kern_synch.c revision 1.186.2.6 1 /* $NetBSD: kern_synch.c,v 1.186.2.6 2007/06/08 14:17:22 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.186.2.6 2007/06/08 14:17:22 ad Exp $");
79
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100
101 #include <uvm/uvm_extern.h>
102
103 struct callout sched_pstats_ch = CALLOUT_INITIALIZER_SETFUNC(sched_pstats, NULL);
104 unsigned int sched_pstats_ticks;
105
106 kcondvar_t lbolt; /* once a second sleep address */
107
108 static void sched_unsleep(struct lwp *);
109 static void sched_changepri(struct lwp *, pri_t);
110 static void sched_lendpri(struct lwp *, pri_t);
111
112 syncobj_t sleep_syncobj = {
113 SOBJ_SLEEPQ_SORTED,
114 sleepq_unsleep,
115 sleepq_changepri,
116 sleepq_lendpri,
117 syncobj_noowner,
118 };
119
120 syncobj_t sched_syncobj = {
121 SOBJ_SLEEPQ_SORTED,
122 sched_unsleep,
123 sched_changepri,
124 sched_lendpri,
125 syncobj_noowner,
126 };
127
128 /*
129 * During autoconfiguration or after a panic, a sleep will simply lower the
130 * priority briefly to allow interrupts, then return. The priority to be
131 * used (safepri) is machine-dependent, thus this value is initialized and
132 * maintained in the machine-dependent layers. This priority will typically
133 * be 0, or the lowest priority that is safe for use on the interrupt stack;
134 * it can be made higher to block network software interrupts after panics.
135 */
136 int safepri;
137
138 /*
139 * OBSOLETE INTERFACE
140 *
141 * General sleep call. Suspends the current process until a wakeup is
142 * performed on the specified identifier. The process will then be made
143 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
144 * means no timeout). If pri includes PCATCH flag, signals are checked
145 * before and after sleeping, else signals are not checked. Returns 0 if
146 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
147 * signal needs to be delivered, ERESTART is returned if the current system
148 * call should be restarted if possible, and EINTR is returned if the system
149 * call should be interrupted by the signal (return EINTR).
150 *
151 * The interlock is held until we are on a sleep queue. The interlock will
152 * be locked before returning back to the caller unless the PNORELOCK flag
153 * is specified, in which case the interlock will always be unlocked upon
154 * return.
155 */
156 int
157 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
158 volatile struct simplelock *interlock)
159 {
160 struct lwp *l = curlwp;
161 sleepq_t *sq;
162 int error;
163
164 if (sleepq_dontsleep(l)) {
165 (void)sleepq_abort(NULL, 0);
166 if ((priority & PNORELOCK) != 0)
167 simple_unlock(interlock);
168 return 0;
169 }
170
171 sq = sleeptab_lookup(&sleeptab, ident);
172 sleepq_enter(sq, l);
173 sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
174
175 if (interlock != NULL) {
176 KASSERT(simple_lock_held(interlock));
177 simple_unlock(interlock);
178 }
179
180 error = sleepq_block(timo, priority & PCATCH);
181
182 if (interlock != NULL && (priority & PNORELOCK) == 0)
183 simple_lock(interlock);
184
185 return error;
186 }
187
188 int
189 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
190 kmutex_t *mtx)
191 {
192 struct lwp *l = curlwp;
193 sleepq_t *sq;
194 int error;
195
196 if (sleepq_dontsleep(l)) {
197 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
198 return 0;
199 }
200
201 sq = sleeptab_lookup(&sleeptab, ident);
202 sleepq_enter(sq, l);
203 sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
204 mutex_exit(mtx);
205 error = sleepq_block(timo, priority & PCATCH);
206
207 if ((priority & PNORELOCK) == 0)
208 mutex_enter(mtx);
209
210 return error;
211 }
212
213 /*
214 * General sleep call for situations where a wake-up is not expected.
215 */
216 int
217 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
218 {
219 struct lwp *l = curlwp;
220 sleepq_t *sq;
221 int error;
222
223 if (sleepq_dontsleep(l))
224 return sleepq_abort(NULL, 0);
225
226 if (mtx != NULL)
227 mutex_exit(mtx);
228 sq = sleeptab_lookup(&sleeptab, l);
229 sleepq_enter(sq, l);
230 sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
231 error = sleepq_block(timo, intr);
232 if (mtx != NULL)
233 mutex_enter(mtx);
234
235 return error;
236 }
237
238 /*
239 * OBSOLETE INTERFACE
240 *
241 * Make all processes sleeping on the specified identifier runnable.
242 */
243 void
244 wakeup(wchan_t ident)
245 {
246 sleepq_t *sq;
247
248 if (cold)
249 return;
250
251 sq = sleeptab_lookup(&sleeptab, ident);
252 sleepq_wake(sq, ident, (u_int)-1);
253 }
254
255 /*
256 * OBSOLETE INTERFACE
257 *
258 * Make the highest priority process first in line on the specified
259 * identifier runnable.
260 */
261 void
262 wakeup_one(wchan_t ident)
263 {
264 sleepq_t *sq;
265
266 if (cold)
267 return;
268
269 sq = sleeptab_lookup(&sleeptab, ident);
270 sleepq_wake(sq, ident, 1);
271 }
272
273
274 /*
275 * General yield call. Puts the current process back on its run queue and
276 * performs a voluntary context switch. Should only be called when the
277 * current process explicitly requests it (eg sched_yield(2) in compat code).
278 */
279 void
280 yield(void)
281 {
282 struct lwp *l = curlwp;
283
284 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
285 lwp_lock(l);
286 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
287 KASSERT(l->l_stat == LSONPROC);
288 l->l_priority = l->l_usrpri;
289 (void)mi_switch(l);
290 KERNEL_LOCK(l->l_biglocks, l);
291 }
292
293 /*
294 * General preemption call. Puts the current process back on its run queue
295 * and performs an involuntary context switch.
296 */
297 void
298 preempt(void)
299 {
300 struct lwp *l = curlwp;
301
302 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
303 lwp_lock(l);
304 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
305 KASSERT(l->l_stat == LSONPROC);
306 l->l_priority = l->l_usrpri;
307 l->l_nivcsw++;
308 (void)mi_switch(l);
309 KERNEL_LOCK(l->l_biglocks, l);
310 }
311
312 /*
313 * Compute the amount of time during which the current lwp was running.
314 *
315 * - update l_rtime unless it's an idle lwp.
316 * - update spc_runtime for the next lwp.
317 */
318
319 static inline void
320 updatertime(struct lwp *l, struct schedstate_percpu *spc)
321 {
322 struct timeval tv;
323 long s, u;
324
325 if ((l->l_flag & LW_IDLE) != 0) {
326 microtime(&spc->spc_runtime);
327 return;
328 }
329
330 microtime(&tv);
331 u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
332 s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
333 if (u < 0) {
334 u += 1000000;
335 s--;
336 } else if (u >= 1000000) {
337 u -= 1000000;
338 s++;
339 }
340 l->l_rtime.tv_usec = u;
341 l->l_rtime.tv_sec = s;
342
343 spc->spc_runtime = tv;
344 }
345
346 /*
347 * The machine independent parts of context switch.
348 *
349 * Returns 1 if another LWP was actually run.
350 */
351 int
352 mi_switch(struct lwp *l)
353 {
354 struct schedstate_percpu *spc;
355 struct lwp *newl;
356 int retval, oldspl;
357
358 KASSERT(lwp_locked(l, NULL));
359 LOCKDEBUG_BARRIER(l->l_mutex, 1);
360
361 #ifdef KSTACK_CHECK_MAGIC
362 kstack_check_magic(l);
363 #endif
364
365 /*
366 * It's safe to read the per CPU schedstate unlocked here, as all we
367 * are after is the run time and that's guarenteed to have been last
368 * updated by this CPU.
369 */
370 KDASSERT(l->l_cpu == curcpu());
371
372 /* Count time spent in current system call */
373 SYSCALL_TIME_SLEEP(l);
374
375 /*
376 * XXXSMP If we are using h/w performance counters, save context.
377 */
378 #if PERFCTRS
379 if (PMC_ENABLED(l->l_proc)) {
380 pmc_save_context(l->l_proc);
381 }
382 #endif
383 /*
384 * Process is about to yield the CPU; clear the appropriate
385 * scheduling flags.
386 */
387 spc = &l->l_cpu->ci_schedstate;
388 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
389 updatertime(l, spc);
390
391 /*
392 * If on the CPU and we have gotten this far, then we must yield.
393 */
394 mutex_spin_enter(spc->spc_mutex);
395 KASSERT(l->l_stat != LSRUN);
396 if (l->l_stat == LSONPROC) {
397 KASSERT(lwp_locked(l, &spc->spc_lwplock));
398 if ((l->l_flag & LW_IDLE) == 0) {
399 l->l_stat = LSRUN;
400 lwp_setlock(l, spc->spc_mutex);
401 sched_enqueue(l, true);
402 } else
403 l->l_stat = LSIDL;
404 }
405
406 /*
407 * Let sched_nextlwp() select the LWP to run the CPU next.
408 * If no LWP is runnable, switch to the idle LWP.
409 */
410 newl = sched_nextlwp();
411 if (newl) {
412 sched_dequeue(newl);
413 KASSERT(lwp_locked(newl, spc->spc_mutex));
414 newl->l_stat = LSONPROC;
415 newl->l_cpu = l->l_cpu;
416 newl->l_flag |= LW_RUNNING;
417 lwp_setlock(newl, &spc->spc_lwplock);
418 } else {
419 newl = l->l_cpu->ci_data.cpu_idlelwp;
420 newl->l_stat = LSONPROC;
421 newl->l_flag |= LW_RUNNING;
422 }
423 spc->spc_curpriority = newl->l_usrpri;
424 cpu_did_resched();
425
426 if (l != newl) {
427 struct lwp *prevlwp;
428
429 /*
430 * If the old LWP has been moved to a run queue above,
431 * drop the general purpose LWP lock: it's now locked
432 * by the scheduler lock.
433 *
434 * Otherwise, drop the scheduler lock. We're done with
435 * the run queues for now.
436 */
437 if (l->l_mutex == spc->spc_mutex) {
438 mutex_spin_exit(&spc->spc_lwplock);
439 } else {
440 mutex_spin_exit(spc->spc_mutex);
441 }
442
443 /* Unlocked, but for statistics only. */
444 uvmexp.swtch++;
445
446 /* Save old VM context. */
447 pmap_deactivate(l);
448
449 /* Switch to the new LWP.. */
450 l->l_ncsw++;
451 l->l_flag &= ~LW_RUNNING;
452 oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
453 prevlwp = cpu_switchto(l, newl);
454
455 /*
456 * .. we have switched away and are now back so we must
457 * be the new curlwp. prevlwp is who we replaced.
458 */
459 curlwp = l;
460 if (prevlwp != NULL) {
461 curcpu()->ci_mtx_oldspl = oldspl;
462 lwp_unlock(prevlwp);
463 } else {
464 splx(oldspl);
465 }
466
467 /* Restore VM context. */
468 pmap_activate(l);
469 retval = 1;
470 } else {
471 /* Nothing to do - just unlock and return. */
472 mutex_spin_exit(spc->spc_mutex);
473 lwp_unlock(l);
474 retval = 0;
475 }
476
477 KASSERT(l == curlwp);
478 KASSERT(l->l_stat == LSONPROC);
479
480 /*
481 * XXXSMP If we are using h/w performance counters, restore context.
482 */
483 #if PERFCTRS
484 if (PMC_ENABLED(l->l_proc)) {
485 pmc_restore_context(l->l_proc);
486 }
487 #endif
488
489 /*
490 * We're running again; record our new start time. We might
491 * be running on a new CPU now, so don't use the cached
492 * schedstate_percpu pointer.
493 */
494 SYSCALL_TIME_WAKEUP(l);
495 KDASSERT(l->l_cpu == curcpu());
496 LOCKDEBUG_BARRIER(NULL, 1);
497
498 return retval;
499 }
500
501 /*
502 * Change process state to be runnable, placing it on the run queue if it is
503 * in memory, and awakening the swapper if it isn't in memory.
504 *
505 * Call with the process and LWP locked. Will return with the LWP unlocked.
506 */
507 void
508 setrunnable(struct lwp *l)
509 {
510 struct proc *p = l->l_proc;
511 sigset_t *ss;
512
513 KASSERT((l->l_flag & LW_IDLE) == 0);
514 KASSERT(mutex_owned(&p->p_smutex));
515 KASSERT(lwp_locked(l, NULL));
516
517 switch (l->l_stat) {
518 case LSSTOP:
519 /*
520 * If we're being traced (possibly because someone attached us
521 * while we were stopped), check for a signal from the debugger.
522 */
523 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
524 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
525 ss = &l->l_sigpend.sp_set;
526 else
527 ss = &p->p_sigpend.sp_set;
528 sigaddset(ss, p->p_xstat);
529 signotify(l);
530 }
531 p->p_nrlwps++;
532 break;
533 case LSSUSPENDED:
534 l->l_flag &= ~LW_WSUSPEND;
535 p->p_nrlwps++;
536 break;
537 case LSSLEEP:
538 KASSERT(l->l_wchan != NULL);
539 break;
540 default:
541 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
542 }
543
544 /*
545 * If the LWP was sleeping interruptably, then it's OK to start it
546 * again. If not, mark it as still sleeping.
547 */
548 if (l->l_wchan != NULL) {
549 l->l_stat = LSSLEEP;
550 /* lwp_unsleep() will release the lock. */
551 lwp_unsleep(l);
552 return;
553 }
554
555 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
556
557 /*
558 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
559 * about to call mi_switch(), in which case it will yield.
560 */
561 if ((l->l_flag & LW_RUNNING) != 0) {
562 l->l_stat = LSONPROC;
563 l->l_slptime = 0;
564 lwp_unlock(l);
565 return;
566 }
567
568 /*
569 * Set the LWP runnable. If it's swapped out, we need to wake the swapper
570 * to bring it back in. Otherwise, enter it into a run queue.
571 */
572 spc_lock(l->l_cpu);
573 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
574 sched_setrunnable(l);
575 l->l_stat = LSRUN;
576 l->l_slptime = 0;
577
578 if (l->l_flag & LW_INMEM) {
579 sched_enqueue(l, false);
580 resched_cpu(l);
581 lwp_unlock(l);
582 } else {
583 lwp_unlock(l);
584 uvm_kick_scheduler();
585 }
586 }
587
588 /*
589 * suspendsched:
590 *
591 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
592 */
593 void
594 suspendsched(void)
595 {
596 #ifdef MULTIPROCESSOR
597 CPU_INFO_ITERATOR cii;
598 struct cpu_info *ci;
599 #endif
600 struct lwp *l;
601 struct proc *p;
602
603 /*
604 * We do this by process in order not to violate the locking rules.
605 */
606 mutex_enter(&proclist_mutex);
607 PROCLIST_FOREACH(p, &allproc) {
608 mutex_enter(&p->p_smutex);
609
610 if ((p->p_flag & PK_SYSTEM) != 0) {
611 mutex_exit(&p->p_smutex);
612 continue;
613 }
614
615 p->p_stat = SSTOP;
616
617 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
618 if (l == curlwp)
619 continue;
620
621 lwp_lock(l);
622
623 /*
624 * Set L_WREBOOT so that the LWP will suspend itself
625 * when it tries to return to user mode. We want to
626 * try and get to get as many LWPs as possible to
627 * the user / kernel boundary, so that they will
628 * release any locks that they hold.
629 */
630 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
631
632 if (l->l_stat == LSSLEEP &&
633 (l->l_flag & LW_SINTR) != 0) {
634 /* setrunnable() will release the lock. */
635 setrunnable(l);
636 continue;
637 }
638
639 lwp_unlock(l);
640 }
641
642 mutex_exit(&p->p_smutex);
643 }
644 mutex_exit(&proclist_mutex);
645
646 /*
647 * Kick all CPUs to make them preempt any LWPs running in user mode.
648 * They'll trap into the kernel and suspend themselves in userret().
649 */
650 #ifdef MULTIPROCESSOR
651 for (CPU_INFO_FOREACH(cii, ci))
652 cpu_need_resched(ci, 0);
653 #else
654 cpu_need_resched(curcpu(), 0);
655 #endif
656 }
657
658 /*
659 * sched_kpri:
660 *
661 * Scale a priority level to a kernel priority level, usually
662 * for an LWP that is about to sleep.
663 */
664 pri_t
665 sched_kpri(struct lwp *l)
666 {
667 /*
668 * Scale user priorities (127 -> 50) up to kernel priorities
669 * in the range (49 -> 8). Reserve the top 8 kernel priorities
670 * for high priority kthreads. Kernel priorities passed in
671 * are left "as is". XXX This is somewhat arbitrary.
672 */
673 static const uint8_t kpri_tab[] = {
674 0, 1, 2, 3, 4, 5, 6, 7,
675 8, 9, 10, 11, 12, 13, 14, 15,
676 16, 17, 18, 19, 20, 21, 22, 23,
677 24, 25, 26, 27, 28, 29, 30, 31,
678 32, 33, 34, 35, 36, 37, 38, 39,
679 40, 41, 42, 43, 44, 45, 46, 47,
680 48, 49, 8, 8, 9, 9, 10, 10,
681 11, 11, 12, 12, 13, 14, 14, 15,
682 15, 16, 16, 17, 17, 18, 18, 19,
683 20, 20, 21, 21, 22, 22, 23, 23,
684 24, 24, 25, 26, 26, 27, 27, 28,
685 28, 29, 29, 30, 30, 31, 32, 32,
686 33, 33, 34, 34, 35, 35, 36, 36,
687 37, 38, 38, 39, 39, 40, 40, 41,
688 41, 42, 42, 43, 44, 44, 45, 45,
689 46, 46, 47, 47, 48, 48, 49, 49,
690 };
691
692 return (pri_t)kpri_tab[l->l_usrpri];
693 }
694
695 /*
696 * sched_unsleep:
697 *
698 * The is called when the LWP has not been awoken normally but instead
699 * interrupted: for example, if the sleep timed out. Because of this,
700 * it's not a valid action for running or idle LWPs.
701 */
702 static void
703 sched_unsleep(struct lwp *l)
704 {
705
706 lwp_unlock(l);
707 panic("sched_unsleep");
708 }
709
710 inline void
711 resched_cpu(struct lwp *l)
712 {
713 struct cpu_info *ci;
714 const pri_t pri = lwp_eprio(l);
715
716 /*
717 * XXXSMP
718 * Since l->l_cpu persists across a context switch,
719 * this gives us *very weak* processor affinity, in
720 * that we notify the CPU on which the process last
721 * ran that it should try to switch.
722 *
723 * This does not guarantee that the process will run on
724 * that processor next, because another processor might
725 * grab it the next time it performs a context switch.
726 *
727 * This also does not handle the case where its last
728 * CPU is running a higher-priority process, but every
729 * other CPU is running a lower-priority process. There
730 * are ways to handle this situation, but they're not
731 * currently very pretty, and we also need to weigh the
732 * cost of moving a process from one CPU to another.
733 */
734 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
735 if (pri < ci->ci_schedstate.spc_curpriority)
736 cpu_need_resched(ci, 0);
737 }
738
739 static void
740 sched_changepri(struct lwp *l, pri_t pri)
741 {
742
743 KASSERT(lwp_locked(l, NULL));
744
745 l->l_usrpri = pri;
746 if (l->l_priority < PUSER)
747 return;
748
749 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
750 l->l_priority = pri;
751 return;
752 }
753
754 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
755
756 sched_dequeue(l);
757 l->l_priority = pri;
758 sched_enqueue(l, false);
759 resched_cpu(l);
760 }
761
762 static void
763 sched_lendpri(struct lwp *l, pri_t pri)
764 {
765
766 KASSERT(lwp_locked(l, NULL));
767
768 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
769 l->l_inheritedprio = pri;
770 return;
771 }
772
773 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
774
775 sched_dequeue(l);
776 l->l_inheritedprio = pri;
777 sched_enqueue(l, false);
778 resched_cpu(l);
779 }
780
781 struct lwp *
782 syncobj_noowner(wchan_t wchan)
783 {
784
785 return NULL;
786 }
787
788
789 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
790 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
791
792 /*
793 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
794 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
795 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
796 *
797 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
798 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
799 *
800 * If you dont want to bother with the faster/more-accurate formula, you
801 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
802 * (more general) method of calculating the %age of CPU used by a process.
803 */
804 #define CCPU_SHIFT (FSHIFT + 1)
805
806 /*
807 * sched_pstats:
808 *
809 * Update process statistics and check CPU resource allocation.
810 * Call scheduler-specific hook to eventually adjust process/LWP
811 * priorities.
812 *
813 * XXXSMP This needs to be reorganised in order to reduce the locking
814 * burden.
815 */
816 /* ARGSUSED */
817 void
818 sched_pstats(void *arg)
819 {
820 struct rlimit *rlim;
821 struct lwp *l;
822 struct proc *p;
823 int minslp, sig, clkhz;
824 long runtm;
825
826 sched_pstats_ticks++;
827
828 mutex_enter(&proclist_mutex);
829 PROCLIST_FOREACH(p, &allproc) {
830 /*
831 * Increment time in/out of memory and sleep time (if
832 * sleeping). We ignore overflow; with 16-bit int's
833 * (remember them?) overflow takes 45 days.
834 */
835 minslp = 2;
836 mutex_enter(&p->p_smutex);
837 mutex_spin_enter(&p->p_stmutex);
838 runtm = p->p_rtime.tv_sec;
839 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
840 if ((l->l_flag & LW_IDLE) != 0)
841 continue;
842 lwp_lock(l);
843 runtm += l->l_rtime.tv_sec;
844 l->l_swtime++;
845 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
846 l->l_stat == LSSUSPENDED) {
847 l->l_slptime++;
848 minslp = min(minslp, l->l_slptime);
849 } else
850 minslp = 0;
851 lwp_unlock(l);
852
853 /*
854 * p_pctcpu is only for ps.
855 */
856 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
857 if (l->l_slptime < 1) {
858 clkhz = stathz != 0 ? stathz : hz;
859 #if (FSHIFT >= CCPU_SHIFT)
860 l->l_pctcpu += (clkhz == 100) ?
861 ((fixpt_t)l->l_cpticks) <<
862 (FSHIFT - CCPU_SHIFT) :
863 100 * (((fixpt_t) p->p_cpticks)
864 << (FSHIFT - CCPU_SHIFT)) / clkhz;
865 #else
866 l->l_pctcpu += ((FSCALE - ccpu) *
867 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
868 #endif
869 l->l_cpticks = 0;
870 }
871 }
872 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
873 sched_pstats_hook(p, minslp);
874 mutex_spin_exit(&p->p_stmutex);
875
876 /*
877 * Check if the process exceeds its CPU resource allocation.
878 * If over max, kill it.
879 */
880 rlim = &p->p_rlimit[RLIMIT_CPU];
881 sig = 0;
882 if (runtm >= rlim->rlim_cur) {
883 if (runtm >= rlim->rlim_max)
884 sig = SIGKILL;
885 else {
886 sig = SIGXCPU;
887 if (rlim->rlim_cur < rlim->rlim_max)
888 rlim->rlim_cur += 5;
889 }
890 }
891 mutex_exit(&p->p_smutex);
892 if (sig) {
893 psignal(p, sig);
894 }
895 }
896 mutex_exit(&proclist_mutex);
897 uvm_meter();
898 wakeup(&lbolt);
899 callout_schedule(&sched_pstats_ch, hz);
900 }
901