kern_synch.c revision 1.186.2.15 1 /* $NetBSD: kern_synch.c,v 1.186.2.15 2007/08/31 15:18:12 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.186.2.15 2007/08/31 15:18:12 yamt Exp $");
79
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100 #include <sys/evcnt.h>
101 #include <sys/intr.h>
102
103 #include <uvm/uvm_extern.h>
104
105 callout_t sched_pstats_ch;
106 unsigned int sched_pstats_ticks;
107
108 kcondvar_t lbolt; /* once a second sleep address */
109
110 static void sched_unsleep(struct lwp *);
111 static void sched_changepri(struct lwp *, pri_t);
112 static void sched_lendpri(struct lwp *, pri_t);
113
114 syncobj_t sleep_syncobj = {
115 SOBJ_SLEEPQ_SORTED,
116 sleepq_unsleep,
117 sleepq_changepri,
118 sleepq_lendpri,
119 syncobj_noowner,
120 };
121
122 syncobj_t sched_syncobj = {
123 SOBJ_SLEEPQ_SORTED,
124 sched_unsleep,
125 sched_changepri,
126 sched_lendpri,
127 syncobj_noowner,
128 };
129
130 /*
131 * During autoconfiguration or after a panic, a sleep will simply lower the
132 * priority briefly to allow interrupts, then return. The priority to be
133 * used (safepri) is machine-dependent, thus this value is initialized and
134 * maintained in the machine-dependent layers. This priority will typically
135 * be 0, or the lowest priority that is safe for use on the interrupt stack;
136 * it can be made higher to block network software interrupts after panics.
137 */
138 int safepri;
139
140 /*
141 * OBSOLETE INTERFACE
142 *
143 * General sleep call. Suspends the current process until a wakeup is
144 * performed on the specified identifier. The process will then be made
145 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
146 * means no timeout). If pri includes PCATCH flag, signals are checked
147 * before and after sleeping, else signals are not checked. Returns 0 if
148 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
149 * signal needs to be delivered, ERESTART is returned if the current system
150 * call should be restarted if possible, and EINTR is returned if the system
151 * call should be interrupted by the signal (return EINTR).
152 *
153 * The interlock is held until we are on a sleep queue. The interlock will
154 * be locked before returning back to the caller unless the PNORELOCK flag
155 * is specified, in which case the interlock will always be unlocked upon
156 * return.
157 */
158 int
159 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
160 volatile struct simplelock *interlock)
161 {
162 struct lwp *l = curlwp;
163 sleepq_t *sq;
164 int error;
165
166 if (sleepq_dontsleep(l)) {
167 (void)sleepq_abort(NULL, 0);
168 if ((priority & PNORELOCK) != 0)
169 simple_unlock(interlock);
170 return 0;
171 }
172
173 sq = sleeptab_lookup(&sleeptab, ident);
174 sleepq_enter(sq, l);
175 sleepq_enqueue(sq, sched_kpri(l), ident, wmesg, &sleep_syncobj);
176
177 if (interlock != NULL) {
178 KASSERT(simple_lock_held(interlock));
179 simple_unlock(interlock);
180 }
181
182 error = sleepq_block(timo, priority & PCATCH);
183
184 if (interlock != NULL && (priority & PNORELOCK) == 0)
185 simple_lock(interlock);
186
187 return error;
188 }
189
190 int
191 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
192 kmutex_t *mtx)
193 {
194 struct lwp *l = curlwp;
195 sleepq_t *sq;
196 int error;
197
198 if (sleepq_dontsleep(l)) {
199 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
200 return 0;
201 }
202
203 sq = sleeptab_lookup(&sleeptab, ident);
204 sleepq_enter(sq, l);
205 sleepq_enqueue(sq, sched_kpri(l), ident, wmesg, &sleep_syncobj);
206 mutex_exit(mtx);
207 error = sleepq_block(timo, priority & PCATCH);
208
209 if ((priority & PNORELOCK) == 0)
210 mutex_enter(mtx);
211
212 return error;
213 }
214
215 /*
216 * General sleep call for situations where a wake-up is not expected.
217 */
218 int
219 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
220 {
221 struct lwp *l = curlwp;
222 sleepq_t *sq;
223 int error;
224
225 if (sleepq_dontsleep(l))
226 return sleepq_abort(NULL, 0);
227
228 if (mtx != NULL)
229 mutex_exit(mtx);
230 sq = sleeptab_lookup(&sleeptab, l);
231 sleepq_enter(sq, l);
232 sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
233 error = sleepq_block(timo, intr);
234 if (mtx != NULL)
235 mutex_enter(mtx);
236
237 return error;
238 }
239
240 /*
241 * OBSOLETE INTERFACE
242 *
243 * Make all processes sleeping on the specified identifier runnable.
244 */
245 void
246 wakeup(wchan_t ident)
247 {
248 sleepq_t *sq;
249
250 if (cold)
251 return;
252
253 sq = sleeptab_lookup(&sleeptab, ident);
254 sleepq_wake(sq, ident, (u_int)-1);
255 }
256
257 /*
258 * OBSOLETE INTERFACE
259 *
260 * Make the highest priority process first in line on the specified
261 * identifier runnable.
262 */
263 void
264 wakeup_one(wchan_t ident)
265 {
266 sleepq_t *sq;
267
268 if (cold)
269 return;
270
271 sq = sleeptab_lookup(&sleeptab, ident);
272 sleepq_wake(sq, ident, 1);
273 }
274
275
276 /*
277 * General yield call. Puts the current process back on its run queue and
278 * performs a voluntary context switch. Should only be called when the
279 * current process explicitly requests it (eg sched_yield(2) in compat code).
280 */
281 void
282 yield(void)
283 {
284 struct lwp *l = curlwp;
285
286 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
287 lwp_lock(l);
288 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
289 KASSERT(l->l_stat == LSONPROC);
290 l->l_priority = l->l_usrpri;
291 (void)mi_switch(l);
292 KERNEL_LOCK(l->l_biglocks, l);
293 }
294
295 /*
296 * General preemption call. Puts the current process back on its run queue
297 * and performs an involuntary context switch.
298 */
299 void
300 preempt(void)
301 {
302 struct lwp *l = curlwp;
303
304 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
305 lwp_lock(l);
306 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
307 KASSERT(l->l_stat == LSONPROC);
308 l->l_priority = l->l_usrpri;
309 l->l_nivcsw++;
310 (void)mi_switch(l);
311 KERNEL_LOCK(l->l_biglocks, l);
312 }
313
314 /*
315 * Compute the amount of time during which the current lwp was running.
316 *
317 * - update l_rtime unless it's an idle lwp.
318 */
319
320 void
321 updatertime(lwp_t *l, const struct timeval *tv)
322 {
323 long s, u;
324
325 if ((l->l_flag & LW_IDLE) != 0)
326 return;
327
328 u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
329 s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
330 if (u < 0) {
331 u += 1000000;
332 s--;
333 } else if (u >= 1000000) {
334 u -= 1000000;
335 s++;
336 }
337 l->l_rtime.tv_usec = u;
338 l->l_rtime.tv_sec = s;
339 }
340
341 /*
342 * The machine independent parts of context switch.
343 *
344 * Returns 1 if another LWP was actually run.
345 */
346 int
347 mi_switch(lwp_t *l)
348 {
349 struct schedstate_percpu *spc;
350 struct lwp *newl;
351 int retval, oldspl;
352 struct timeval tv;
353 bool returning;
354
355 KASSERT(lwp_locked(l, NULL));
356 LOCKDEBUG_BARRIER(l->l_mutex, 1);
357
358 #ifdef KSTACK_CHECK_MAGIC
359 kstack_check_magic(l);
360 #endif
361
362 microtime(&tv);
363
364 /*
365 * It's safe to read the per CPU schedstate unlocked here, as all we
366 * are after is the run time and that's guarenteed to have been last
367 * updated by this CPU.
368 */
369 KDASSERT(l->l_cpu == curcpu());
370
371 /*
372 * Process is about to yield the CPU; clear the appropriate
373 * scheduling flags.
374 */
375 spc = &l->l_cpu->ci_schedstate;
376 returning = false;
377 newl = NULL;
378
379 /*
380 * If we have been asked to switch to a specific LWP, then there
381 * is no need to inspect the run queues. If a soft interrupt is
382 * blocking, then return to the interrupted thread without adjusting
383 * VM context or its start time: neither have been changed in order
384 * to take the interrupt.
385 */
386 if (l->l_switchto != NULL) {
387 if ((l->l_flag & LW_INTR) != 0) {
388 returning = true;
389 softint_block.ev_count++;
390 if ((l->l_flag & LW_TIMEINTR) != 0)
391 updatertime(l, &tv);
392 }
393 newl = l->l_switchto;
394 l->l_switchto = NULL;
395 }
396
397 if (!returning) {
398 /* Count time spent in current system call */
399 SYSCALL_TIME_SLEEP(l);
400
401 /*
402 * XXXSMP If we are using h/w performance counters,
403 * save context.
404 */
405 #if PERFCTRS
406 if (PMC_ENABLED(l->l_proc)) {
407 pmc_save_context(l->l_proc);
408 }
409 #endif
410 updatertime(l, &tv);
411 }
412
413 /*
414 * If on the CPU and we have gotten this far, then we must yield.
415 */
416 mutex_spin_enter(spc->spc_mutex);
417 KASSERT(l->l_stat != LSRUN);
418 if (l->l_stat == LSONPROC) {
419 KASSERT(lwp_locked(l, &spc->spc_lwplock));
420 if ((l->l_flag & LW_IDLE) == 0) {
421 l->l_stat = LSRUN;
422 lwp_setlock(l, spc->spc_mutex);
423 sched_enqueue(l, true);
424 } else
425 l->l_stat = LSIDL;
426 }
427
428 /*
429 * Let sched_nextlwp() select the LWP to run the CPU next.
430 * If no LWP is runnable, switch to the idle LWP.
431 */
432 if (newl == NULL) {
433 newl = sched_nextlwp();
434 if (newl != NULL) {
435 sched_dequeue(newl);
436 KASSERT(lwp_locked(newl, spc->spc_mutex));
437 newl->l_stat = LSONPROC;
438 newl->l_cpu = l->l_cpu;
439 newl->l_flag |= LW_RUNNING;
440 lwp_setlock(newl, &spc->spc_lwplock);
441 } else {
442 newl = l->l_cpu->ci_data.cpu_idlelwp;
443 newl->l_stat = LSONPROC;
444 newl->l_flag |= LW_RUNNING;
445 }
446 spc->spc_curpriority = newl->l_usrpri;
447 newl->l_priority = newl->l_usrpri;
448 cpu_did_resched();
449 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
450 }
451
452 /* Update the new LWP's start time while it is still locked. */
453 if (!returning)
454 newl->l_stime = tv;
455
456 if (l != newl) {
457 struct lwp *prevlwp;
458
459 /*
460 * If the old LWP has been moved to a run queue above,
461 * drop the general purpose LWP lock: it's now locked
462 * by the scheduler lock.
463 *
464 * Otherwise, drop the scheduler lock. We're done with
465 * the run queues for now.
466 */
467 if (l->l_mutex == spc->spc_mutex) {
468 mutex_spin_exit(&spc->spc_lwplock);
469 } else {
470 mutex_spin_exit(spc->spc_mutex);
471 }
472
473 /* Unlocked, but for statistics only. */
474 uvmexp.swtch++;
475
476 /*
477 * Save old VM context, unless a soft interrupt
478 * handler is blocking.
479 */
480 if (!returning)
481 pmap_deactivate(l);
482
483 /* Switch to the new LWP.. */
484 l->l_ncsw++;
485 l->l_flag &= ~LW_RUNNING;
486 oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
487 prevlwp = cpu_switchto(l, newl, returning);
488
489 /*
490 * .. we have switched away and are now back so we must
491 * be the new curlwp. prevlwp is who we replaced.
492 */
493 curlwp = l;
494 if (prevlwp != NULL) {
495 curcpu()->ci_mtx_oldspl = oldspl;
496 lwp_unlock(prevlwp);
497 } else {
498 splx(oldspl);
499 }
500
501 /* Restore VM context. */
502 pmap_activate(l);
503 retval = 1;
504 } else {
505 /* Nothing to do - just unlock and return. */
506 mutex_spin_exit(spc->spc_mutex);
507 lwp_unlock(l);
508 retval = 0;
509 }
510
511 KASSERT(l == curlwp);
512 KASSERT(l->l_stat == LSONPROC);
513 KASSERT(l->l_cpu == curcpu());
514
515 /*
516 * XXXSMP If we are using h/w performance counters, restore context.
517 */
518 #if PERFCTRS
519 if (PMC_ENABLED(l->l_proc)) {
520 pmc_restore_context(l->l_proc);
521 }
522 #endif
523
524 SYSCALL_TIME_WAKEUP(l);
525 LOCKDEBUG_BARRIER(NULL, 1);
526
527 return retval;
528 }
529
530 /*
531 * Change process state to be runnable, placing it on the run queue if it is
532 * in memory, and awakening the swapper if it isn't in memory.
533 *
534 * Call with the process and LWP locked. Will return with the LWP unlocked.
535 */
536 void
537 setrunnable(struct lwp *l)
538 {
539 struct proc *p = l->l_proc;
540 sigset_t *ss;
541
542 KASSERT((l->l_flag & LW_IDLE) == 0);
543 KASSERT(mutex_owned(&p->p_smutex));
544 KASSERT(lwp_locked(l, NULL));
545
546 switch (l->l_stat) {
547 case LSSTOP:
548 /*
549 * If we're being traced (possibly because someone attached us
550 * while we were stopped), check for a signal from the debugger.
551 */
552 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
553 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
554 ss = &l->l_sigpend.sp_set;
555 else
556 ss = &p->p_sigpend.sp_set;
557 sigaddset(ss, p->p_xstat);
558 signotify(l);
559 }
560 p->p_nrlwps++;
561 break;
562 case LSSUSPENDED:
563 l->l_flag &= ~LW_WSUSPEND;
564 p->p_nrlwps++;
565 cv_broadcast(&p->p_lwpcv);
566 break;
567 case LSSLEEP:
568 KASSERT(l->l_wchan != NULL);
569 break;
570 default:
571 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
572 }
573
574 /*
575 * If the LWP was sleeping interruptably, then it's OK to start it
576 * again. If not, mark it as still sleeping.
577 */
578 if (l->l_wchan != NULL) {
579 l->l_stat = LSSLEEP;
580 /* lwp_unsleep() will release the lock. */
581 lwp_unsleep(l);
582 return;
583 }
584
585 /*
586 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
587 * about to call mi_switch(), in which case it will yield.
588 */
589 if ((l->l_flag & LW_RUNNING) != 0) {
590 l->l_stat = LSONPROC;
591 l->l_slptime = 0;
592 lwp_unlock(l);
593 return;
594 }
595
596 /*
597 * Set the LWP runnable. If it's swapped out, we need to wake the swapper
598 * to bring it back in. Otherwise, enter it into a run queue.
599 */
600 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
601 spc_lock(l->l_cpu);
602 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
603 }
604
605 sched_setrunnable(l);
606 l->l_stat = LSRUN;
607 l->l_slptime = 0;
608
609 if (l->l_flag & LW_INMEM) {
610 sched_enqueue(l, false);
611 resched_cpu(l);
612 lwp_unlock(l);
613 } else {
614 lwp_unlock(l);
615 uvm_kick_scheduler();
616 }
617 }
618
619 /*
620 * suspendsched:
621 *
622 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
623 */
624 void
625 suspendsched(void)
626 {
627 CPU_INFO_ITERATOR cii;
628 struct cpu_info *ci;
629 struct lwp *l;
630 struct proc *p;
631
632 /*
633 * We do this by process in order not to violate the locking rules.
634 */
635 mutex_enter(&proclist_lock);
636 PROCLIST_FOREACH(p, &allproc) {
637 mutex_enter(&p->p_smutex);
638
639 if ((p->p_flag & PK_SYSTEM) != 0) {
640 mutex_exit(&p->p_smutex);
641 continue;
642 }
643
644 p->p_stat = SSTOP;
645
646 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
647 if (l == curlwp)
648 continue;
649
650 lwp_lock(l);
651
652 /*
653 * Set L_WREBOOT so that the LWP will suspend itself
654 * when it tries to return to user mode. We want to
655 * try and get to get as many LWPs as possible to
656 * the user / kernel boundary, so that they will
657 * release any locks that they hold.
658 */
659 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
660
661 if (l->l_stat == LSSLEEP &&
662 (l->l_flag & LW_SINTR) != 0) {
663 /* setrunnable() will release the lock. */
664 setrunnable(l);
665 continue;
666 }
667
668 lwp_unlock(l);
669 }
670
671 mutex_exit(&p->p_smutex);
672 }
673 mutex_exit(&proclist_lock);
674
675 /*
676 * Kick all CPUs to make them preempt any LWPs running in user mode.
677 * They'll trap into the kernel and suspend themselves in userret().
678 */
679 for (CPU_INFO_FOREACH(cii, ci)) {
680 spc_lock(ci);
681 cpu_need_resched(ci, RESCHED_IMMED);
682 spc_unlock(ci);
683 }
684 }
685
686 /*
687 * sched_kpri:
688 *
689 * Scale a priority level to a kernel priority level, usually
690 * for an LWP that is about to sleep.
691 */
692 pri_t
693 sched_kpri(struct lwp *l)
694 {
695 pri_t pri;
696
697 /*
698 * Scale user priorities (0 -> 63) up to kernel priorities
699 * in the range (64 -> 95). This makes assumptions about
700 * the priority space and so should be kept in sync with
701 * param.h.
702 */
703 if ((pri = l->l_usrpri) >= PRI_KERNEL)
704 return pri;
705
706 return (pri >> 1) + PRI_KERNEL;
707 }
708
709 /*
710 * sched_unsleep:
711 *
712 * The is called when the LWP has not been awoken normally but instead
713 * interrupted: for example, if the sleep timed out. Because of this,
714 * it's not a valid action for running or idle LWPs.
715 */
716 static void
717 sched_unsleep(struct lwp *l)
718 {
719
720 lwp_unlock(l);
721 panic("sched_unsleep");
722 }
723
724 inline void
725 resched_cpu(struct lwp *l)
726 {
727 struct cpu_info *ci;
728 const pri_t pri = lwp_eprio(l);
729
730 /*
731 * XXXSMP
732 * Since l->l_cpu persists across a context switch,
733 * this gives us *very weak* processor affinity, in
734 * that we notify the CPU on which the process last
735 * ran that it should try to switch.
736 *
737 * This does not guarantee that the process will run on
738 * that processor next, because another processor might
739 * grab it the next time it performs a context switch.
740 *
741 * This also does not handle the case where its last
742 * CPU is running a higher-priority process, but every
743 * other CPU is running a lower-priority process. There
744 * are ways to handle this situation, but they're not
745 * currently very pretty, and we also need to weigh the
746 * cost of moving a process from one CPU to another.
747 */
748 ci = l->l_cpu;
749 if (pri > ci->ci_schedstate.spc_curpriority)
750 cpu_need_resched(ci, 0);
751 }
752
753 static void
754 sched_changepri(struct lwp *l, pri_t pri)
755 {
756
757 KASSERT(lwp_locked(l, NULL));
758
759 l->l_usrpri = pri;
760 if (l->l_priority >= PRI_KERNEL)
761 return;
762
763 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
764 l->l_priority = pri;
765 return;
766 }
767
768 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
769
770 sched_dequeue(l);
771 l->l_priority = pri;
772 sched_enqueue(l, false);
773 resched_cpu(l);
774 }
775
776 static void
777 sched_lendpri(struct lwp *l, pri_t pri)
778 {
779
780 KASSERT(lwp_locked(l, NULL));
781
782 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
783 l->l_inheritedprio = pri;
784 return;
785 }
786
787 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
788
789 sched_dequeue(l);
790 l->l_inheritedprio = pri;
791 sched_enqueue(l, false);
792 resched_cpu(l);
793 }
794
795 struct lwp *
796 syncobj_noowner(wchan_t wchan)
797 {
798
799 return NULL;
800 }
801
802
803 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
804 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
805
806 /*
807 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
808 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
809 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
810 *
811 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
812 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
813 *
814 * If you dont want to bother with the faster/more-accurate formula, you
815 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
816 * (more general) method of calculating the %age of CPU used by a process.
817 */
818 #define CCPU_SHIFT (FSHIFT + 1)
819
820 /*
821 * sched_pstats:
822 *
823 * Update process statistics and check CPU resource allocation.
824 * Call scheduler-specific hook to eventually adjust process/LWP
825 * priorities.
826 */
827 /* ARGSUSED */
828 void
829 sched_pstats(void *arg)
830 {
831 struct rlimit *rlim;
832 struct lwp *l;
833 struct proc *p;
834 int minslp, sig, clkhz;
835 long runtm;
836
837 sched_pstats_ticks++;
838
839 mutex_enter(&proclist_lock);
840 PROCLIST_FOREACH(p, &allproc) {
841 /*
842 * Increment time in/out of memory and sleep time (if
843 * sleeping). We ignore overflow; with 16-bit int's
844 * (remember them?) overflow takes 45 days.
845 */
846 minslp = 2;
847 mutex_enter(&p->p_smutex);
848 mutex_spin_enter(&p->p_stmutex);
849 runtm = p->p_rtime.tv_sec;
850 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
851 if ((l->l_flag & LW_IDLE) != 0)
852 continue;
853 lwp_lock(l);
854 runtm += l->l_rtime.tv_sec;
855 l->l_swtime++;
856 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
857 l->l_stat == LSSUSPENDED) {
858 l->l_slptime++;
859 minslp = min(minslp, l->l_slptime);
860 } else
861 minslp = 0;
862 lwp_unlock(l);
863
864 /*
865 * p_pctcpu is only for ps.
866 */
867 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
868 if (l->l_slptime < 1) {
869 clkhz = stathz != 0 ? stathz : hz;
870 #if (FSHIFT >= CCPU_SHIFT)
871 l->l_pctcpu += (clkhz == 100) ?
872 ((fixpt_t)l->l_cpticks) <<
873 (FSHIFT - CCPU_SHIFT) :
874 100 * (((fixpt_t) p->p_cpticks)
875 << (FSHIFT - CCPU_SHIFT)) / clkhz;
876 #else
877 l->l_pctcpu += ((FSCALE - ccpu) *
878 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
879 #endif
880 l->l_cpticks = 0;
881 }
882 }
883 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
884 sched_pstats_hook(p, minslp);
885 mutex_spin_exit(&p->p_stmutex);
886
887 /*
888 * Check if the process exceeds its CPU resource allocation.
889 * If over max, kill it.
890 */
891 rlim = &p->p_rlimit[RLIMIT_CPU];
892 sig = 0;
893 if (runtm >= rlim->rlim_cur) {
894 if (runtm >= rlim->rlim_max)
895 sig = SIGKILL;
896 else {
897 sig = SIGXCPU;
898 if (rlim->rlim_cur < rlim->rlim_max)
899 rlim->rlim_cur += 5;
900 }
901 }
902 mutex_exit(&p->p_smutex);
903 if (sig) {
904 /* XXXAD */
905 mutex_enter(&proclist_mutex);
906 psignal(p, sig);
907 mutex_enter(&proclist_mutex);
908 }
909 }
910 mutex_exit(&proclist_lock);
911 uvm_meter();
912 cv_wakeup(&lbolt);
913 callout_schedule(&sched_pstats_ch, hz);
914 }
915
916 void
917 sched_init(void)
918 {
919
920 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
921 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
922 sched_setup();
923 sched_pstats(NULL);
924 }
925