kern_synch.c revision 1.186.2.2 1 /* $NetBSD: kern_synch.c,v 1.186.2.2 2007/03/13 17:50:57 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.186.2.2 2007/03/13 17:50:57 ad Exp $");
78
79 #include "opt_ddb.h"
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/proc.h>
91 #include <sys/kernel.h>
92 #include <sys/buf.h>
93 #if defined(PERFCTRS)
94 #include <sys/pmc.h>
95 #endif
96 #include <sys/signalvar.h>
97 #include <sys/resourcevar.h>
98 #include <sys/sched.h>
99 #include <sys/syscall_stats.h>
100 #include <sys/kauth.h>
101 #include <sys/sleepq.h>
102 #include <sys/lockdebug.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <machine/cpu.h>
107
108 int lbolt; /* once a second sleep address */
109 int rrticks; /* number of hardclock ticks per roundrobin() */
110
111 /*
112 * The global scheduler state.
113 */
114 kmutex_t sched_mutex; /* global sched state mutex */
115 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
116 volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
117
118 void schedcpu(void *);
119 void updatepri(struct lwp *);
120
121 void sched_unsleep(struct lwp *);
122 void sched_changepri(struct lwp *, pri_t);
123 void sched_lendpri(struct lwp *, pri_t);
124
125 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
126 static unsigned int schedcpu_ticks;
127
128 syncobj_t sleep_syncobj = {
129 SOBJ_SLEEPQ_SORTED,
130 sleepq_unsleep,
131 sleepq_changepri,
132 sleepq_lendpri,
133 syncobj_noowner,
134 };
135
136 syncobj_t sched_syncobj = {
137 SOBJ_SLEEPQ_SORTED,
138 sched_unsleep,
139 sched_changepri,
140 sched_lendpri,
141 syncobj_noowner,
142 };
143
144 /*
145 * Force switch among equal priority processes every 100ms.
146 * Called from hardclock every hz/10 == rrticks hardclock ticks.
147 */
148 /* ARGSUSED */
149 void
150 roundrobin(struct cpu_info *ci)
151 {
152 struct schedstate_percpu *spc = &ci->ci_schedstate;
153
154 spc->spc_rrticks = rrticks;
155
156 if (curlwp != NULL) {
157 if (spc->spc_flags & SPCF_SEENRR) {
158 /*
159 * The process has already been through a roundrobin
160 * without switching and may be hogging the CPU.
161 * Indicate that the process should yield.
162 */
163 spc->spc_flags |= SPCF_SHOULDYIELD;
164 } else
165 spc->spc_flags |= SPCF_SEENRR;
166 }
167 cpu_need_resched(curcpu());
168 }
169
170 #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
171 #define NICE_WEIGHT 2 /* priorities per nice level */
172
173 #define ESTCPU_SHIFT 11
174 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
175 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
176
177 /*
178 * Constants for digital decay and forget:
179 * 90% of (p_estcpu) usage in 5 * loadav time
180 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
181 * Note that, as ps(1) mentions, this can let percentages
182 * total over 100% (I've seen 137.9% for 3 processes).
183 *
184 * Note that hardclock updates p_estcpu and p_cpticks independently.
185 *
186 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
187 * That is, the system wants to compute a value of decay such
188 * that the following for loop:
189 * for (i = 0; i < (5 * loadavg); i++)
190 * p_estcpu *= decay;
191 * will compute
192 * p_estcpu *= 0.1;
193 * for all values of loadavg:
194 *
195 * Mathematically this loop can be expressed by saying:
196 * decay ** (5 * loadavg) ~= .1
197 *
198 * The system computes decay as:
199 * decay = (2 * loadavg) / (2 * loadavg + 1)
200 *
201 * We wish to prove that the system's computation of decay
202 * will always fulfill the equation:
203 * decay ** (5 * loadavg) ~= .1
204 *
205 * If we compute b as:
206 * b = 2 * loadavg
207 * then
208 * decay = b / (b + 1)
209 *
210 * We now need to prove two things:
211 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
212 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
213 *
214 * Facts:
215 * For x close to zero, exp(x) =~ 1 + x, since
216 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
217 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
218 * For x close to zero, ln(1+x) =~ x, since
219 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
220 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
221 * ln(.1) =~ -2.30
222 *
223 * Proof of (1):
224 * Solve (factor)**(power) =~ .1 given power (5*loadav):
225 * solving for factor,
226 * ln(factor) =~ (-2.30/5*loadav), or
227 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
228 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
229 *
230 * Proof of (2):
231 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
232 * solving for power,
233 * power*ln(b/(b+1)) =~ -2.30, or
234 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
235 *
236 * Actual power values for the implemented algorithm are as follows:
237 * loadav: 1 2 3 4
238 * power: 5.68 10.32 14.94 19.55
239 */
240
241 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
242 #define loadfactor(loadav) (2 * (loadav))
243
244 static fixpt_t
245 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
246 {
247
248 if (estcpu == 0) {
249 return 0;
250 }
251
252 #if !defined(_LP64)
253 /* avoid 64bit arithmetics. */
254 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
255 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
256 return estcpu * loadfac / (loadfac + FSCALE);
257 }
258 #endif /* !defined(_LP64) */
259
260 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
261 }
262
263 /*
264 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
265 * sleeping for at least seven times the loadfactor will decay p_estcpu to
266 * less than (1 << ESTCPU_SHIFT).
267 *
268 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
269 */
270 static fixpt_t
271 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
272 {
273
274 if ((n << FSHIFT) >= 7 * loadfac) {
275 return 0;
276 }
277
278 while (estcpu != 0 && n > 1) {
279 estcpu = decay_cpu(loadfac, estcpu);
280 n--;
281 }
282
283 return estcpu;
284 }
285
286 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
287 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
288
289 /*
290 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
291 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
292 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
293 *
294 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
295 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
296 *
297 * If you dont want to bother with the faster/more-accurate formula, you
298 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
299 * (more general) method of calculating the %age of CPU used by a process.
300 */
301 #define CCPU_SHIFT 11
302
303 /*
304 * schedcpu:
305 *
306 * Recompute process priorities, every hz ticks.
307 *
308 * XXXSMP This needs to be reorganised in order to reduce the locking
309 * burden.
310 */
311 /* ARGSUSED */
312 void
313 schedcpu(void *arg)
314 {
315 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
316 struct rlimit *rlim;
317 struct lwp *l;
318 struct proc *p;
319 int minslp, clkhz, sig;
320 long runtm;
321
322 schedcpu_ticks++;
323
324 mutex_enter(&proclist_mutex);
325 PROCLIST_FOREACH(p, &allproc) {
326 /*
327 * Increment time in/out of memory and sleep time (if
328 * sleeping). We ignore overflow; with 16-bit int's
329 * (remember them?) overflow takes 45 days.
330 */
331 minslp = 2;
332 mutex_enter(&p->p_smutex);
333 runtm = p->p_rtime.tv_sec;
334 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
335 lwp_lock(l);
336 runtm += l->l_rtime.tv_sec;
337 l->l_swtime++;
338 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
339 l->l_stat == LSSUSPENDED) {
340 l->l_slptime++;
341 minslp = min(minslp, l->l_slptime);
342 } else
343 minslp = 0;
344 lwp_unlock(l);
345 }
346 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
347
348 /*
349 * Check if the process exceeds its CPU resource allocation.
350 * If over max, kill it.
351 */
352 rlim = &p->p_rlimit[RLIMIT_CPU];
353 sig = 0;
354 if (runtm >= rlim->rlim_cur) {
355 if (runtm >= rlim->rlim_max)
356 sig = SIGKILL;
357 else {
358 sig = SIGXCPU;
359 if (rlim->rlim_cur < rlim->rlim_max)
360 rlim->rlim_cur += 5;
361 }
362 }
363
364 /*
365 * If the process has run for more than autonicetime, reduce
366 * priority to give others a chance.
367 */
368 if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
369 && kauth_cred_geteuid(p->p_cred)) {
370 mutex_spin_enter(&p->p_stmutex);
371 p->p_nice = autoniceval + NZERO;
372 resetprocpriority(p);
373 mutex_spin_exit(&p->p_stmutex);
374 }
375
376 /*
377 * If the process has slept the entire second,
378 * stop recalculating its priority until it wakes up.
379 */
380 if (minslp <= 1) {
381 /*
382 * p_pctcpu is only for ps.
383 */
384 mutex_spin_enter(&p->p_stmutex);
385 clkhz = stathz != 0 ? stathz : hz;
386 #if (FSHIFT >= CCPU_SHIFT)
387 p->p_pctcpu += (clkhz == 100)?
388 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
389 100 * (((fixpt_t) p->p_cpticks)
390 << (FSHIFT - CCPU_SHIFT)) / clkhz;
391 #else
392 p->p_pctcpu += ((FSCALE - ccpu) *
393 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
394 #endif
395 p->p_cpticks = 0;
396 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
397
398 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
399 lwp_lock(l);
400 if (l->l_slptime <= 1 &&
401 l->l_priority >= PUSER)
402 resetpriority(l);
403 lwp_unlock(l);
404 }
405 mutex_spin_exit(&p->p_stmutex);
406 }
407
408 mutex_exit(&p->p_smutex);
409 if (sig) {
410 psignal(p, sig);
411 }
412 }
413 mutex_exit(&proclist_mutex);
414 uvm_meter();
415 wakeup((void *)&lbolt);
416 callout_schedule(&schedcpu_ch, hz);
417 }
418
419 /*
420 * Recalculate the priority of a process after it has slept for a while.
421 */
422 void
423 updatepri(struct lwp *l)
424 {
425 struct proc *p = l->l_proc;
426 fixpt_t loadfac;
427
428 LOCK_ASSERT(lwp_locked(l, NULL));
429 KASSERT(l->l_slptime > 1);
430
431 loadfac = loadfactor(averunnable.ldavg[0]);
432
433 l->l_slptime--; /* the first time was done in schedcpu */
434 /* XXX NJWLWP */
435 /* XXXSMP occasionally unlocked, should be per-LWP */
436 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
437 resetpriority(l);
438 }
439
440 /*
441 * During autoconfiguration or after a panic, a sleep will simply lower the
442 * priority briefly to allow interrupts, then return. The priority to be
443 * used (safepri) is machine-dependent, thus this value is initialized and
444 * maintained in the machine-dependent layers. This priority will typically
445 * be 0, or the lowest priority that is safe for use on the interrupt stack;
446 * it can be made higher to block network software interrupts after panics.
447 */
448 int safepri;
449
450 /*
451 * OBSOLETE INTERFACE
452 *
453 * General sleep call. Suspends the current process until a wakeup is
454 * performed on the specified identifier. The process will then be made
455 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
456 * means no timeout). If pri includes PCATCH flag, signals are checked
457 * before and after sleeping, else signals are not checked. Returns 0 if
458 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
459 * signal needs to be delivered, ERESTART is returned if the current system
460 * call should be restarted if possible, and EINTR is returned if the system
461 * call should be interrupted by the signal (return EINTR).
462 *
463 * The interlock is held until we are on a sleep queue. The interlock will
464 * be locked before returning back to the caller unless the PNORELOCK flag
465 * is specified, in which case the interlock will always be unlocked upon
466 * return.
467 */
468 int
469 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
470 volatile struct simplelock *interlock)
471 {
472 struct lwp *l = curlwp;
473 sleepq_t *sq;
474 int error, catch;
475
476 if (sleepq_dontsleep(l)) {
477 (void)sleepq_abort(NULL, 0);
478 if ((priority & PNORELOCK) != 0)
479 simple_unlock(interlock);
480 return 0;
481 }
482
483 sq = sleeptab_lookup(&sleeptab, ident);
484 sleepq_enter(sq, l);
485
486 if (interlock != NULL) {
487 LOCK_ASSERT(simple_lock_held(interlock));
488 simple_unlock(interlock);
489 }
490
491 catch = priority & PCATCH;
492 sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
493 &sleep_syncobj);
494 error = sleepq_unblock(timo, catch);
495
496 if (interlock != NULL && (priority & PNORELOCK) == 0)
497 simple_lock(interlock);
498
499 return error;
500 }
501
502 int
503 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
504 kmutex_t *mtx)
505 {
506 struct lwp *l = curlwp;
507 sleepq_t *sq;
508 int error, catch;
509
510 if (sleepq_dontsleep(l)) {
511 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
512 return 0;
513 }
514
515 sq = sleeptab_lookup(&sleeptab, ident);
516 sleepq_enter(sq, l);
517 mutex_exit(mtx);
518
519 catch = priority & PCATCH;
520 sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
521 &sleep_syncobj);
522 error = sleepq_unblock(timo, catch);
523
524 if ((priority & PNORELOCK) == 0)
525 mutex_enter(mtx);
526
527 return error;
528 }
529
530 /*
531 * General sleep call for situations where a wake-up is not expected.
532 */
533 int
534 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
535 {
536 struct lwp *l = curlwp;
537 sleepq_t *sq;
538 int error;
539
540 if (sleepq_dontsleep(l))
541 return sleepq_abort(NULL, 0);
542
543 if (mtx != NULL)
544 mutex_exit(mtx);
545 sq = sleeptab_lookup(&sleeptab, l);
546 sleepq_enter(sq, l);
547 sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
548 error = sleepq_unblock(timo, intr);
549 if (mtx != NULL)
550 mutex_enter(mtx);
551
552 return error;
553 }
554
555 /*
556 * OBSOLETE INTERFACE
557 *
558 * Make all processes sleeping on the specified identifier runnable.
559 */
560 void
561 wakeup(wchan_t ident)
562 {
563 sleepq_t *sq;
564
565 if (cold)
566 return;
567
568 sq = sleeptab_lookup(&sleeptab, ident);
569 sleepq_wake(sq, ident, (u_int)-1);
570 }
571
572 /*
573 * OBSOLETE INTERFACE
574 *
575 * Make the highest priority process first in line on the specified
576 * identifier runnable.
577 */
578 void
579 wakeup_one(wchan_t ident)
580 {
581 sleepq_t *sq;
582
583 if (cold)
584 return;
585
586 sq = sleeptab_lookup(&sleeptab, ident);
587 sleepq_wake(sq, ident, 1);
588 }
589
590
591 /*
592 * General yield call. Puts the current process back on its run queue and
593 * performs a voluntary context switch. Should only be called when the
594 * current process explicitly requests it (eg sched_yield(2) in compat code).
595 */
596 void
597 yield(void)
598 {
599 struct lwp *l = curlwp;
600
601 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
602 lwp_lock(l);
603 if (l->l_stat == LSONPROC) {
604 KASSERT(lwp_locked(l, &sched_mutex));
605 l->l_priority = l->l_usrpri;
606 }
607 l->l_nvcsw++;
608 mi_switch(l, NULL);
609 KERNEL_LOCK(l->l_biglocks, l);
610 }
611
612 /*
613 * General preemption call. Puts the current process back on its run queue
614 * and performs an involuntary context switch.
615 */
616 void
617 preempt(void)
618 {
619 struct lwp *l = curlwp;
620
621 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
622 lwp_lock(l);
623 if (l->l_stat == LSONPROC) {
624 KASSERT(lwp_locked(l, &sched_mutex));
625 l->l_priority = l->l_usrpri;
626 }
627 l->l_nivcsw++;
628 (void)mi_switch(l, NULL);
629 KERNEL_LOCK(l->l_biglocks, l);
630 }
631
632 /*
633 * The machine independent parts of context switch. Switch to "new"
634 * if non-NULL, otherwise let cpu_switch choose the next lwp.
635 *
636 * Returns 1 if another process was actually run.
637 */
638 int
639 mi_switch(struct lwp *l, struct lwp *newl)
640 {
641 struct schedstate_percpu *spc;
642 struct timeval tv;
643 int retval, oldspl;
644 long s, u;
645
646 LOCK_ASSERT(lwp_locked(l, NULL));
647
648 #ifdef LOCKDEBUG
649 simple_lock_switchcheck();
650 #endif
651 #ifdef KSTACK_CHECK_MAGIC
652 kstack_check_magic(l);
653 #endif
654
655 /*
656 * It's safe to read the per CPU schedstate unlocked here, as all we
657 * are after is the run time and that's guarenteed to have been last
658 * updated by this CPU.
659 */
660 KDASSERT(l->l_cpu == curcpu());
661 spc = &l->l_cpu->ci_schedstate;
662
663 /*
664 * Compute the amount of time during which the current
665 * process was running.
666 */
667 microtime(&tv);
668 u = l->l_rtime.tv_usec +
669 (tv.tv_usec - spc->spc_runtime.tv_usec);
670 s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
671 if (u < 0) {
672 u += 1000000;
673 s--;
674 } else if (u >= 1000000) {
675 u -= 1000000;
676 s++;
677 }
678 l->l_rtime.tv_usec = u;
679 l->l_rtime.tv_sec = s;
680
681 /* Count time spent in current system call */
682 SYSCALL_TIME_SLEEP(l);
683
684 /*
685 * XXXSMP If we are using h/w performance counters, save context.
686 */
687 #if PERFCTRS
688 if (PMC_ENABLED(l->l_proc)) {
689 pmc_save_context(l->l_proc);
690 }
691 #endif
692
693 /*
694 * Acquire the sched_mutex if necessary. It will be released by
695 * cpu_switch once it has decided to idle, or picked another LWP
696 * to run.
697 */
698 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
699 if (l->l_mutex != &sched_mutex) {
700 mutex_spin_enter(&sched_mutex);
701 lwp_unlock(l);
702 }
703 #endif
704
705 /*
706 * If on the CPU and we have gotten this far, then we must yield.
707 */
708 KASSERT(l->l_stat != LSRUN);
709 if (l->l_stat == LSONPROC) {
710 KASSERT(lwp_locked(l, &sched_mutex));
711 l->l_stat = LSRUN;
712 setrunqueue(l);
713 }
714 uvmexp.swtch++;
715
716 /*
717 * Process is about to yield the CPU; clear the appropriate
718 * scheduling flags.
719 */
720 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
721
722 LOCKDEBUG_BARRIER(&sched_mutex, 1);
723
724 /*
725 * Switch to the new current LWP. When we run again, we'll
726 * return back here.
727 */
728 oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
729
730 if (newl == NULL || newl->l_back == NULL)
731 retval = cpu_switch(l, NULL);
732 else {
733 KASSERT(lwp_locked(newl, &sched_mutex));
734 remrunqueue(newl);
735 cpu_switchto(l, newl);
736 retval = 0;
737 }
738
739 /*
740 * XXXSMP If we are using h/w performance counters, restore context.
741 */
742 #if PERFCTRS
743 if (PMC_ENABLED(l->l_proc)) {
744 pmc_restore_context(l->l_proc);
745 }
746 #endif
747
748 /*
749 * We're running again; record our new start time. We might
750 * be running on a new CPU now, so don't use the cached
751 * schedstate_percpu pointer.
752 */
753 SYSCALL_TIME_WAKEUP(l);
754 KDASSERT(l->l_cpu == curcpu());
755 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
756 splx(oldspl);
757
758 return retval;
759 }
760
761 /*
762 * Initialize the (doubly-linked) run queues
763 * to be empty.
764 */
765 void
766 rqinit()
767 {
768 int i;
769
770 for (i = 0; i < RUNQUE_NQS; i++)
771 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
772 (struct lwp *)&sched_qs[i];
773
774 mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
775 }
776
777 static inline void
778 resched_lwp(struct lwp *l)
779 {
780 struct cpu_info *ci;
781 const pri_t pri = lwp_eprio(l);
782
783 /*
784 * XXXSMP
785 * Since l->l_cpu persists across a context switch,
786 * this gives us *very weak* processor affinity, in
787 * that we notify the CPU on which the process last
788 * ran that it should try to switch.
789 *
790 * This does not guarantee that the process will run on
791 * that processor next, because another processor might
792 * grab it the next time it performs a context switch.
793 *
794 * This also does not handle the case where its last
795 * CPU is running a higher-priority process, but every
796 * other CPU is running a lower-priority process. There
797 * are ways to handle this situation, but they're not
798 * currently very pretty, and we also need to weigh the
799 * cost of moving a process from one CPU to another.
800 *
801 * XXXSMP
802 * There is also the issue of locking the other CPU's
803 * sched state, which we currently do not do.
804 */
805 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
806 if (pri < ci->ci_schedstate.spc_curpriority)
807 cpu_need_resched(ci);
808 }
809
810 /*
811 * Change process state to be runnable, placing it on the run queue if it is
812 * in memory, and awakening the swapper if it isn't in memory.
813 *
814 * Call with the process and LWP locked. Will return with the LWP unlocked.
815 */
816 void
817 setrunnable(struct lwp *l)
818 {
819 struct proc *p = l->l_proc;
820 sigset_t *ss;
821
822 KASSERT(mutex_owned(&p->p_smutex));
823 KASSERT(lwp_locked(l, NULL));
824
825 switch (l->l_stat) {
826 case LSSTOP:
827 /*
828 * If we're being traced (possibly because someone attached us
829 * while we were stopped), check for a signal from the debugger.
830 */
831 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
832 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
833 ss = &l->l_sigpend.sp_set;
834 else
835 ss = &p->p_sigpend.sp_set;
836 sigaddset(ss, p->p_xstat);
837 signotify(l);
838 }
839 p->p_nrlwps++;
840 break;
841 case LSSUSPENDED:
842 l->l_flag &= ~LW_WSUSPEND;
843 p->p_nrlwps++;
844 break;
845 case LSSLEEP:
846 KASSERT(l->l_wchan != NULL);
847 break;
848 default:
849 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
850 }
851
852 /*
853 * If the LWP was sleeping interruptably, then it's OK to start it
854 * again. If not, mark it as still sleeping.
855 */
856 if (l->l_wchan != NULL) {
857 l->l_stat = LSSLEEP;
858 /* lwp_unsleep() will release the lock. */
859 lwp_unsleep(l);
860 return;
861 }
862
863 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
864
865 /*
866 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
867 * about to call mi_switch(), in which case it will yield.
868 *
869 * XXXSMP Will need to change for preemption.
870 */
871 #ifdef MULTIPROCESSOR
872 if (l->l_cpu->ci_curlwp == l) {
873 #else
874 if (l == curlwp) {
875 #endif
876 l->l_stat = LSONPROC;
877 l->l_slptime = 0;
878 lwp_unlock(l);
879 return;
880 }
881
882 /*
883 * Set the LWP runnable. If it's swapped out, we need to wake the swapper
884 * to bring it back in. Otherwise, enter it into a run queue.
885 */
886 if (l->l_slptime > 1)
887 updatepri(l);
888 l->l_stat = LSRUN;
889 l->l_slptime = 0;
890
891 if (l->l_flag & LW_INMEM) {
892 setrunqueue(l);
893 resched_lwp(l);
894 lwp_unlock(l);
895 } else {
896 lwp_unlock(l);
897 uvm_kick_scheduler();
898 }
899 }
900
901 /*
902 * Compute the priority of a process when running in user mode.
903 * Arrange to reschedule if the resulting priority is better
904 * than that of the current process.
905 */
906 void
907 resetpriority(struct lwp *l)
908 {
909 pri_t newpriority;
910 struct proc *p = l->l_proc;
911
912 /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
913 LOCK_ASSERT(lwp_locked(l, NULL));
914
915 if ((l->l_flag & LW_SYSTEM) != 0)
916 return;
917
918 newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
919 NICE_WEIGHT * (p->p_nice - NZERO);
920 newpriority = min(newpriority, MAXPRI);
921 lwp_changepri(l, newpriority);
922 }
923
924 /*
925 * Recompute priority for all LWPs in a process.
926 */
927 void
928 resetprocpriority(struct proc *p)
929 {
930 struct lwp *l;
931
932 LOCK_ASSERT(mutex_owned(&p->p_stmutex));
933
934 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
935 lwp_lock(l);
936 resetpriority(l);
937 lwp_unlock(l);
938 }
939 }
940
941 /*
942 * We adjust the priority of the current process. The priority of a process
943 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
944 * is increased here. The formula for computing priorities (in kern_synch.c)
945 * will compute a different value each time p_estcpu increases. This can
946 * cause a switch, but unless the priority crosses a PPQ boundary the actual
947 * queue will not change. The CPU usage estimator ramps up quite quickly
948 * when the process is running (linearly), and decays away exponentially, at
949 * a rate which is proportionally slower when the system is busy. The basic
950 * principle is that the system will 90% forget that the process used a lot
951 * of CPU time in 5 * loadav seconds. This causes the system to favor
952 * processes which haven't run much recently, and to round-robin among other
953 * processes.
954 */
955
956 void
957 schedclock(struct lwp *l)
958 {
959 struct proc *p = l->l_proc;
960
961 mutex_spin_enter(&p->p_stmutex);
962 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
963 lwp_lock(l);
964 resetpriority(l);
965 mutex_spin_exit(&p->p_stmutex);
966 if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
967 l->l_priority = l->l_usrpri;
968 lwp_unlock(l);
969 }
970
971 /*
972 * suspendsched:
973 *
974 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
975 */
976 void
977 suspendsched(void)
978 {
979 #ifdef MULTIPROCESSOR
980 CPU_INFO_ITERATOR cii;
981 struct cpu_info *ci;
982 #endif
983 struct lwp *l;
984 struct proc *p;
985
986 /*
987 * We do this by process in order not to violate the locking rules.
988 */
989 mutex_enter(&proclist_mutex);
990 PROCLIST_FOREACH(p, &allproc) {
991 mutex_enter(&p->p_smutex);
992
993 if ((p->p_flag & PK_SYSTEM) != 0) {
994 mutex_exit(&p->p_smutex);
995 continue;
996 }
997
998 p->p_stat = SSTOP;
999
1000 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1001 if (l == curlwp)
1002 continue;
1003
1004 lwp_lock(l);
1005
1006 /*
1007 * Set L_WREBOOT so that the LWP will suspend itself
1008 * when it tries to return to user mode. We want to
1009 * try and get to get as many LWPs as possible to
1010 * the user / kernel boundary, so that they will
1011 * release any locks that they hold.
1012 */
1013 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1014
1015 if (l->l_stat == LSSLEEP &&
1016 (l->l_flag & LW_SINTR) != 0) {
1017 /* setrunnable() will release the lock. */
1018 setrunnable(l);
1019 continue;
1020 }
1021
1022 lwp_unlock(l);
1023 }
1024
1025 mutex_exit(&p->p_smutex);
1026 }
1027 mutex_exit(&proclist_mutex);
1028
1029 /*
1030 * Kick all CPUs to make them preempt any LWPs running in user mode.
1031 * They'll trap into the kernel and suspend themselves in userret().
1032 */
1033 sched_lock(0);
1034 #ifdef MULTIPROCESSOR
1035 for (CPU_INFO_FOREACH(cii, ci))
1036 cpu_need_resched(ci);
1037 #else
1038 cpu_need_resched(curcpu());
1039 #endif
1040 sched_unlock(0);
1041 }
1042
1043 /*
1044 * scheduler_fork_hook:
1045 *
1046 * Inherit the parent's scheduler history.
1047 */
1048 void
1049 scheduler_fork_hook(struct proc *parent, struct proc *child)
1050 {
1051
1052 LOCK_ASSERT(mutex_owned(&parent->p_smutex));
1053
1054 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1055 child->p_forktime = schedcpu_ticks;
1056 }
1057
1058 /*
1059 * scheduler_wait_hook:
1060 *
1061 * Chargeback parents for the sins of their children.
1062 */
1063 void
1064 scheduler_wait_hook(struct proc *parent, struct proc *child)
1065 {
1066 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1067 fixpt_t estcpu;
1068
1069 /* XXX Only if parent != init?? */
1070
1071 mutex_spin_enter(&parent->p_stmutex);
1072 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1073 schedcpu_ticks - child->p_forktime);
1074 if (child->p_estcpu > estcpu)
1075 parent->p_estcpu =
1076 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1077 mutex_spin_exit(&parent->p_stmutex);
1078 }
1079
1080 /*
1081 * sched_kpri:
1082 *
1083 * Scale a priority level to a kernel priority level, usually
1084 * for an LWP that is about to sleep.
1085 */
1086 pri_t
1087 sched_kpri(struct lwp *l)
1088 {
1089 /*
1090 * Scale user priorities (127 -> 50) up to kernel priorities
1091 * in the range (49 -> 8). Reserve the top 8 kernel priorities
1092 * for high priority kthreads. Kernel priorities passed in
1093 * are left "as is". XXX This is somewhat arbitrary.
1094 */
1095 static const uint8_t kpri_tab[] = {
1096 0, 1, 2, 3, 4, 5, 6, 7,
1097 8, 9, 10, 11, 12, 13, 14, 15,
1098 16, 17, 18, 19, 20, 21, 22, 23,
1099 24, 25, 26, 27, 28, 29, 30, 31,
1100 32, 33, 34, 35, 36, 37, 38, 39,
1101 40, 41, 42, 43, 44, 45, 46, 47,
1102 48, 49, 8, 8, 9, 9, 10, 10,
1103 11, 11, 12, 12, 13, 14, 14, 15,
1104 15, 16, 16, 17, 17, 18, 18, 19,
1105 20, 20, 21, 21, 22, 22, 23, 23,
1106 24, 24, 25, 26, 26, 27, 27, 28,
1107 28, 29, 29, 30, 30, 31, 32, 32,
1108 33, 33, 34, 34, 35, 35, 36, 36,
1109 37, 38, 38, 39, 39, 40, 40, 41,
1110 41, 42, 42, 43, 44, 44, 45, 45,
1111 46, 46, 47, 47, 48, 48, 49, 49,
1112 };
1113
1114 return (pri_t)kpri_tab[l->l_usrpri];
1115 }
1116
1117 /*
1118 * sched_unsleep:
1119 *
1120 * The is called when the LWP has not been awoken normally but instead
1121 * interrupted: for example, if the sleep timed out. Because of this,
1122 * it's not a valid action for running or idle LWPs.
1123 */
1124 void
1125 sched_unsleep(struct lwp *l)
1126 {
1127
1128 lwp_unlock(l);
1129 panic("sched_unsleep");
1130 }
1131
1132 /*
1133 * sched_changepri:
1134 *
1135 * Adjust the priority of an LWP.
1136 */
1137 void
1138 sched_changepri(struct lwp *l, pri_t pri)
1139 {
1140
1141 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1142
1143 l->l_usrpri = pri;
1144 if (l->l_priority < PUSER)
1145 return;
1146
1147 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
1148 l->l_priority = pri;
1149 return;
1150 }
1151
1152 remrunqueue(l);
1153 l->l_priority = pri;
1154 setrunqueue(l);
1155 resched_lwp(l);
1156 }
1157
1158 void
1159 sched_lendpri(struct lwp *l, pri_t pri)
1160 {
1161
1162 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1163
1164 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
1165 l->l_inheritedprio = pri;
1166 return;
1167 }
1168
1169 remrunqueue(l);
1170 l->l_inheritedprio = pri;
1171 setrunqueue(l);
1172 resched_lwp(l);
1173 }
1174
1175 struct lwp *
1176 syncobj_noowner(wchan_t wchan)
1177 {
1178
1179 return NULL;
1180 }
1181
1182 /*
1183 * Low-level routines to access the run queue. Optimised assembler
1184 * routines can override these.
1185 */
1186
1187 #ifndef __HAVE_MD_RUNQUEUE
1188
1189 /*
1190 * On some architectures, it's faster to use a MSB ordering for the priorites
1191 * than the traditional LSB ordering.
1192 */
1193 #ifdef __HAVE_BIGENDIAN_BITOPS
1194 #define RQMASK(n) (0x80000000 >> (n))
1195 #else
1196 #define RQMASK(n) (0x00000001 << (n))
1197 #endif
1198
1199 /*
1200 * The primitives that manipulate the run queues. whichqs tells which
1201 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1202 * into queues, remrunqueue removes them from queues. The running process is
1203 * on no queue, other processes are on a queue related to p->p_priority,
1204 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1205 * available queues.
1206 */
1207 #ifdef RQDEBUG
1208 static void
1209 checkrunqueue(int whichq, struct lwp *l)
1210 {
1211 const struct prochd * const rq = &sched_qs[whichq];
1212 struct lwp *l2;
1213 int found = 0;
1214 int die = 0;
1215 int empty = 1;
1216 for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
1217 if (l2->l_stat != LSRUN) {
1218 printf("checkrunqueue[%d]: lwp %p state (%d) "
1219 " != LSRUN\n", whichq, l2, l2->l_stat);
1220 }
1221 if (l2->l_back->l_forw != l2) {
1222 printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1223 "corrupt %p\n", whichq, l2, l2->l_back,
1224 l2->l_back->l_forw);
1225 die = 1;
1226 }
1227 if (l2->l_forw->l_back != l2) {
1228 printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1229 "corrupt %p\n", whichq, l2, l2->l_forw,
1230 l2->l_forw->l_back);
1231 die = 1;
1232 }
1233 if (l2 == l)
1234 found = 1;
1235 empty = 0;
1236 }
1237 if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1238 printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1239 whichq, rq);
1240 die = 1;
1241 } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1242 printf("checkrunqueue[%d]: bit clear for non-empty "
1243 "run-queue %p\n", whichq, rq);
1244 die = 1;
1245 }
1246 if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1247 printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1248 whichq, l);
1249 die = 1;
1250 }
1251 if (l != NULL && empty) {
1252 printf("checkrunqueue[%d]: empty run-queue %p with "
1253 "active lwp %p\n", whichq, rq, l);
1254 die = 1;
1255 }
1256 if (l != NULL && !found) {
1257 printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1258 whichq, l, rq);
1259 die = 1;
1260 }
1261 if (die)
1262 panic("checkrunqueue: inconsistency found");
1263 }
1264 #endif /* RQDEBUG */
1265
1266 void
1267 setrunqueue(struct lwp *l)
1268 {
1269 struct prochd *rq;
1270 struct lwp *prev;
1271 const int whichq = lwp_eprio(l) / PPQ;
1272
1273 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1274
1275 #ifdef RQDEBUG
1276 checkrunqueue(whichq, NULL);
1277 #endif
1278 #ifdef DIAGNOSTIC
1279 if (l->l_back != NULL || l->l_stat != LSRUN)
1280 panic("setrunqueue");
1281 #endif
1282 sched_whichqs |= RQMASK(whichq);
1283 rq = &sched_qs[whichq];
1284 prev = rq->ph_rlink;
1285 l->l_forw = (struct lwp *)rq;
1286 rq->ph_rlink = l;
1287 prev->l_forw = l;
1288 l->l_back = prev;
1289 #ifdef RQDEBUG
1290 checkrunqueue(whichq, l);
1291 #endif
1292 }
1293
1294 /*
1295 * XXXSMP When LWP dispatch (cpu_switch()) is changed to use remrunqueue(),
1296 * drop of the effective priority level from kernel to user needs to be
1297 * moved here from userret(). The assignment in userret() is currently
1298 * done unlocked.
1299 */
1300 void
1301 remrunqueue(struct lwp *l)
1302 {
1303 struct lwp *prev, *next;
1304 const int whichq = lwp_eprio(l) / PPQ;
1305
1306 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1307
1308 #ifdef RQDEBUG
1309 checkrunqueue(whichq, l);
1310 #endif
1311
1312 #if defined(DIAGNOSTIC)
1313 if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
1314 /* Shouldn't happen - interrupts disabled. */
1315 panic("remrunqueue: bit %d not set", whichq);
1316 }
1317 #endif
1318 prev = l->l_back;
1319 l->l_back = NULL;
1320 next = l->l_forw;
1321 prev->l_forw = next;
1322 next->l_back = prev;
1323 if (prev == next)
1324 sched_whichqs &= ~RQMASK(whichq);
1325 #ifdef RQDEBUG
1326 checkrunqueue(whichq, NULL);
1327 #endif
1328 }
1329
1330 #undef RQMASK
1331 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1332