kern_synch.c revision 1.186.2.19 1 /* $NetBSD: kern_synch.c,v 1.186.2.19 2007/10/18 15:47:33 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.186.2.19 2007/10/18 15:47:33 ad Exp $");
79
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100 #include <sys/evcnt.h>
101 #include <sys/intr.h>
102
103 #include <uvm/uvm_extern.h>
104
105 callout_t sched_pstats_ch;
106 unsigned int sched_pstats_ticks;
107
108 kcondvar_t lbolt; /* once a second sleep address */
109
110 static void sched_unsleep(struct lwp *);
111 static void sched_changepri(struct lwp *, pri_t);
112 static void sched_lendpri(struct lwp *, pri_t);
113
114 syncobj_t sleep_syncobj = {
115 SOBJ_SLEEPQ_SORTED,
116 sleepq_unsleep,
117 sleepq_changepri,
118 sleepq_lendpri,
119 syncobj_noowner,
120 };
121
122 syncobj_t sched_syncobj = {
123 SOBJ_SLEEPQ_SORTED,
124 sched_unsleep,
125 sched_changepri,
126 sched_lendpri,
127 syncobj_noowner,
128 };
129
130 /*
131 * During autoconfiguration or after a panic, a sleep will simply lower the
132 * priority briefly to allow interrupts, then return. The priority to be
133 * used (safepri) is machine-dependent, thus this value is initialized and
134 * maintained in the machine-dependent layers. This priority will typically
135 * be 0, or the lowest priority that is safe for use on the interrupt stack;
136 * it can be made higher to block network software interrupts after panics.
137 */
138 int safepri;
139
140 /*
141 * OBSOLETE INTERFACE
142 *
143 * General sleep call. Suspends the current process until a wakeup is
144 * performed on the specified identifier. The process will then be made
145 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
146 * means no timeout). If pri includes PCATCH flag, signals are checked
147 * before and after sleeping, else signals are not checked. Returns 0 if
148 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
149 * signal needs to be delivered, ERESTART is returned if the current system
150 * call should be restarted if possible, and EINTR is returned if the system
151 * call should be interrupted by the signal (return EINTR).
152 *
153 * The interlock is held until we are on a sleep queue. The interlock will
154 * be locked before returning back to the caller unless the PNORELOCK flag
155 * is specified, in which case the interlock will always be unlocked upon
156 * return.
157 */
158 int
159 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
160 volatile struct simplelock *interlock)
161 {
162 struct lwp *l = curlwp;
163 sleepq_t *sq;
164 int error;
165
166 KASSERT((l->l_pflag & LP_INTR) == 0);
167
168 if (sleepq_dontsleep(l)) {
169 (void)sleepq_abort(NULL, 0);
170 if ((priority & PNORELOCK) != 0)
171 simple_unlock(interlock);
172 return 0;
173 }
174
175 sq = sleeptab_lookup(&sleeptab, ident);
176 sleepq_enter(sq, l);
177 sleepq_enqueue(sq, sched_kpri(l), ident, wmesg, &sleep_syncobj);
178
179 if (interlock != NULL) {
180 KASSERT(simple_lock_held(interlock));
181 simple_unlock(interlock);
182 }
183
184 error = sleepq_block(timo, priority & PCATCH);
185
186 if (interlock != NULL && (priority & PNORELOCK) == 0)
187 simple_lock(interlock);
188
189 return error;
190 }
191
192 int
193 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
194 kmutex_t *mtx)
195 {
196 struct lwp *l = curlwp;
197 sleepq_t *sq;
198 int error;
199
200 KASSERT((l->l_pflag & LP_INTR) == 0);
201
202 if (sleepq_dontsleep(l)) {
203 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
204 return 0;
205 }
206
207 sq = sleeptab_lookup(&sleeptab, ident);
208 sleepq_enter(sq, l);
209 sleepq_enqueue(sq, sched_kpri(l), ident, wmesg, &sleep_syncobj);
210 mutex_exit(mtx);
211 error = sleepq_block(timo, priority & PCATCH);
212
213 if ((priority & PNORELOCK) == 0)
214 mutex_enter(mtx);
215
216 return error;
217 }
218
219 /*
220 * General sleep call for situations where a wake-up is not expected.
221 */
222 int
223 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
224 {
225 struct lwp *l = curlwp;
226 sleepq_t *sq;
227 int error;
228
229 if (sleepq_dontsleep(l))
230 return sleepq_abort(NULL, 0);
231
232 if (mtx != NULL)
233 mutex_exit(mtx);
234 sq = sleeptab_lookup(&sleeptab, l);
235 sleepq_enter(sq, l);
236 sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
237 error = sleepq_block(timo, intr);
238 if (mtx != NULL)
239 mutex_enter(mtx);
240
241 return error;
242 }
243
244 /*
245 * OBSOLETE INTERFACE
246 *
247 * Make all processes sleeping on the specified identifier runnable.
248 */
249 void
250 wakeup(wchan_t ident)
251 {
252 sleepq_t *sq;
253
254 if (cold)
255 return;
256
257 sq = sleeptab_lookup(&sleeptab, ident);
258 sleepq_wake(sq, ident, (u_int)-1);
259 }
260
261 /*
262 * OBSOLETE INTERFACE
263 *
264 * Make the highest priority process first in line on the specified
265 * identifier runnable.
266 */
267 void
268 wakeup_one(wchan_t ident)
269 {
270 sleepq_t *sq;
271
272 if (cold)
273 return;
274
275 sq = sleeptab_lookup(&sleeptab, ident);
276 sleepq_wake(sq, ident, 1);
277 }
278
279
280 /*
281 * General yield call. Puts the current process back on its run queue and
282 * performs a voluntary context switch. Should only be called when the
283 * current process explicitly requests it (eg sched_yield(2)).
284 */
285 void
286 yield(void)
287 {
288 struct lwp *l = curlwp;
289
290 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
291 lwp_lock(l);
292 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
293 KASSERT(l->l_stat == LSONPROC);
294 /* XXX Only do this for timeshared threads. */
295 l->l_priority = 0;
296 (void)mi_switch(l);
297 KERNEL_LOCK(l->l_biglocks, l);
298 }
299
300 /*
301 * General preemption call. Puts the current process back on its run queue
302 * and performs an involuntary context switch.
303 */
304 void
305 preempt(void)
306 {
307 struct lwp *l = curlwp;
308
309 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
310 lwp_lock(l);
311 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
312 KASSERT(l->l_stat == LSONPROC);
313 l->l_priority = l->l_usrpri;
314 l->l_nivcsw++;
315 (void)mi_switch(l);
316 KERNEL_LOCK(l->l_biglocks, l);
317 }
318
319 /*
320 * Compute the amount of time during which the current lwp was running.
321 *
322 * - update l_rtime unless it's an idle lwp.
323 */
324
325 void
326 updatertime(lwp_t *l, const struct timeval *tv)
327 {
328 long s, u;
329
330 if ((l->l_flag & LW_IDLE) != 0)
331 return;
332
333 u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
334 s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
335 if (u < 0) {
336 u += 1000000;
337 s--;
338 } else if (u >= 1000000) {
339 u -= 1000000;
340 s++;
341 }
342 l->l_rtime.tv_usec = u;
343 l->l_rtime.tv_sec = s;
344 }
345
346 /*
347 * The machine independent parts of context switch.
348 *
349 * Returns 1 if another LWP was actually run.
350 */
351 int
352 mi_switch(lwp_t *l)
353 {
354 struct schedstate_percpu *spc;
355 struct lwp *newl;
356 int retval, oldspl;
357 struct cpu_info *ci;
358 struct timeval tv;
359 bool returning;
360
361 KASSERT(lwp_locked(l, NULL));
362 LOCKDEBUG_BARRIER(l->l_mutex, 1);
363
364 #ifdef KSTACK_CHECK_MAGIC
365 kstack_check_magic(l);
366 #endif
367
368 microtime(&tv);
369
370 /*
371 * It's safe to read the per CPU schedstate unlocked here, as all we
372 * are after is the run time and that's guarenteed to have been last
373 * updated by this CPU.
374 */
375 ci = l->l_cpu;
376 KDASSERT(ci == curcpu());
377
378 /*
379 * Process is about to yield the CPU; clear the appropriate
380 * scheduling flags.
381 */
382 spc = &ci->ci_schedstate;
383 returning = false;
384 newl = NULL;
385
386 /*
387 * If we have been asked to switch to a specific LWP, then there
388 * is no need to inspect the run queues. If a soft interrupt is
389 * blocking, then return to the interrupted thread without adjusting
390 * VM context or its start time: neither have been changed in order
391 * to take the interrupt.
392 */
393 if (l->l_switchto != NULL) {
394 if ((l->l_pflag & LP_INTR) != 0) {
395 returning = true;
396 softint_block(l);
397 if ((l->l_flag & LW_TIMEINTR) != 0)
398 updatertime(l, &tv);
399 }
400 newl = l->l_switchto;
401 l->l_switchto = NULL;
402 }
403 #ifndef __HAVE_FAST_SOFTINTS
404 else if (ci->ci_data.cpu_softints != 0) {
405 /* There are pending soft interrupts, so pick one. */
406 newl = softint_picklwp();
407 newl->l_stat = LSONPROC;
408 newl->l_flag |= LW_RUNNING;
409 }
410 #endif /* !__HAVE_FAST_SOFTINTS */
411
412 /* Count time spent in current system call */
413 if (!returning) {
414 SYSCALL_TIME_SLEEP(l);
415
416 /*
417 * XXXSMP If we are using h/w performance counters,
418 * save context.
419 */
420 #if PERFCTRS
421 if (PMC_ENABLED(l->l_proc)) {
422 pmc_save_context(l->l_proc);
423 }
424 #endif
425 updatertime(l, &tv);
426 }
427
428 /*
429 * If on the CPU and we have gotten this far, then we must yield.
430 */
431 mutex_spin_enter(spc->spc_mutex);
432 KASSERT(l->l_stat != LSRUN);
433 if (l->l_stat == LSONPROC && l != newl) {
434 KASSERT(lwp_locked(l, &spc->spc_lwplock));
435 if ((l->l_flag & LW_IDLE) == 0) {
436 l->l_stat = LSRUN;
437 lwp_setlock(l, spc->spc_mutex);
438 sched_enqueue(l, true);
439 } else
440 l->l_stat = LSIDL;
441 }
442
443 /*
444 * Let sched_nextlwp() select the LWP to run the CPU next.
445 * If no LWP is runnable, switch to the idle LWP.
446 */
447 if (newl == NULL) {
448 newl = sched_nextlwp();
449 if (newl != NULL) {
450 sched_dequeue(newl);
451 KASSERT(lwp_locked(newl, spc->spc_mutex));
452 newl->l_stat = LSONPROC;
453 newl->l_cpu = ci;
454 newl->l_flag |= LW_RUNNING;
455 lwp_setlock(newl, &spc->spc_lwplock);
456 } else {
457 newl = ci->ci_data.cpu_idlelwp;
458 newl->l_stat = LSONPROC;
459 newl->l_flag |= LW_RUNNING;
460 }
461 /*
462 * Only clear want_resched if there are no
463 * pending (slow) software interrupts.
464 */
465 ci->ci_want_resched = ci->ci_data.cpu_softints;
466 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
467 }
468
469 /* Update the new LWP's start time while it is still locked. */
470 if (!returning) {
471 newl->l_stime = tv;
472 /*
473 * XXX The following may be done unlocked if newl != NULL
474 * above.
475 */
476 newl->l_priority = newl->l_usrpri;
477 }
478
479 spc->spc_curpriority = newl->l_usrpri;
480
481 if (l != newl) {
482 struct lwp *prevlwp;
483
484 /*
485 * If the old LWP has been moved to a run queue above,
486 * drop the general purpose LWP lock: it's now locked
487 * by the scheduler lock.
488 *
489 * Otherwise, drop the scheduler lock. We're done with
490 * the run queues for now.
491 */
492 if (l->l_mutex == spc->spc_mutex) {
493 mutex_spin_exit(&spc->spc_lwplock);
494 } else {
495 mutex_spin_exit(spc->spc_mutex);
496 }
497
498 /* Unlocked, but for statistics only. */
499 uvmexp.swtch++;
500
501 /*
502 * Save old VM context, unless a soft interrupt
503 * handler is blocking.
504 */
505 if (!returning)
506 pmap_deactivate(l);
507
508 /* Switch to the new LWP.. */
509 l->l_ncsw++;
510 l->l_flag &= ~LW_RUNNING;
511 oldspl = MUTEX_SPIN_OLDSPL(ci);
512 prevlwp = cpu_switchto(l, newl, returning);
513
514 /*
515 * .. we have switched away and are now back so we must
516 * be the new curlwp. prevlwp is who we replaced.
517 */
518 if (prevlwp != NULL) {
519 curcpu()->ci_mtx_oldspl = oldspl;
520 lwp_unlock(prevlwp);
521 } else {
522 splx(oldspl);
523 }
524
525 /* Restore VM context. */
526 pmap_activate(l);
527 retval = 1;
528 } else {
529 /* Nothing to do - just unlock and return. */
530 mutex_spin_exit(spc->spc_mutex);
531 lwp_unlock(l);
532 retval = 0;
533 }
534
535 KASSERT(l == curlwp);
536 KASSERT(l->l_stat == LSONPROC);
537 KASSERT(l->l_cpu == curcpu());
538
539 /*
540 * XXXSMP If we are using h/w performance counters, restore context.
541 */
542 #if PERFCTRS
543 if (PMC_ENABLED(l->l_proc)) {
544 pmc_restore_context(l->l_proc);
545 }
546 #endif
547
548 /*
549 * We're running again; record our new start time. We might
550 * be running on a new CPU now, so don't use the cached
551 * schedstate_percpu pointer.
552 */
553 SYSCALL_TIME_WAKEUP(l);
554 KASSERT(curlwp == l);
555 KDASSERT(l->l_cpu == curcpu());
556 LOCKDEBUG_BARRIER(NULL, 1);
557
558 return retval;
559 }
560
561 /*
562 * Change process state to be runnable, placing it on the run queue if it is
563 * in memory, and awakening the swapper if it isn't in memory.
564 *
565 * Call with the process and LWP locked. Will return with the LWP unlocked.
566 */
567 void
568 setrunnable(struct lwp *l)
569 {
570 struct proc *p = l->l_proc;
571 sigset_t *ss;
572
573 KASSERT((l->l_flag & LW_IDLE) == 0);
574 KASSERT(mutex_owned(&p->p_smutex));
575 KASSERT(lwp_locked(l, NULL));
576
577 switch (l->l_stat) {
578 case LSSTOP:
579 /*
580 * If we're being traced (possibly because someone attached us
581 * while we were stopped), check for a signal from the debugger.
582 */
583 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
584 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
585 ss = &l->l_sigpend.sp_set;
586 else
587 ss = &p->p_sigpend.sp_set;
588 sigaddset(ss, p->p_xstat);
589 signotify(l);
590 }
591 p->p_nrlwps++;
592 break;
593 case LSSUSPENDED:
594 l->l_flag &= ~LW_WSUSPEND;
595 p->p_nrlwps++;
596 cv_broadcast(&p->p_lwpcv);
597 break;
598 case LSSLEEP:
599 KASSERT(l->l_wchan != NULL);
600 break;
601 default:
602 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
603 }
604
605 /*
606 * If the LWP was sleeping interruptably, then it's OK to start it
607 * again. If not, mark it as still sleeping.
608 */
609 if (l->l_wchan != NULL) {
610 l->l_stat = LSSLEEP;
611 /* lwp_unsleep() will release the lock. */
612 lwp_unsleep(l);
613 return;
614 }
615
616 /*
617 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
618 * about to call mi_switch(), in which case it will yield.
619 */
620 if ((l->l_flag & LW_RUNNING) != 0) {
621 l->l_stat = LSONPROC;
622 l->l_slptime = 0;
623 lwp_unlock(l);
624 return;
625 }
626
627 /*
628 * Set the LWP runnable. If it's swapped out, we need to wake the swapper
629 * to bring it back in. Otherwise, enter it into a run queue.
630 */
631 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
632 spc_lock(l->l_cpu);
633 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
634 }
635
636 sched_setrunnable(l);
637 l->l_stat = LSRUN;
638 l->l_slptime = 0;
639
640 if (l->l_flag & LW_INMEM) {
641 sched_enqueue(l, false);
642 resched_cpu(l);
643 lwp_unlock(l);
644 } else {
645 lwp_unlock(l);
646 uvm_kick_scheduler();
647 }
648 }
649
650 /*
651 * suspendsched:
652 *
653 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
654 */
655 void
656 suspendsched(void)
657 {
658 CPU_INFO_ITERATOR cii;
659 struct cpu_info *ci;
660 struct lwp *l;
661 struct proc *p;
662
663 /*
664 * We do this by process in order not to violate the locking rules.
665 */
666 mutex_enter(&proclist_lock);
667 PROCLIST_FOREACH(p, &allproc) {
668 mutex_enter(&p->p_smutex);
669
670 if ((p->p_flag & PK_SYSTEM) != 0) {
671 mutex_exit(&p->p_smutex);
672 continue;
673 }
674
675 p->p_stat = SSTOP;
676
677 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
678 if (l == curlwp)
679 continue;
680
681 lwp_lock(l);
682
683 /*
684 * Set L_WREBOOT so that the LWP will suspend itself
685 * when it tries to return to user mode. We want to
686 * try and get to get as many LWPs as possible to
687 * the user / kernel boundary, so that they will
688 * release any locks that they hold.
689 */
690 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
691
692 if (l->l_stat == LSSLEEP &&
693 (l->l_flag & LW_SINTR) != 0) {
694 /* setrunnable() will release the lock. */
695 setrunnable(l);
696 continue;
697 }
698
699 lwp_unlock(l);
700 }
701
702 mutex_exit(&p->p_smutex);
703 }
704 mutex_exit(&proclist_lock);
705
706 /*
707 * Kick all CPUs to make them preempt any LWPs running in user mode.
708 * They'll trap into the kernel and suspend themselves in userret().
709 */
710 for (CPU_INFO_FOREACH(cii, ci)) {
711 spc_lock(ci);
712 cpu_need_resched(ci, RESCHED_IMMED);
713 spc_unlock(ci);
714 }
715 }
716
717 /*
718 * sched_kpri:
719 *
720 * Scale a priority level to a kernel priority level, usually
721 * for an LWP that is about to sleep.
722 */
723 pri_t
724 sched_kpri(struct lwp *l)
725 {
726 pri_t pri;
727
728 #ifndef __HAVE_FAST_SOFTINTS
729 /*
730 * Hack: if a user thread is being used to run a soft
731 * interrupt, we need to boost the priority here.
732 */
733 if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
734 return softint_kpri(l);
735 #endif
736
737 /*
738 * Scale user priorities (0 -> 63) up to kernel priorities
739 * in the range (64 -> 95). This makes assumptions about
740 * the priority space and so should be kept in sync with
741 * param.h.
742 */
743 if ((pri = l->l_usrpri) >= PRI_KERNEL)
744 return pri;
745
746 return (pri >> 1) + PRI_KERNEL;
747 }
748
749 /*
750 * sched_unsleep:
751 *
752 * The is called when the LWP has not been awoken normally but instead
753 * interrupted: for example, if the sleep timed out. Because of this,
754 * it's not a valid action for running or idle LWPs.
755 */
756 static void
757 sched_unsleep(struct lwp *l)
758 {
759
760 lwp_unlock(l);
761 panic("sched_unsleep");
762 }
763
764 inline void
765 resched_cpu(struct lwp *l)
766 {
767 struct cpu_info *ci;
768 const pri_t pri = lwp_eprio(l);
769
770 /*
771 * XXXSMP
772 * Since l->l_cpu persists across a context switch,
773 * this gives us *very weak* processor affinity, in
774 * that we notify the CPU on which the process last
775 * ran that it should try to switch.
776 *
777 * This does not guarantee that the process will run on
778 * that processor next, because another processor might
779 * grab it the next time it performs a context switch.
780 *
781 * This also does not handle the case where its last
782 * CPU is running a higher-priority process, but every
783 * other CPU is running a lower-priority process. There
784 * are ways to handle this situation, but they're not
785 * currently very pretty, and we also need to weigh the
786 * cost of moving a process from one CPU to another.
787 */
788 ci = l->l_cpu;
789 if (pri > ci->ci_schedstate.spc_curpriority)
790 cpu_need_resched(ci, 0);
791 }
792
793 static void
794 sched_changepri(struct lwp *l, pri_t pri)
795 {
796
797 KASSERT(lwp_locked(l, NULL));
798
799 l->l_usrpri = pri;
800 if (l->l_priority >= PRI_KERNEL)
801 return;
802
803 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
804 l->l_priority = pri;
805 return;
806 }
807
808 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
809
810 sched_dequeue(l);
811 l->l_priority = pri;
812 sched_enqueue(l, false);
813 resched_cpu(l);
814 }
815
816 static void
817 sched_lendpri(struct lwp *l, pri_t pri)
818 {
819
820 KASSERT(lwp_locked(l, NULL));
821
822 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
823 l->l_inheritedprio = pri;
824 return;
825 }
826
827 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
828
829 sched_dequeue(l);
830 l->l_inheritedprio = pri;
831 sched_enqueue(l, false);
832 resched_cpu(l);
833 }
834
835 struct lwp *
836 syncobj_noowner(wchan_t wchan)
837 {
838
839 return NULL;
840 }
841
842
843 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
844 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
845
846 /*
847 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
848 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
849 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
850 *
851 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
852 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
853 *
854 * If you dont want to bother with the faster/more-accurate formula, you
855 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
856 * (more general) method of calculating the %age of CPU used by a process.
857 */
858 #define CCPU_SHIFT (FSHIFT + 1)
859
860 /*
861 * sched_pstats:
862 *
863 * Update process statistics and check CPU resource allocation.
864 * Call scheduler-specific hook to eventually adjust process/LWP
865 * priorities.
866 */
867 /* ARGSUSED */
868 void
869 sched_pstats(void *arg)
870 {
871 struct rlimit *rlim;
872 struct lwp *l;
873 struct proc *p;
874 int minslp, sig, clkhz;
875 long runtm;
876
877 sched_pstats_ticks++;
878
879 mutex_enter(&proclist_lock);
880 PROCLIST_FOREACH(p, &allproc) {
881 /*
882 * Increment time in/out of memory and sleep time (if
883 * sleeping). We ignore overflow; with 16-bit int's
884 * (remember them?) overflow takes 45 days.
885 */
886 minslp = 2;
887 mutex_enter(&p->p_smutex);
888 mutex_spin_enter(&p->p_stmutex);
889 runtm = p->p_rtime.tv_sec;
890 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
891 if ((l->l_flag & LW_IDLE) != 0)
892 continue;
893 lwp_lock(l);
894 runtm += l->l_rtime.tv_sec;
895 l->l_swtime++;
896 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
897 l->l_stat == LSSUSPENDED) {
898 l->l_slptime++;
899 minslp = min(minslp, l->l_slptime);
900 } else
901 minslp = 0;
902 sched_pstats_hook(l);
903 lwp_unlock(l);
904
905 /*
906 * p_pctcpu is only for ps.
907 */
908 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
909 if (l->l_slptime < 1) {
910 clkhz = stathz != 0 ? stathz : hz;
911 #if (FSHIFT >= CCPU_SHIFT)
912 l->l_pctcpu += (clkhz == 100) ?
913 ((fixpt_t)l->l_cpticks) <<
914 (FSHIFT - CCPU_SHIFT) :
915 100 * (((fixpt_t) p->p_cpticks)
916 << (FSHIFT - CCPU_SHIFT)) / clkhz;
917 #else
918 l->l_pctcpu += ((FSCALE - ccpu) *
919 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
920 #endif
921 l->l_cpticks = 0;
922 }
923 }
924
925 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
926 #ifdef SCHED_4BSD
927 /*
928 * XXX: Workaround - belongs to sched_4bsd.c
929 * If the process has slept the entire second,
930 * stop recalculating its priority until it wakes up.
931 */
932 if (minslp <= 1) {
933 extern fixpt_t decay_cpu(fixpt_t, fixpt_t);
934
935 fixpt_t loadfac = 2 * (averunnable.ldavg[0]);
936 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
937 }
938 #endif
939 mutex_spin_exit(&p->p_stmutex);
940
941 /*
942 * Check if the process exceeds its CPU resource allocation.
943 * If over max, kill it.
944 */
945 rlim = &p->p_rlimit[RLIMIT_CPU];
946 sig = 0;
947 if (runtm >= rlim->rlim_cur) {
948 if (runtm >= rlim->rlim_max)
949 sig = SIGKILL;
950 else {
951 sig = SIGXCPU;
952 if (rlim->rlim_cur < rlim->rlim_max)
953 rlim->rlim_cur += 5;
954 }
955 }
956 mutex_exit(&p->p_smutex);
957 if (sig) {
958 /* XXXAD */
959 mutex_enter(&proclist_mutex);
960 psignal(p, sig);
961 mutex_enter(&proclist_mutex);
962 }
963 }
964 mutex_exit(&proclist_lock);
965 uvm_meter();
966 cv_wakeup(&lbolt);
967 callout_schedule(&sched_pstats_ch, hz);
968 }
969
970 void
971 sched_init(void)
972 {
973
974 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
975 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
976 sched_setup();
977 sched_pstats(NULL);
978 }
979