL));
424 KASSERT(l->l_slptime > 1);
425
426 loadfac = loadfactor(averunnable.ldavg[0]);
427
428 l->l_slptime--; /* the first time was done in schedcpu */
429 /* XXX NJWLWP */
430 /* XXXSMP occasionally unlocked, should be per-LWP */
431 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
432 resetpriority(l);
433 }
434
435 /*
436 * During autoconfiguration or after a panic, a sleep will simply lower the
437 * priority briefly to allow interrupts, then return. The priority to be
438 * used (safepri) is machine-dependent, thus this value is initialized and
439 * maintained in the machine-dependent layers. This priority will typically
440 * be 0, or the lowest priority that is safe for use on the interrupt stack;
441 * it can be made higher to block network software interrupts after panics.
442 */
443 int safepri;
444
445 /*
446 * OBSOLETE INTERFACE
447 *
448 * General sleep call. Suspends the current process until a wakeup is
449 * performed on the specified identifier. The process will then be made
450 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
451 * means no timeout). If pri includes PCATCH flag, signals are checked
452 * before and after sleeping, else signals are not checked. Returns 0 if
453 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
454 * signal needs to be delivered, ERESTART is returned if the current system
455 * call should be restarted if possible, and EINTR is returned if the system
456 * call should be interrupted by the signal (return EINTR).
457 *
458 * The interlock is held until we are on a sleep queue. The interlock will
459 * be locked before returning back to the caller unless the PNORELOCK flag
460 * is specified, in which case the interlock will always be unlocked upon
461 * return.
462 */
463 int
464 ltsleep(wchan_t ident, int priority, const char *wmesg, int timo,
465 volatile struct simplelock *interlock)
466 {
467 struct lwp *l = curlwp;
468 sleepq_t *sq;
469 int error, catch;
470
471 if (sleepq_dontsleep(l)) {
472 (void)sleepq_abort(NULL, 0);
473 if ((priority & PNORELOCK) != 0)
474 simple_unlock(interlock);
475 return 0;
476 }
477
478 sq = sleeptab_lookup(&sleeptab, ident);
479 sleepq_enter(sq, l);
480
481 if (interlock != NULL) {
482 LOCK_ASSERT(simple_lock_held(interlock));
483 simple_unlock(interlock);
484 }
485
486 catch = priority & PCATCH;
487 sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
488 &sleep_syncobj);
489 error = sleepq_unblock(timo, catch);
490
491 if (interlock != NULL && (priority & PNORELOCK) == 0)
492 simple_lock(interlock);
493
494 return error;
495 }
496
497 /*
498 * General sleep call for situations where a wake-up is not expected.
499 */
500 int
501 kpause(const char *wmesg, boolean_t intr, int timo, kmutex_t *mtx)
502 {
503 struct lwp *l = curlwp;
504 sleepq_t *sq;
505 int error;
506
507 if (sleepq_dontsleep(l))
508 return sleepq_abort(NULL, 0);
509
510 if (mtx != NULL)
511 mutex_exit(mtx);
512 sq = sleeptab_lookup(&sleeptab, l);
513 sleepq_enter(sq, l);
514 sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
515 error = sleepq_unblock(timo, intr);
516 if (mtx != NULL)
517 mutex_enter(mtx);
518
519 return error;
520 }
521
522 /*
523 * OBSOLETE INTERFACE
524 *
525 * Make all processes sleeping on the specified identifier runnable.
526 */
527 void
528 wakeup(wchan_t ident)
529 {
530 sleepq_t *sq;
531
532 if (cold)
533 return;
534
535 sq = sleeptab_lookup(&sleeptab, ident);
536 sleepq_wake(sq, ident, (u_int)-1);
537 }
538
539 /*
540 * OBSOLETE INTERFACE
541 *
542 * Make the highest priority process first in line on the specified
543 * identifier runnable.
544 */
545 void
546 wakeup_one(wchan_t ident)
547 {
548 sleepq_t *sq;
549
550 if (cold)
551 return;
552
553 sq = sleeptab_lookup(&sleeptab, ident);
554 sleepq_wake(sq, ident, 1);
555 }
556
557
558 /*
559 * General yield call. Puts the current process back on its run queue and
560 * performs a voluntary context switch. Should only be called when the
561 * current process explicitly requests it (eg sched_yield(2) in compat code).
562 */
563 void
564 yield(void)
565 {
566 struct lwp *l = curlwp;
567
568 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
569 lwp_lock(l);
570 if (l->l_stat == LSONPROC) {
571 KASSERT(lwp_locked(l, &sched_mutex));
572 l->l_priority = l->l_usrpri;
573 }
574 l->l_nvcsw++;
575 mi_switch(l, NULL);
576 KERNEL_LOCK(l->l_biglocks, l);
577 }
578
579 /*
580 * General preemption call. Puts the current process back on its run queue
581 * and performs an involuntary context switch.
582 */
583 void
584 preempt(void)
585 {
586 struct lwp *l = curlwp;
587
588 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
589 lwp_lock(l);
590 if (l->l_stat == LSONPROC) {
591 KASSERT(lwp_locked(l, &sched_mutex));
592 l->l_priority = l->l_usrpri;
593 }
594 l->l_nivcsw++;
595 (void)mi_switch(l, NULL);
596 KERNEL_LOCK(l->l_biglocks, l);
597 }
598
599 /*
600 * The machine independent parts of context switch. Switch to "new"
601 * if non-NULL, otherwise let cpu_switch choose the next lwp.
602 *
603 * Returns 1 if another process was actually run.
604 */
605 int
606 mi_switch(struct lwp *l, struct lwp *newl)
607 {
608 struct schedstate_percpu *spc;
609 struct timeval tv;
610 int retval, oldspl;
611 long s, u;
612
613 LOCK_ASSERT(lwp_locked(l, NULL));
614
615 #ifdef LOCKDEBUG
616 spinlock_switchcheck();
617 simple_lock_switchcheck();
618 #endif
619 #ifdef KSTACK_CHECK_MAGIC
620 kstack_check_magic(l);
621 #endif
622
623 /*
624 * It's safe to read the per CPU schedstate unlocked here, as all we
625 * are after is the run time and that's guarenteed to have been last
626 * updated by this CPU.
627 */
628 KDASSERT(l->l_cpu == curcpu());
629 spc = &l->l_cpu->ci_schedstate;
630
631 /*
632 * Compute the amount of time during which the current
633 * process was running.
634 */
635 microtime(&tv);
636 u = l->l_rtime.tv_usec +
637 (tv.tv_usec - spc->spc_runtime.tv_usec);
638 s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
639 if (u < 0) {
640 u += 1000000;
641 s--;
642 } else if (u >= 1000000) {
643 u -= 1000000;
644 s++;
645 }
646 l->l_rtime.tv_usec = u;
647 l->l_rtime.tv_sec = s;
648
649 /* Count time spent in current system call */
650 SYSCALL_TIME_SLEEP(l);
651
652 /*
653 * XXXSMP If we are using h/w performance counters, save context.
654 */
655 #if PERFCTRS
656 if (PMC_ENABLED(l->l_proc)) {
657 pmc_save_context(l->l_proc);
658 }
659 #endif
660
661 /*
662 * Acquire the sched_mutex if necessary. It will be released by
663 * cpu_switch once it has decided to idle, or picked another LWP
664 * to run.
665 */
666 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
667 if (l->l_mutex != &sched_mutex) {
668 mutex_spin_enter(&sched_mutex);
669 lwp_unlock(l);
670 }
671 #endif
672
673 /*
674 * If on the CPU and we have gotten this far, then we must yield.
675 */
676 KASSERT(l->l_stat != LSRUN);
677 if (l->l_stat == LSONPROC) {
678 KASSERT(lwp_locked(l, &sched_mutex));
679 l->l_stat = LSRUN;
680 setrunqueue(l);
681 }
682 uvmexp.swtch++;
683
684 /*
685 * Process is about to yield the CPU; clear the appropriate
686 * scheduling flags.
687 */
688 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
689
690 LOCKDEBUG_BARRIER(&sched_mutex, 1);
691
692 /*
693 * Switch to the new current LWP. When we run again, we'll
694 * return back here.
695 */
696 oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
697
698 if (newl == NULL || newl->l_back == NULL)
699 retval = cpu_switch(l, NULL);
700 else {
701 KASSERT(lwp_locked(newl, &sched_mutex));
702 remrunqueue(newl);
703 cpu_switchto(l, newl);
704 retval = 0;
705 }
706
707 /*
708 * XXXSMP If we are using h/w performance counters, restore context.
709 */
710 #if PERFCTRS
711 if (PMC_ENABLED(l->l_proc)) {
712 pmc_restore_context(l->l_proc);
713 }
714 #endif
715
716 /*
717 * We're running again; record our new start time. We might
718 * be running on a new CPU now, so don't use the cached
719 * schedstate_percpu pointer.
720 */
721 SYSCALL_TIME_WAKEUP(l);
722 KDASSERT(l->l_cpu == curcpu());
723 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
724 splx(oldspl);
725
726 return retval;
727 }
728
729 /*
730 * Initialize the (doubly-linked) run queues
731 * to be empty.
732 */
733 void
734 rqinit()
735 {
736 int i;
737
738 for (i = 0; i < RUNQUE_NQS; i++)
739 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
740 (struct lwp *)&sched_qs[i];
741
742 mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
743 }
744
745 static inline void
746 resched_lwp(struct lwp *l, u_char pri)
747 {
748 struct cpu_info *ci;
749
750 /*
751 * XXXSMP
752 * Since l->l_cpu persists across a context switch,
753 * this gives us *very weak* processor affinity, in
754 * that we notify the CPU on which the process last
755 * ran that it should try to switch.
756 *
757 * This does not guarantee that the process will run on
758 * that processor next, because another processor might
759 * grab it the next time it performs a context switch.
760 *
761 * This also does not handle the case where its last
762 * CPU is running a higher-priority process, but every
763 * other CPU is running a lower-priority process. There
764 * are ways to handle this situation, but they're not
765 * currently very pretty, and we also need to weigh the
766 * cost of moving a process from one CPU to another.
767 *
768 * XXXSMP
769 * There is also the issue of locking the other CPU's
770 * sched state, which we currently do not do.
771 */
772 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
773 if (pri < ci->ci_schedstate.spc_curpriority)
774 cpu_need_resched(ci);
775 }
776
777 /*
778 * Change process state to be runnable, placing it on the run queue if it is
779 * in memory, and awakening the swapper if it isn't in memory.
780 *
781 * Call with the process and LWP locked. Will return with the LWP unlocked.
782 */
783 void
784 setrunnable(struct lwp *l)
785 {
786 struct proc *p = l->l_proc;
787 sigset_t *ss;
788
789 LOCK_ASSERT(mutex_owned(&p->p_smutex));
790 LOCK_ASSERT(lwp_locked(l, NULL));
791
792 switch (l->l_stat) {
793 case LSSTOP:
794 /*
795 * If we're being traced (possibly because someone attached us
796 * while we were stopped), check for a signal from the debugger.
797 */
798 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
799 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
800 ss = &l->l_sigpend.sp_set;
801 else
802 ss = &p->p_sigpend.sp_set;
803 sigaddset(ss, p->p_xstat);
804 signotify(l);
805 }
806 p->p_nrlwps++;
807 break;
808 case LSSUSPENDED:
809 l->l_flag &= ~LW_WSUSPEND;
810 p->p_nrlwps++;
811 break;
812 case LSSLEEP:
813 KASSERT(l->l_wchan != NULL);
814 break;
815 default:
816 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
817 }
818
819 /*
820 * If the LWP was sleeping interruptably, then it's OK to start it
821 * again. If not, mark it as still sleeping.
822 */
823 if (l->l_wchan != NULL) {
824 l->l_stat = LSSLEEP;
825 if ((l->l_flag & LW_SINTR) != 0)
826 lwp_unsleep(l);
827 else {
828 lwp_unlock(l);
829 #ifdef DIAGNOSTIC
830 panic("setrunnable: !L_SINTR");
831 #endif
832 }
833 return;
834 }
835
836 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
837
838 /*
839 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
840 * about to call mi_switch(), in which case it will yield.
841 *
842 * XXXSMP Will need to change for preemption.
843 */
844 #ifdef MULTIPROCESSOR
845 if (l->l_cpu->ci_curlwp == l) {
846 #else
847 if (l == curlwp) {
848 #endif
849 l->l_stat = LSONPROC;
850 l->l_slptime = 0;
851 lwp_unlock(l);
852 return;
853 }
854
855 /*
856 * Set the LWP runnable. If it's swapped out, we need to wake the swapper
857 * to bring it back in. Otherwise, enter it into a run queue.
858 */
859 if (l->l_slptime > 1)
860 updatepri(l);
861 l->l_stat = LSRUN;
862 l->l_slptime = 0;
863
864 if (l->l_flag & LW_INMEM) {
865 setrunqueue(l);
866 resched_lwp(l, l->l_priority);
867 lwp_unlock(l);
868 } else {
869 lwp_unlock(l);
870 uvm_kick_scheduler();
871 }
872 }
873
874 /*
875 * Compute the priority of a process when running in user mode.
876 * Arrange to reschedule if the resulting priority is better
877 * than that of the current process.
878 */
879 void
880 resetpriority(struct lwp *l)
881 {
882 unsigned int newpriority;
883 struct proc *p = l->l_proc;
884
885 /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
886 LOCK_ASSERT(lwp_locked(l, NULL));
887
888 if ((l->l_flag & LW_SYSTEM) != 0)
889 return;
890
891 newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
892 NICE_WEIGHT * (p->p_nice - NZERO);
893 newpriority = min(newpriority, MAXPRI);
894 lwp_changepri(l, newpriority);
895 }
896
897 /*
898 * Recompute priority for all LWPs in a process.
899 */
900 void
901 resetprocpriority(struct proc *p)
902 {
903 struct lwp *l;
904
905 LOCK_ASSERT(mutex_owned(&p->p_stmutex));
906
907 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
908 lwp_lock(l);
909 resetpriority(l);
910 lwp_unlock(l);
911 }
912 }
913
914 /*
915 * We adjust the priority of the current process. The priority of a process
916 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
917 * is increased here. The formula for computing priorities (in kern_synch.c)
918 * will compute a different value each time p_estcpu increases. This can
919 * cause a switch, but unless the priority crosses a PPQ boundary the actual
920 * queue will not change. The CPU usage estimator ramps up quite quickly
921 * when the process is running (linearly), and decays away exponentially, at
922 * a rate which is proportionally slower when the system is busy. The basic
923 * principle is that the system will 90% forget that the process used a lot
924 * of CPU time in 5 * loadav seconds. This causes the system to favor
925 * processes which haven't run much recently, and to round-robin among other
926 * processes.
927 */
928
929 void
930 schedclock(struct lwp *l)
931 {
932 struct proc *p = l->l_proc;
933
934 mutex_spin_enter(&p->p_stmutex);
935 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
936 lwp_lock(l);
937 resetpriority(l);
938 mutex_spin_exit(&p->p_stmutex);
939 if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
940 l->l_priority = l->l_usrpri;
941 lwp_unlock(l);
942 }
943
944 /*
945 * suspendsched:
946 *
947 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
948 */
949 void
950 suspendsched(void)
951 {
952 #ifdef MULTIPROCESSOR
953 CPU_INFO_ITERATOR cii;
954 struct cpu_info *ci;
955 #endif
956 struct lwp *l;
957 struct proc *p;
958
959 /*
960 * We do this by process in order not to violate the locking rules.
961 */
962 mutex_enter(&proclist_mutex);
963 PROCLIST_FOREACH(p, &allproc) {
964 mutex_enter(&p->p_smutex);
965
966 if ((p->p_flag & PK_SYSTEM) != 0) {
967 mutex_exit(&p->p_smutex);
968 continue;
969 }
970
971 p->p_stat = SSTOP;
972
973 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
974 if (l == curlwp)
975 continue;
976
977 lwp_lock(l);
978
979 /*
980 * Set L_WREBOOT so that the LWP will suspend itself
981 * when it tries to return to user mode. We want to
982 * try and get to get as many LWPs as possible to
983 * the user / kernel boundary, so that they will
984 * release any locks that they hold.
985 */
986 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
987
988 if (l->l_stat == LSSLEEP &&
989 (l->l_flag & LW_SINTR) != 0) {
990 /* setrunnable() will release the lock. */
991 setrunnable(l);
992 continue;
993 }
994
995 lwp_unlock(l);
996 }
997
998 mutex_exit(&p->p_smutex);
999 }
1000 mutex_exit(&proclist_mutex);
1001
1002 /*
1003 * Kick all CPUs to make them preempt any LWPs running in user mode.
1004 * They'll trap into the kernel and suspend themselves in userret().
1005 */
1006 sched_lock(0);
1007 #ifdef MULTIPROCESSOR
1008 for (CPU_INFO_FOREACH(cii, ci))
1009 cpu_need_resched(ci);
1010 #else
1011 cpu_need_resched(curcpu());
1012 #endif
1013 sched_unlock(0);
1014 }
1015
1016 /*
1017 * scheduler_fork_hook:
1018 *
1019 * Inherit the parent's scheduler history.
1020 */
1021 void
1022 scheduler_fork_hook(struct proc *parent, struct proc *child)
1023 {
1024
1025 LOCK_ASSERT(mutex_owned(&parent->p_smutex));
1026
1027 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1028 child->p_forktime = schedcpu_ticks;
1029 }
1030
1031 /*
1032 * scheduler_wait_hook:
1033 *
1034 * Chargeback parents for the sins of their children.
1035 */
1036 void
1037 scheduler_wait_hook(struct proc *parent, struct proc *child)
1038 {
1039 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1040 fixpt_t estcpu;
1041
1042 /* XXX Only if parent != init?? */
1043
1044 mutex_spin_enter(&parent->p_stmutex);
1045 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1046 schedcpu_ticks - child->p_forktime);
1047 if (child->p_estcpu > estcpu)
1048 parent->p_estcpu =
1049 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1050 mutex_spin_exit(&parent->p_stmutex);
1051 }
1052
1053 /*
1054 * sched_kpri:
1055 *
1056 * Scale a priority level to a kernel priority level, usually
1057 * for an LWP that is about to sleep.
1058 */
1059 int
1060 sched_kpri(struct lwp *l)
1061 {
1062 /*
1063 * Scale user priorities (127 -> 50) up to kernel priorities
1064 * in the range (49 -> 8). Reserve the top 8 kernel priorities
1065 * for high priority kthreads. Kernel priorities passed in
1066 * are left "as is". XXX This is somewhat arbitrary.
1067 */
1068 static const uint8_t kpri_tab[] = {
1069 0, 1, 2, 3, 4, 5, 6, 7,
1070 8, 9, 10, 11, 12, 13, 14, 15,
1071 16, 17, 18, 19, 20, 21, 22, 23,
1072 24, 25, 26, 27, 28, 29, 30, 31,
1073 32, 33, 34, 35, 36, 37, 38, 39,
1074 40, 41, 42, 43, 44, 45, 46, 47,
1075 48, 49, 8, 8, 9, 9, 10, 10,
1076 11, 11, 12, 12, 13, 14, 14, 15,
1077 15, 16, 16, 17, 17, 18, 18, 19,
1078 20, 20, 21, 21, 22, 22, 23, 23,
1079 24, 24, 25, 26, 26, 27, 27, 28,
1080 28, 29, 29, 30, 30, 31, 32, 32,
1081 33, 33, 34, 34, 35, 35, 36, 36,
1082 37, 38, 38, 39, 39, 40, 40, 41,
1083 41, 42, 42, 43, 44, 44, 45, 45,
1084 46, 46, 47, 47, 48, 48, 49, 49,
1085 };
1086
1087 return kpri_tab[l->l_usrpri];
1088 }
1089
1090 /*
1091 * sched_unsleep:
1092 *
1093 * The is called when the LWP has not been awoken normally but instead
1094 * interrupted: for example, if the sleep timed out. Because of this,
1095 * it's not a valid action for running or idle LWPs.
1096 */
1097 void
1098 sched_unsleep(struct lwp *l)
1099 {
1100
1101 lwp_unlock(l);
1102 panic("sched_unsleep");
1103 }
1104
1105 /*
1106 * sched_changepri:
1107 *
1108 * Adjust the priority of an LWP.
1109 */
1110 void
1111 sched_changepri(struct lwp *l, int pri)
1112 {
1113
1114 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1115
1116 l->l_usrpri = pri;
1117
1118 if (l->l_priority < PUSER)
1119 return;
1120 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0 ||
1121 (l->l_priority / PPQ) == (pri / PPQ)) {
1122 l->l_priority = pri;
1123 return;
1124 }
1125
1126 remrunqueue(l);
1127 l->l_priority = pri;
1128 setrunqueue(l);
1129 resched_lwp(l, pri);
1130 }
1131
1132 /*
1133 * Low-level routines to access the run queue. Optimised assembler
1134 * routines can override these.
1135 */
1136
1137 #ifndef __HAVE_MD_RUNQUEUE
1138
1139 /*
1140 * On some architectures, it's faster to use a MSB ordering for the priorites
1141 * than the traditional LSB ordering.
1142 */
1143 #ifdef __HAVE_BIGENDIAN_BITOPS
1144 #define RQMASK(n) (0x80000000 >> (n))
1145 #else
1146 #define RQMASK(n) (0x00000001 << (n))
1147 #endif
1148
1149 /*
1150 * The primitives that manipulate the run queues. whichqs tells which
1151 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1152 * into queues, remrunqueue removes them from queues. The running process is
1153 * on no queue, other processes are on a queue related to p->p_priority,
1154 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1155 * available queues.
1156 */
1157 #ifdef RQDEBUG
1158 static void
1159 checkrunqueue(int whichq, struct lwp *l)
1160 {
1161 const struct prochd * const rq = &sched_qs[whichq];
1162 struct lwp *l2;
1163 int found = 0;
1164 int die = 0;
1165 int empty = 1;
1166 for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
1167 if (l2->l_stat != LSRUN) {
1168 printf("checkrunqueue[%d]: lwp %p state (%d) "
1169 " != LSRUN\n", whichq, l2, l2->l_stat);
1170 }
1171 if (l2->l_back->l_forw != l2) {
1172 printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1173 "corrupt %p\n", whichq, l2, l2->l_back,
1174 l2->l_back->l_forw);
1175 die = 1;
1176 }
1177 if (l2->l_forw->l_back != l2) {
1178 printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1179 "corrupt %p\n", whichq, l2, l2->l_forw,
1180 l2->l_forw->l_back);
1181 die = 1;
1182 }
1183 if (l2 == l)
1184 found = 1;
1185 empty = 0;
1186 }
1187 if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1188 printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1189 whichq, rq);
1190 die = 1;
1191 } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1192 printf("checkrunqueue[%d]: bit clear for non-empty "
1193 "run-queue %p\n", whichq, rq);
1194 die = 1;
1195 }
1196 if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1197 printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1198 whichq, l);
1199 die = 1;
1200 }
1201 if (l != NULL && empty) {
1202 printf("checkrunqueue[%d]: empty run-queue %p with "
1203 "active lwp %p\n", whichq, rq, l);
1204 die = 1;
1205 }
1206 if (l != NULL && !found) {
1207 printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1208 whichq, l, rq);
1209 die = 1;
1210 }
1211 if (die)
1212 panic("checkrunqueue: inconsistency found");
1213 }
1214 #endif /* RQDEBUG */
1215
1216 void
1217 setrunqueue(struct lwp *l)
1218 {
1219 struct prochd *rq;
1220 struct lwp *prev;
1221 const int whichq = l->l_priority / PPQ;
1222
1223 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1224
1225 #ifdef RQDEBUG
1226 checkrunqueue(whichq, NULL);
1227 #endif
1228 #ifdef DIAGNOSTIC
1229 if (l->l_back != NULL || l->l_stat != LSRUN)
1230 panic("setrunqueue");
1231 #endif
1232 sched_whichqs |= RQMASK(whichq);
1233 rq = &sched_qs[whichq];
1234 prev = rq->ph_rlink;
1235 l->l_forw = (struct lwp *)rq;
1236 rq->ph_rlink = l;
1237 prev->l_forw = l;
1238 l->l_back = prev;
1239 #ifdef RQDEBUG
1240 checkrunqueue(whichq, l);
1241 #endif
1242 }
1243
1244 /*
1245 * XXXSMP When LWP dispatch (cpu_switch()) is changed to use remrunqueue(),
1246 * drop of the effective priority level from kernel to user needs to be
1247 * moved here from userret(). The assignment in userret() is currently
1248 * done unlocked.
1249 */
1250 void
1251 remrunqueue(struct lwp *l)
1252 {
1253 struct lwp *prev, *next;
1254 const int whichq = l->l_priority / PPQ;
1255
1256 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1257
1258 #ifdef RQDEBUG
1259 checkrunqueue(whichq, l);
1260 #endif
1261
1262 #if defined(DIAGNOSTIC)
1263 if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
1264 /* Shouldn't happen - interrupts disabled. */
1265 panic("remrunqueue: bit %d not set", whichq);
1266 }
1267 #endif
1268 prev = l->l_back;
1269 l->l_back = NULL;
1270 next = l->l_forw;
1271 prev->l_forw = next;
1272 next->l_back = prev;
1273 if (prev == next)
1274 sched_whichqs &= ~RQMASK(whichq);
1275 #ifdef RQDEBUG
1276 checkrunqueue(whichq, NULL);
1277 #endif
1278 }
1279
1280 #undef RQMASK
1281 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1282