Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.185
      1 /*	$NetBSD: kern_synch.c,v 1.185 2007/02/27 15:07:29 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*-
     41  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     42  *	The Regents of the University of California.  All rights reserved.
     43  * (c) UNIX System Laboratories, Inc.
     44  * All or some portions of this file are derived from material licensed
     45  * to the University of California by American Telephone and Telegraph
     46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     47  * the permission of UNIX System Laboratories, Inc.
     48  *
     49  * Redistribution and use in source and binary forms, with or without
     50  * modification, are permitted provided that the following conditions
     51  * are met:
     52  * 1. Redistributions of source code must retain the above copyright
     53  *    notice, this list of conditions and the following disclaimer.
     54  * 2. Redistributions in binary form must reproduce the above copyright
     55  *    notice, this list of conditions and the following disclaimer in the
     56  *    documentation and/or other materials provided with the distribution.
     57  * 3. Neither the name of the University nor the names of its contributors
     58  *    may be used to endorse or promote products derived from this software
     59  *    without specific prior written permission.
     60  *
     61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     71  * SUCH DAMAGE.
     72  *
     73  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     74  */
     75 
     76 #include <sys/cdefs.h>
     77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.185 2007/02/27 15:07:29 yamt Exp $");
     78 
     79 #include "opt_ddb.h"
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/proc.h>
     91 #include <sys/kernel.h>
     92 #include <sys/buf.h>
     93 #if defined(PERFCTRS)
     94 #include <sys/pmc.h>
     95 #endif
     96 #include <sys/signalvar.h>
     97 #include <sys/resourcevar.h>
     98 #include <sys/sched.h>
     99 #include <sys/syscall_stats.h>
    100 #include <sys/kauth.h>
    101 #include <sys/sleepq.h>
    102 #include <sys/lockdebug.h>
    103 
    104 #include <uvm/uvm_extern.h>
    105 
    106 #include <machine/cpu.h>
    107 
    108 int	lbolt;			/* once a second sleep address */
    109 int	rrticks;		/* number of hardclock ticks per roundrobin() */
    110 
    111 /*
    112  * The global scheduler state.
    113  */
    114 kmutex_t	sched_mutex;		/* global sched state mutex */
    115 struct prochd	sched_qs[RUNQUE_NQS];	/* run queues */
    116 volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    117 
    118 void	schedcpu(void *);
    119 void	updatepri(struct lwp *);
    120 
    121 void	sched_unsleep(struct lwp *);
    122 void	sched_changepri(struct lwp *, pri_t);
    123 void	sched_lendpri(struct lwp *, pri_t);
    124 
    125 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    126 static unsigned int schedcpu_ticks;
    127 
    128 syncobj_t sleep_syncobj = {
    129 	SOBJ_SLEEPQ_SORTED,
    130 	sleepq_unsleep,
    131 	sleepq_changepri,
    132 	sleepq_lendpri,
    133 	syncobj_noowner,
    134 };
    135 
    136 syncobj_t sched_syncobj = {
    137 	SOBJ_SLEEPQ_SORTED,
    138 	sched_unsleep,
    139 	sched_changepri,
    140 	sched_lendpri,
    141 	syncobj_noowner,
    142 };
    143 
    144 /*
    145  * Force switch among equal priority processes every 100ms.
    146  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    147  */
    148 /* ARGSUSED */
    149 void
    150 roundrobin(struct cpu_info *ci)
    151 {
    152 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    153 
    154 	spc->spc_rrticks = rrticks;
    155 
    156 	if (curlwp != NULL) {
    157 		if (spc->spc_flags & SPCF_SEENRR) {
    158 			/*
    159 			 * The process has already been through a roundrobin
    160 			 * without switching and may be hogging the CPU.
    161 			 * Indicate that the process should yield.
    162 			 */
    163 			spc->spc_flags |= SPCF_SHOULDYIELD;
    164 		} else
    165 			spc->spc_flags |= SPCF_SEENRR;
    166 	}
    167 	cpu_need_resched(curcpu());
    168 }
    169 
    170 #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    171 #define	NICE_WEIGHT 2			/* priorities per nice level */
    172 
    173 #define	ESTCPU_SHIFT	11
    174 #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    175 #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    176 
    177 /*
    178  * Constants for digital decay and forget:
    179  *	90% of (p_estcpu) usage in 5 * loadav time
    180  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    181  *          Note that, as ps(1) mentions, this can let percentages
    182  *          total over 100% (I've seen 137.9% for 3 processes).
    183  *
    184  * Note that hardclock updates p_estcpu and p_cpticks independently.
    185  *
    186  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    187  * That is, the system wants to compute a value of decay such
    188  * that the following for loop:
    189  * 	for (i = 0; i < (5 * loadavg); i++)
    190  * 		p_estcpu *= decay;
    191  * will compute
    192  * 	p_estcpu *= 0.1;
    193  * for all values of loadavg:
    194  *
    195  * Mathematically this loop can be expressed by saying:
    196  * 	decay ** (5 * loadavg) ~= .1
    197  *
    198  * The system computes decay as:
    199  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    200  *
    201  * We wish to prove that the system's computation of decay
    202  * will always fulfill the equation:
    203  * 	decay ** (5 * loadavg) ~= .1
    204  *
    205  * If we compute b as:
    206  * 	b = 2 * loadavg
    207  * then
    208  * 	decay = b / (b + 1)
    209  *
    210  * We now need to prove two things:
    211  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    212  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    213  *
    214  * Facts:
    215  *         For x close to zero, exp(x) =~ 1 + x, since
    216  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    217  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    218  *         For x close to zero, ln(1+x) =~ x, since
    219  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    220  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    221  *         ln(.1) =~ -2.30
    222  *
    223  * Proof of (1):
    224  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    225  *	solving for factor,
    226  *      ln(factor) =~ (-2.30/5*loadav), or
    227  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    228  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    229  *
    230  * Proof of (2):
    231  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    232  *	solving for power,
    233  *      power*ln(b/(b+1)) =~ -2.30, or
    234  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    235  *
    236  * Actual power values for the implemented algorithm are as follows:
    237  *      loadav: 1       2       3       4
    238  *      power:  5.68    10.32   14.94   19.55
    239  */
    240 
    241 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    242 #define	loadfactor(loadav)	(2 * (loadav))
    243 
    244 static fixpt_t
    245 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    246 {
    247 
    248 	if (estcpu == 0) {
    249 		return 0;
    250 	}
    251 
    252 #if !defined(_LP64)
    253 	/* avoid 64bit arithmetics. */
    254 #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    255 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    256 		return estcpu * loadfac / (loadfac + FSCALE);
    257 	}
    258 #endif /* !defined(_LP64) */
    259 
    260 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    261 }
    262 
    263 /*
    264  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    265  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    266  * less than (1 << ESTCPU_SHIFT).
    267  *
    268  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    269  */
    270 static fixpt_t
    271 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    272 {
    273 
    274 	if ((n << FSHIFT) >= 7 * loadfac) {
    275 		return 0;
    276 	}
    277 
    278 	while (estcpu != 0 && n > 1) {
    279 		estcpu = decay_cpu(loadfac, estcpu);
    280 		n--;
    281 	}
    282 
    283 	return estcpu;
    284 }
    285 
    286 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    287 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    288 
    289 /*
    290  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    291  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    292  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    293  *
    294  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    295  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    296  *
    297  * If you dont want to bother with the faster/more-accurate formula, you
    298  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    299  * (more general) method of calculating the %age of CPU used by a process.
    300  */
    301 #define	CCPU_SHIFT	11
    302 
    303 /*
    304  * schedcpu:
    305  *
    306  *	Recompute process priorities, every hz ticks.
    307  *
    308  *	XXXSMP This needs to be reorganised in order to reduce the locking
    309  *	burden.
    310  */
    311 /* ARGSUSED */
    312 void
    313 schedcpu(void *arg)
    314 {
    315 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    316 	struct rlimit *rlim;
    317 	struct lwp *l;
    318 	struct proc *p;
    319 	int minslp, clkhz, sig;
    320 	long runtm;
    321 
    322 	schedcpu_ticks++;
    323 
    324 	mutex_enter(&proclist_mutex);
    325 	PROCLIST_FOREACH(p, &allproc) {
    326 		/*
    327 		 * Increment time in/out of memory and sleep time (if
    328 		 * sleeping).  We ignore overflow; with 16-bit int's
    329 		 * (remember them?) overflow takes 45 days.
    330 		 */
    331 		minslp = 2;
    332 		mutex_enter(&p->p_smutex);
    333 		runtm = p->p_rtime.tv_sec;
    334 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    335 			lwp_lock(l);
    336 			runtm += l->l_rtime.tv_sec;
    337 			l->l_swtime++;
    338 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    339 			    l->l_stat == LSSUSPENDED) {
    340 				l->l_slptime++;
    341 				minslp = min(minslp, l->l_slptime);
    342 			} else
    343 				minslp = 0;
    344 			lwp_unlock(l);
    345 		}
    346 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    347 
    348 		/*
    349 		 * Check if the process exceeds its CPU resource allocation.
    350 		 * If over max, kill it.
    351 		 */
    352 		rlim = &p->p_rlimit[RLIMIT_CPU];
    353 		sig = 0;
    354 		if (runtm >= rlim->rlim_cur) {
    355 			if (runtm >= rlim->rlim_max)
    356 				sig = SIGKILL;
    357 			else {
    358 				sig = SIGXCPU;
    359 				if (rlim->rlim_cur < rlim->rlim_max)
    360 					rlim->rlim_cur += 5;
    361 			}
    362 		}
    363 
    364 		/*
    365 		 * If the process has run for more than autonicetime, reduce
    366 		 * priority to give others a chance.
    367 		 */
    368 		if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
    369 		    && kauth_cred_geteuid(p->p_cred)) {
    370 			mutex_spin_enter(&p->p_stmutex);
    371 			p->p_nice = autoniceval + NZERO;
    372 			resetprocpriority(p);
    373 			mutex_spin_exit(&p->p_stmutex);
    374 		}
    375 
    376 		/*
    377 		 * If the process has slept the entire second,
    378 		 * stop recalculating its priority until it wakes up.
    379 		 */
    380 		if (minslp <= 1) {
    381 			/*
    382 			 * p_pctcpu is only for ps.
    383 			 */
    384 			mutex_spin_enter(&p->p_stmutex);
    385 			clkhz = stathz != 0 ? stathz : hz;
    386 #if	(FSHIFT >= CCPU_SHIFT)
    387 			p->p_pctcpu += (clkhz == 100)?
    388 			    ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    389 			    100 * (((fixpt_t) p->p_cpticks)
    390 			    << (FSHIFT - CCPU_SHIFT)) / clkhz;
    391 #else
    392 			p->p_pctcpu += ((FSCALE - ccpu) *
    393 			    (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    394 #endif
    395 			p->p_cpticks = 0;
    396 			p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    397 
    398 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    399 				lwp_lock(l);
    400 				if (l->l_slptime <= 1 &&
    401 				    l->l_priority >= PUSER)
    402 					resetpriority(l);
    403 				lwp_unlock(l);
    404 			}
    405 			mutex_spin_exit(&p->p_stmutex);
    406 		}
    407 
    408 		mutex_exit(&p->p_smutex);
    409 		if (sig) {
    410 			psignal(p, sig);
    411 		}
    412 	}
    413 	mutex_exit(&proclist_mutex);
    414 	uvm_meter();
    415 	wakeup((caddr_t)&lbolt);
    416 	callout_schedule(&schedcpu_ch, hz);
    417 }
    418 
    419 /*
    420  * Recalculate the priority of a process after it has slept for a while.
    421  */
    422 void
    423 updatepri(struct lwp *l)
    424 {
    425 	struct proc *p = l->l_proc;
    426 	fixpt_t loadfac;
    427 
    428 	LOCK_ASSERT(lwp_locked(l, NULL));
    429 	KASSERT(l->l_slptime > 1);
    430 
    431 	loadfac = loadfactor(averunnable.ldavg[0]);
    432 
    433 	l->l_slptime--; /* the first time was done in schedcpu */
    434 	/* XXX NJWLWP */
    435 	/* XXXSMP occasionally unlocked, should be per-LWP */
    436 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    437 	resetpriority(l);
    438 }
    439 
    440 /*
    441  * During autoconfiguration or after a panic, a sleep will simply lower the
    442  * priority briefly to allow interrupts, then return.  The priority to be
    443  * used (safepri) is machine-dependent, thus this value is initialized and
    444  * maintained in the machine-dependent layers.  This priority will typically
    445  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    446  * it can be made higher to block network software interrupts after panics.
    447  */
    448 int	safepri;
    449 
    450 /*
    451  * OBSOLETE INTERFACE
    452  *
    453  * General sleep call.  Suspends the current process until a wakeup is
    454  * performed on the specified identifier.  The process will then be made
    455  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    456  * means no timeout).  If pri includes PCATCH flag, signals are checked
    457  * before and after sleeping, else signals are not checked.  Returns 0 if
    458  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    459  * signal needs to be delivered, ERESTART is returned if the current system
    460  * call should be restarted if possible, and EINTR is returned if the system
    461  * call should be interrupted by the signal (return EINTR).
    462  *
    463  * The interlock is held until we are on a sleep queue. The interlock will
    464  * be locked before returning back to the caller unless the PNORELOCK flag
    465  * is specified, in which case the interlock will always be unlocked upon
    466  * return.
    467  */
    468 int
    469 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    470 	volatile struct simplelock *interlock)
    471 {
    472 	struct lwp *l = curlwp;
    473 	sleepq_t *sq;
    474 	int error, catch;
    475 
    476 	if (sleepq_dontsleep(l)) {
    477 		(void)sleepq_abort(NULL, 0);
    478 		if ((priority & PNORELOCK) != 0)
    479 			simple_unlock(interlock);
    480 		return 0;
    481 	}
    482 
    483 	sq = sleeptab_lookup(&sleeptab, ident);
    484 	sleepq_enter(sq, l);
    485 
    486 	if (interlock != NULL) {
    487 		LOCK_ASSERT(simple_lock_held(interlock));
    488 		simple_unlock(interlock);
    489 	}
    490 
    491 	catch = priority & PCATCH;
    492 	sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
    493 	    &sleep_syncobj);
    494 	error = sleepq_unblock(timo, catch);
    495 
    496 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    497 		simple_lock(interlock);
    498 
    499 	return error;
    500 }
    501 
    502 /*
    503  * General sleep call for situations where a wake-up is not expected.
    504  */
    505 int
    506 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    507 {
    508 	struct lwp *l = curlwp;
    509 	sleepq_t *sq;
    510 	int error;
    511 
    512 	if (sleepq_dontsleep(l))
    513 		return sleepq_abort(NULL, 0);
    514 
    515 	if (mtx != NULL)
    516 		mutex_exit(mtx);
    517 	sq = sleeptab_lookup(&sleeptab, l);
    518 	sleepq_enter(sq, l);
    519 	sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
    520 	error = sleepq_unblock(timo, intr);
    521 	if (mtx != NULL)
    522 		mutex_enter(mtx);
    523 
    524 	return error;
    525 }
    526 
    527 /*
    528  * OBSOLETE INTERFACE
    529  *
    530  * Make all processes sleeping on the specified identifier runnable.
    531  */
    532 void
    533 wakeup(wchan_t ident)
    534 {
    535 	sleepq_t *sq;
    536 
    537 	if (cold)
    538 		return;
    539 
    540 	sq = sleeptab_lookup(&sleeptab, ident);
    541 	sleepq_wake(sq, ident, (u_int)-1);
    542 }
    543 
    544 /*
    545  * OBSOLETE INTERFACE
    546  *
    547  * Make the highest priority process first in line on the specified
    548  * identifier runnable.
    549  */
    550 void
    551 wakeup_one(wchan_t ident)
    552 {
    553 	sleepq_t *sq;
    554 
    555 	if (cold)
    556 		return;
    557 
    558 	sq = sleeptab_lookup(&sleeptab, ident);
    559 	sleepq_wake(sq, ident, 1);
    560 }
    561 
    562 
    563 /*
    564  * General yield call.  Puts the current process back on its run queue and
    565  * performs a voluntary context switch.  Should only be called when the
    566  * current process explicitly requests it (eg sched_yield(2) in compat code).
    567  */
    568 void
    569 yield(void)
    570 {
    571 	struct lwp *l = curlwp;
    572 
    573 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    574 	lwp_lock(l);
    575 	if (l->l_stat == LSONPROC) {
    576 		KASSERT(lwp_locked(l, &sched_mutex));
    577 		l->l_priority = l->l_usrpri;
    578 	}
    579 	l->l_nvcsw++;
    580 	mi_switch(l, NULL);
    581 	KERNEL_LOCK(l->l_biglocks, l);
    582 }
    583 
    584 /*
    585  * General preemption call.  Puts the current process back on its run queue
    586  * and performs an involuntary context switch.
    587  */
    588 void
    589 preempt(void)
    590 {
    591 	struct lwp *l = curlwp;
    592 
    593 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    594 	lwp_lock(l);
    595 	if (l->l_stat == LSONPROC) {
    596 		KASSERT(lwp_locked(l, &sched_mutex));
    597 		l->l_priority = l->l_usrpri;
    598 	}
    599 	l->l_nivcsw++;
    600 	(void)mi_switch(l, NULL);
    601 	KERNEL_LOCK(l->l_biglocks, l);
    602 }
    603 
    604 /*
    605  * The machine independent parts of context switch.  Switch to "new"
    606  * if non-NULL, otherwise let cpu_switch choose the next lwp.
    607  *
    608  * Returns 1 if another process was actually run.
    609  */
    610 int
    611 mi_switch(struct lwp *l, struct lwp *newl)
    612 {
    613 	struct schedstate_percpu *spc;
    614 	struct timeval tv;
    615 	int retval, oldspl;
    616 	long s, u;
    617 
    618 	LOCK_ASSERT(lwp_locked(l, NULL));
    619 
    620 #ifdef LOCKDEBUG
    621 	spinlock_switchcheck();
    622 	simple_lock_switchcheck();
    623 #endif
    624 #ifdef KSTACK_CHECK_MAGIC
    625 	kstack_check_magic(l);
    626 #endif
    627 
    628 	/*
    629 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    630 	 * are after is the run time and that's guarenteed to have been last
    631 	 * updated by this CPU.
    632 	 */
    633 	KDASSERT(l->l_cpu == curcpu());
    634 	spc = &l->l_cpu->ci_schedstate;
    635 
    636 	/*
    637 	 * Compute the amount of time during which the current
    638 	 * process was running.
    639 	 */
    640 	microtime(&tv);
    641 	u = l->l_rtime.tv_usec +
    642 	    (tv.tv_usec - spc->spc_runtime.tv_usec);
    643 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    644 	if (u < 0) {
    645 		u += 1000000;
    646 		s--;
    647 	} else if (u >= 1000000) {
    648 		u -= 1000000;
    649 		s++;
    650 	}
    651 	l->l_rtime.tv_usec = u;
    652 	l->l_rtime.tv_sec = s;
    653 
    654 	/* Count time spent in current system call */
    655 	SYSCALL_TIME_SLEEP(l);
    656 
    657 	/*
    658 	 * XXXSMP If we are using h/w performance counters, save context.
    659 	 */
    660 #if PERFCTRS
    661 	if (PMC_ENABLED(l->l_proc)) {
    662 		pmc_save_context(l->l_proc);
    663 	}
    664 #endif
    665 
    666 	/*
    667 	 * Acquire the sched_mutex if necessary.  It will be released by
    668 	 * cpu_switch once it has decided to idle, or picked another LWP
    669 	 * to run.
    670 	 */
    671 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
    672 	if (l->l_mutex != &sched_mutex) {
    673 		mutex_spin_enter(&sched_mutex);
    674 		lwp_unlock(l);
    675 	}
    676 #endif
    677 
    678 	/*
    679 	 * If on the CPU and we have gotten this far, then we must yield.
    680 	 */
    681 	KASSERT(l->l_stat != LSRUN);
    682 	if (l->l_stat == LSONPROC) {
    683 		KASSERT(lwp_locked(l, &sched_mutex));
    684 		l->l_stat = LSRUN;
    685 		setrunqueue(l);
    686 	}
    687 	uvmexp.swtch++;
    688 
    689 	/*
    690 	 * Process is about to yield the CPU; clear the appropriate
    691 	 * scheduling flags.
    692 	 */
    693 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    694 
    695 	LOCKDEBUG_BARRIER(&sched_mutex, 1);
    696 
    697 	/*
    698 	 * Switch to the new current LWP.  When we run again, we'll
    699 	 * return back here.
    700 	 */
    701 	oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    702 
    703 	if (newl == NULL || newl->l_back == NULL)
    704 		retval = cpu_switch(l, NULL);
    705 	else {
    706 		KASSERT(lwp_locked(newl, &sched_mutex));
    707 		remrunqueue(newl);
    708 		cpu_switchto(l, newl);
    709 		retval = 0;
    710 	}
    711 
    712 	/*
    713 	 * XXXSMP If we are using h/w performance counters, restore context.
    714 	 */
    715 #if PERFCTRS
    716 	if (PMC_ENABLED(l->l_proc)) {
    717 		pmc_restore_context(l->l_proc);
    718 	}
    719 #endif
    720 
    721 	/*
    722 	 * We're running again; record our new start time.  We might
    723 	 * be running on a new CPU now, so don't use the cached
    724 	 * schedstate_percpu pointer.
    725 	 */
    726 	SYSCALL_TIME_WAKEUP(l);
    727 	KDASSERT(l->l_cpu == curcpu());
    728 	microtime(&l->l_cpu->ci_schedstate.spc_runtime);
    729 	splx(oldspl);
    730 
    731 	return retval;
    732 }
    733 
    734 /*
    735  * Initialize the (doubly-linked) run queues
    736  * to be empty.
    737  */
    738 void
    739 rqinit()
    740 {
    741 	int i;
    742 
    743 	for (i = 0; i < RUNQUE_NQS; i++)
    744 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    745 		    (struct lwp *)&sched_qs[i];
    746 
    747 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    748 }
    749 
    750 static inline void
    751 resched_lwp(struct lwp *l)
    752 {
    753 	struct cpu_info *ci;
    754 	const pri_t pri = lwp_eprio(l);
    755 
    756 	/*
    757 	 * XXXSMP
    758 	 * Since l->l_cpu persists across a context switch,
    759 	 * this gives us *very weak* processor affinity, in
    760 	 * that we notify the CPU on which the process last
    761 	 * ran that it should try to switch.
    762 	 *
    763 	 * This does not guarantee that the process will run on
    764 	 * that processor next, because another processor might
    765 	 * grab it the next time it performs a context switch.
    766 	 *
    767 	 * This also does not handle the case where its last
    768 	 * CPU is running a higher-priority process, but every
    769 	 * other CPU is running a lower-priority process.  There
    770 	 * are ways to handle this situation, but they're not
    771 	 * currently very pretty, and we also need to weigh the
    772 	 * cost of moving a process from one CPU to another.
    773 	 *
    774 	 * XXXSMP
    775 	 * There is also the issue of locking the other CPU's
    776 	 * sched state, which we currently do not do.
    777 	 */
    778 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    779 	if (pri < ci->ci_schedstate.spc_curpriority)
    780 		cpu_need_resched(ci);
    781 }
    782 
    783 /*
    784  * Change process state to be runnable, placing it on the run queue if it is
    785  * in memory, and awakening the swapper if it isn't in memory.
    786  *
    787  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    788  */
    789 void
    790 setrunnable(struct lwp *l)
    791 {
    792 	struct proc *p = l->l_proc;
    793 	sigset_t *ss;
    794 
    795 	KASSERT(mutex_owned(&p->p_smutex));
    796 	KASSERT(lwp_locked(l, NULL));
    797 
    798 	switch (l->l_stat) {
    799 	case LSSTOP:
    800 		/*
    801 		 * If we're being traced (possibly because someone attached us
    802 		 * while we were stopped), check for a signal from the debugger.
    803 		 */
    804 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    805 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    806 				ss = &l->l_sigpend.sp_set;
    807 			else
    808 				ss = &p->p_sigpend.sp_set;
    809 			sigaddset(ss, p->p_xstat);
    810 			signotify(l);
    811 		}
    812 		p->p_nrlwps++;
    813 		break;
    814 	case LSSUSPENDED:
    815 		l->l_flag &= ~LW_WSUSPEND;
    816 		p->p_nrlwps++;
    817 		break;
    818 	case LSSLEEP:
    819 		KASSERT(l->l_wchan != NULL);
    820 		break;
    821 	default:
    822 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    823 	}
    824 
    825 	/*
    826 	 * If the LWP was sleeping interruptably, then it's OK to start it
    827 	 * again.  If not, mark it as still sleeping.
    828 	 */
    829 	if (l->l_wchan != NULL) {
    830 		l->l_stat = LSSLEEP;
    831 		/* lwp_unsleep() will release the lock. */
    832 		lwp_unsleep(l);
    833 		return;
    834 	}
    835 
    836 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
    837 
    838 	/*
    839 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    840 	 * about to call mi_switch(), in which case it will yield.
    841 	 *
    842 	 * XXXSMP Will need to change for preemption.
    843 	 */
    844 #ifdef MULTIPROCESSOR
    845 	if (l->l_cpu->ci_curlwp == l) {
    846 #else
    847 	if (l == curlwp) {
    848 #endif
    849 		l->l_stat = LSONPROC;
    850 		l->l_slptime = 0;
    851 		lwp_unlock(l);
    852 		return;
    853 	}
    854 
    855 	/*
    856 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    857 	 * to bring it back in.  Otherwise, enter it into a run queue.
    858 	 */
    859 	if (l->l_slptime > 1)
    860 		updatepri(l);
    861 	l->l_stat = LSRUN;
    862 	l->l_slptime = 0;
    863 
    864 	if (l->l_flag & LW_INMEM) {
    865 		setrunqueue(l);
    866 		resched_lwp(l);
    867 		lwp_unlock(l);
    868 	} else {
    869 		lwp_unlock(l);
    870 		uvm_kick_scheduler();
    871 	}
    872 }
    873 
    874 /*
    875  * Compute the priority of a process when running in user mode.
    876  * Arrange to reschedule if the resulting priority is better
    877  * than that of the current process.
    878  */
    879 void
    880 resetpriority(struct lwp *l)
    881 {
    882 	pri_t newpriority;
    883 	struct proc *p = l->l_proc;
    884 
    885 	/* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
    886 	LOCK_ASSERT(lwp_locked(l, NULL));
    887 
    888 	if ((l->l_flag & LW_SYSTEM) != 0)
    889 		return;
    890 
    891 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
    892 	    NICE_WEIGHT * (p->p_nice - NZERO);
    893 	newpriority = min(newpriority, MAXPRI);
    894 	lwp_changepri(l, newpriority);
    895 }
    896 
    897 /*
    898  * Recompute priority for all LWPs in a process.
    899  */
    900 void
    901 resetprocpriority(struct proc *p)
    902 {
    903 	struct lwp *l;
    904 
    905 	LOCK_ASSERT(mutex_owned(&p->p_stmutex));
    906 
    907 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    908 		lwp_lock(l);
    909 		resetpriority(l);
    910 		lwp_unlock(l);
    911 	}
    912 }
    913 
    914 /*
    915  * We adjust the priority of the current process.  The priority of a process
    916  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    917  * is increased here.  The formula for computing priorities (in kern_synch.c)
    918  * will compute a different value each time p_estcpu increases. This can
    919  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    920  * queue will not change.  The CPU usage estimator ramps up quite quickly
    921  * when the process is running (linearly), and decays away exponentially, at
    922  * a rate which is proportionally slower when the system is busy.  The basic
    923  * principle is that the system will 90% forget that the process used a lot
    924  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    925  * processes which haven't run much recently, and to round-robin among other
    926  * processes.
    927  */
    928 
    929 void
    930 schedclock(struct lwp *l)
    931 {
    932 	struct proc *p = l->l_proc;
    933 
    934 	mutex_spin_enter(&p->p_stmutex);
    935 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    936 	lwp_lock(l);
    937 	resetpriority(l);
    938 	mutex_spin_exit(&p->p_stmutex);
    939 	if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
    940 		l->l_priority = l->l_usrpri;
    941 	lwp_unlock(l);
    942 }
    943 
    944 /*
    945  * suspendsched:
    946  *
    947  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    948  */
    949 void
    950 suspendsched(void)
    951 {
    952 #ifdef MULTIPROCESSOR
    953 	CPU_INFO_ITERATOR cii;
    954 	struct cpu_info *ci;
    955 #endif
    956 	struct lwp *l;
    957 	struct proc *p;
    958 
    959 	/*
    960 	 * We do this by process in order not to violate the locking rules.
    961 	 */
    962 	mutex_enter(&proclist_mutex);
    963 	PROCLIST_FOREACH(p, &allproc) {
    964 		mutex_enter(&p->p_smutex);
    965 
    966 		if ((p->p_flag & PK_SYSTEM) != 0) {
    967 			mutex_exit(&p->p_smutex);
    968 			continue;
    969 		}
    970 
    971 		p->p_stat = SSTOP;
    972 
    973 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    974 			if (l == curlwp)
    975 				continue;
    976 
    977 			lwp_lock(l);
    978 
    979 			/*
    980 			 * Set L_WREBOOT so that the LWP will suspend itself
    981 			 * when it tries to return to user mode.  We want to
    982 			 * try and get to get as many LWPs as possible to
    983 			 * the user / kernel boundary, so that they will
    984 			 * release any locks that they hold.
    985 			 */
    986 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    987 
    988 			if (l->l_stat == LSSLEEP &&
    989 			    (l->l_flag & LW_SINTR) != 0) {
    990 				/* setrunnable() will release the lock. */
    991 				setrunnable(l);
    992 				continue;
    993 			}
    994 
    995 			lwp_unlock(l);
    996 		}
    997 
    998 		mutex_exit(&p->p_smutex);
    999 	}
   1000 	mutex_exit(&proclist_mutex);
   1001 
   1002 	/*
   1003 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1004 	 * They'll trap into the kernel and suspend themselves in userret().
   1005 	 */
   1006 	sched_lock(0);
   1007 #ifdef MULTIPROCESSOR
   1008 	for (CPU_INFO_FOREACH(cii, ci))
   1009 		cpu_need_resched(ci);
   1010 #else
   1011 	cpu_need_resched(curcpu());
   1012 #endif
   1013 	sched_unlock(0);
   1014 }
   1015 
   1016 /*
   1017  * scheduler_fork_hook:
   1018  *
   1019  *	Inherit the parent's scheduler history.
   1020  */
   1021 void
   1022 scheduler_fork_hook(struct proc *parent, struct proc *child)
   1023 {
   1024 
   1025 	LOCK_ASSERT(mutex_owned(&parent->p_smutex));
   1026 
   1027 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
   1028 	child->p_forktime = schedcpu_ticks;
   1029 }
   1030 
   1031 /*
   1032  * scheduler_wait_hook:
   1033  *
   1034  *	Chargeback parents for the sins of their children.
   1035  */
   1036 void
   1037 scheduler_wait_hook(struct proc *parent, struct proc *child)
   1038 {
   1039 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
   1040 	fixpt_t estcpu;
   1041 
   1042 	/* XXX Only if parent != init?? */
   1043 
   1044 	mutex_spin_enter(&parent->p_stmutex);
   1045 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
   1046 	    schedcpu_ticks - child->p_forktime);
   1047 	if (child->p_estcpu > estcpu)
   1048 		parent->p_estcpu =
   1049 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
   1050 	mutex_spin_exit(&parent->p_stmutex);
   1051 }
   1052 
   1053 /*
   1054  * sched_kpri:
   1055  *
   1056  *	Scale a priority level to a kernel priority level, usually
   1057  *	for an LWP that is about to sleep.
   1058  */
   1059 pri_t
   1060 sched_kpri(struct lwp *l)
   1061 {
   1062 	/*
   1063 	 * Scale user priorities (127 -> 50) up to kernel priorities
   1064 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
   1065 	 * for high priority kthreads.  Kernel priorities passed in
   1066 	 * are left "as is".  XXX This is somewhat arbitrary.
   1067 	 */
   1068 	static const uint8_t kpri_tab[] = {
   1069 		 0,   1,   2,   3,   4,   5,   6,   7,
   1070 		 8,   9,  10,  11,  12,  13,  14,  15,
   1071 		16,  17,  18,  19,  20,  21,  22,  23,
   1072 		24,  25,  26,  27,  28,  29,  30,  31,
   1073 		32,  33,  34,  35,  36,  37,  38,  39,
   1074 		40,  41,  42,  43,  44,  45,  46,  47,
   1075 		48,  49,   8,   8,   9,   9,  10,  10,
   1076 		11,  11,  12,  12,  13,  14,  14,  15,
   1077 		15,  16,  16,  17,  17,  18,  18,  19,
   1078 		20,  20,  21,  21,  22,  22,  23,  23,
   1079 		24,  24,  25,  26,  26,  27,  27,  28,
   1080 		28,  29,  29,  30,  30,  31,  32,  32,
   1081 		33,  33,  34,  34,  35,  35,  36,  36,
   1082 		37,  38,  38,  39,  39,  40,  40,  41,
   1083 		41,  42,  42,  43,  44,  44,  45,  45,
   1084 		46,  46,  47,  47,  48,  48,  49,  49,
   1085 	};
   1086 
   1087 	return (pri_t)kpri_tab[l->l_usrpri];
   1088 }
   1089 
   1090 /*
   1091  * sched_unsleep:
   1092  *
   1093  *	The is called when the LWP has not been awoken normally but instead
   1094  *	interrupted: for example, if the sleep timed out.  Because of this,
   1095  *	it's not a valid action for running or idle LWPs.
   1096  */
   1097 void
   1098 sched_unsleep(struct lwp *l)
   1099 {
   1100 
   1101 	lwp_unlock(l);
   1102 	panic("sched_unsleep");
   1103 }
   1104 
   1105 /*
   1106  * sched_changepri:
   1107  *
   1108  *	Adjust the priority of an LWP.
   1109  */
   1110 void
   1111 sched_changepri(struct lwp *l, pri_t pri)
   1112 {
   1113 
   1114 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1115 
   1116 	l->l_usrpri = pri;
   1117 	if (l->l_priority < PUSER)
   1118 		return;
   1119 
   1120 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
   1121 		l->l_priority = pri;
   1122 		return;
   1123 	}
   1124 
   1125 	remrunqueue(l);
   1126 	l->l_priority = pri;
   1127 	setrunqueue(l);
   1128 	resched_lwp(l);
   1129 }
   1130 
   1131 void
   1132 sched_lendpri(struct lwp *l, pri_t pri)
   1133 {
   1134 
   1135 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1136 
   1137 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
   1138 		l->l_inheritedprio = pri;
   1139 		return;
   1140 	}
   1141 
   1142 	remrunqueue(l);
   1143 	l->l_inheritedprio = pri;
   1144 	setrunqueue(l);
   1145 	resched_lwp(l);
   1146 }
   1147 
   1148 struct lwp *
   1149 syncobj_noowner(wchan_t wchan)
   1150 {
   1151 
   1152 	return NULL;
   1153 }
   1154 
   1155 /*
   1156  * Low-level routines to access the run queue.  Optimised assembler
   1157  * routines can override these.
   1158  */
   1159 
   1160 #ifndef __HAVE_MD_RUNQUEUE
   1161 
   1162 /*
   1163  * On some architectures, it's faster to use a MSB ordering for the priorites
   1164  * than the traditional LSB ordering.
   1165  */
   1166 #ifdef __HAVE_BIGENDIAN_BITOPS
   1167 #define	RQMASK(n) (0x80000000 >> (n))
   1168 #else
   1169 #define	RQMASK(n) (0x00000001 << (n))
   1170 #endif
   1171 
   1172 /*
   1173  * The primitives that manipulate the run queues.  whichqs tells which
   1174  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
   1175  * into queues, remrunqueue removes them from queues.  The running process is
   1176  * on no queue, other processes are on a queue related to p->p_priority,
   1177  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1178  * available queues.
   1179  */
   1180 #ifdef RQDEBUG
   1181 static void
   1182 checkrunqueue(int whichq, struct lwp *l)
   1183 {
   1184 	const struct prochd * const rq = &sched_qs[whichq];
   1185 	struct lwp *l2;
   1186 	int found = 0;
   1187 	int die = 0;
   1188 	int empty = 1;
   1189 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
   1190 		if (l2->l_stat != LSRUN) {
   1191 			printf("checkrunqueue[%d]: lwp %p state (%d) "
   1192 			    " != LSRUN\n", whichq, l2, l2->l_stat);
   1193 		}
   1194 		if (l2->l_back->l_forw != l2) {
   1195 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
   1196 			    "corrupt %p\n", whichq, l2, l2->l_back,
   1197 			    l2->l_back->l_forw);
   1198 			die = 1;
   1199 		}
   1200 		if (l2->l_forw->l_back != l2) {
   1201 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
   1202 			    "corrupt %p\n", whichq, l2, l2->l_forw,
   1203 			    l2->l_forw->l_back);
   1204 			die = 1;
   1205 		}
   1206 		if (l2 == l)
   1207 			found = 1;
   1208 		empty = 0;
   1209 	}
   1210 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
   1211 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
   1212 		    whichq, rq);
   1213 		die = 1;
   1214 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
   1215 		printf("checkrunqueue[%d]: bit clear for non-empty "
   1216 		    "run-queue %p\n", whichq, rq);
   1217 		die = 1;
   1218 	}
   1219 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
   1220 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
   1221 		    whichq, l);
   1222 		die = 1;
   1223 	}
   1224 	if (l != NULL && empty) {
   1225 		printf("checkrunqueue[%d]: empty run-queue %p with "
   1226 		    "active lwp %p\n", whichq, rq, l);
   1227 		die = 1;
   1228 	}
   1229 	if (l != NULL && !found) {
   1230 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
   1231 		    whichq, l, rq);
   1232 		die = 1;
   1233 	}
   1234 	if (die)
   1235 		panic("checkrunqueue: inconsistency found");
   1236 }
   1237 #endif /* RQDEBUG */
   1238 
   1239 void
   1240 setrunqueue(struct lwp *l)
   1241 {
   1242 	struct prochd *rq;
   1243 	struct lwp *prev;
   1244 	const int whichq = lwp_eprio(l) / PPQ;
   1245 
   1246 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1247 
   1248 #ifdef RQDEBUG
   1249 	checkrunqueue(whichq, NULL);
   1250 #endif
   1251 #ifdef DIAGNOSTIC
   1252 	if (l->l_back != NULL || l->l_stat != LSRUN)
   1253 		panic("setrunqueue");
   1254 #endif
   1255 	sched_whichqs |= RQMASK(whichq);
   1256 	rq = &sched_qs[whichq];
   1257 	prev = rq->ph_rlink;
   1258 	l->l_forw = (struct lwp *)rq;
   1259 	rq->ph_rlink = l;
   1260 	prev->l_forw = l;
   1261 	l->l_back = prev;
   1262 #ifdef RQDEBUG
   1263 	checkrunqueue(whichq, l);
   1264 #endif
   1265 }
   1266 
   1267 /*
   1268  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use remrunqueue(),
   1269  * drop of the effective priority level from kernel to user needs to be
   1270  * moved here from userret().  The assignment in userret() is currently
   1271  * done unlocked.
   1272  */
   1273 void
   1274 remrunqueue(struct lwp *l)
   1275 {
   1276 	struct lwp *prev, *next;
   1277 	const int whichq = lwp_eprio(l) / PPQ;
   1278 
   1279 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
   1280 
   1281 #ifdef RQDEBUG
   1282 	checkrunqueue(whichq, l);
   1283 #endif
   1284 
   1285 #if defined(DIAGNOSTIC)
   1286 	if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
   1287 		/* Shouldn't happen - interrupts disabled. */
   1288 		panic("remrunqueue: bit %d not set", whichq);
   1289 	}
   1290 #endif
   1291 	prev = l->l_back;
   1292 	l->l_back = NULL;
   1293 	next = l->l_forw;
   1294 	prev->l_forw = next;
   1295 	next->l_back = prev;
   1296 	if (prev == next)
   1297 		sched_whichqs &= ~RQMASK(whichq);
   1298 #ifdef RQDEBUG
   1299 	checkrunqueue(whichq, NULL);
   1300 #endif
   1301 }
   1302 
   1303 #undef RQMASK
   1304 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
   1305