Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.186.2.8
      1 /*	$NetBSD: kern_synch.c,v 1.186.2.8 2007/06/17 21:31:28 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.186.2.8 2007/06/17 21:31:28 ad Exp $");
     79 
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #if defined(PERFCTRS)
     92 #include <sys/pmc.h>
     93 #endif
     94 #include <sys/cpu.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/syscall_stats.h>
     98 #include <sys/sleepq.h>
     99 #include <sys/lockdebug.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 struct callout sched_pstats_ch = CALLOUT_INITIALIZER_SETFUNC(sched_pstats, NULL);
    104 unsigned int sched_pstats_ticks;
    105 
    106 kcondvar_t	lbolt;			/* once a second sleep address */
    107 
    108 static void	sched_unsleep(struct lwp *);
    109 static void	sched_changepri(struct lwp *, pri_t);
    110 static void	sched_lendpri(struct lwp *, pri_t);
    111 
    112 syncobj_t sleep_syncobj = {
    113 	SOBJ_SLEEPQ_SORTED,
    114 	sleepq_unsleep,
    115 	sleepq_changepri,
    116 	sleepq_lendpri,
    117 	syncobj_noowner,
    118 };
    119 
    120 syncobj_t sched_syncobj = {
    121 	SOBJ_SLEEPQ_SORTED,
    122 	sched_unsleep,
    123 	sched_changepri,
    124 	sched_lendpri,
    125 	syncobj_noowner,
    126 };
    127 
    128 /*
    129  * During autoconfiguration or after a panic, a sleep will simply lower the
    130  * priority briefly to allow interrupts, then return.  The priority to be
    131  * used (safepri) is machine-dependent, thus this value is initialized and
    132  * maintained in the machine-dependent layers.  This priority will typically
    133  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    134  * it can be made higher to block network software interrupts after panics.
    135  */
    136 int	safepri;
    137 
    138 /*
    139  * OBSOLETE INTERFACE
    140  *
    141  * General sleep call.  Suspends the current process until a wakeup is
    142  * performed on the specified identifier.  The process will then be made
    143  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    144  * means no timeout).  If pri includes PCATCH flag, signals are checked
    145  * before and after sleeping, else signals are not checked.  Returns 0 if
    146  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    147  * signal needs to be delivered, ERESTART is returned if the current system
    148  * call should be restarted if possible, and EINTR is returned if the system
    149  * call should be interrupted by the signal (return EINTR).
    150  *
    151  * The interlock is held until we are on a sleep queue. The interlock will
    152  * be locked before returning back to the caller unless the PNORELOCK flag
    153  * is specified, in which case the interlock will always be unlocked upon
    154  * return.
    155  */
    156 int
    157 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    158 	volatile struct simplelock *interlock)
    159 {
    160 	struct lwp *l = curlwp;
    161 	sleepq_t *sq;
    162 	int error;
    163 
    164 	if (sleepq_dontsleep(l)) {
    165 		(void)sleepq_abort(NULL, 0);
    166 		if ((priority & PNORELOCK) != 0)
    167 			simple_unlock(interlock);
    168 		return 0;
    169 	}
    170 
    171 	sq = sleeptab_lookup(&sleeptab, ident);
    172 	sleepq_enter(sq, l);
    173 	sleepq_enqueue(sq, sched_kpri(l), ident, wmesg, &sleep_syncobj);
    174 
    175 	if (interlock != NULL) {
    176 		KASSERT(simple_lock_held(interlock));
    177 		simple_unlock(interlock);
    178 	}
    179 
    180 	error = sleepq_block(timo, priority & PCATCH);
    181 
    182 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    183 		simple_lock(interlock);
    184 
    185 	return error;
    186 }
    187 
    188 int
    189 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    190 	kmutex_t *mtx)
    191 {
    192 	struct lwp *l = curlwp;
    193 	sleepq_t *sq;
    194 	int error;
    195 
    196 	if (sleepq_dontsleep(l)) {
    197 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    198 		return 0;
    199 	}
    200 
    201 	sq = sleeptab_lookup(&sleeptab, ident);
    202 	sleepq_enter(sq, l);
    203 	sleepq_enqueue(sq, sched_kpri(l), ident, wmesg, &sleep_syncobj);
    204 	mutex_exit(mtx);
    205 	error = sleepq_block(timo, priority & PCATCH);
    206 
    207 	if ((priority & PNORELOCK) == 0)
    208 		mutex_enter(mtx);
    209 
    210 	return error;
    211 }
    212 
    213 /*
    214  * General sleep call for situations where a wake-up is not expected.
    215  */
    216 int
    217 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    218 {
    219 	struct lwp *l = curlwp;
    220 	sleepq_t *sq;
    221 	int error;
    222 
    223 	if (sleepq_dontsleep(l))
    224 		return sleepq_abort(NULL, 0);
    225 
    226 	if (mtx != NULL)
    227 		mutex_exit(mtx);
    228 	sq = sleeptab_lookup(&sleeptab, l);
    229 	sleepq_enter(sq, l);
    230 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
    231 	error = sleepq_block(timo, intr);
    232 	if (mtx != NULL)
    233 		mutex_enter(mtx);
    234 
    235 	return error;
    236 }
    237 
    238 /*
    239  * OBSOLETE INTERFACE
    240  *
    241  * Make all processes sleeping on the specified identifier runnable.
    242  */
    243 void
    244 wakeup(wchan_t ident)
    245 {
    246 	sleepq_t *sq;
    247 
    248 	if (cold)
    249 		return;
    250 
    251 	sq = sleeptab_lookup(&sleeptab, ident);
    252 	sleepq_wake(sq, ident, (u_int)-1);
    253 }
    254 
    255 /*
    256  * OBSOLETE INTERFACE
    257  *
    258  * Make the highest priority process first in line on the specified
    259  * identifier runnable.
    260  */
    261 void
    262 wakeup_one(wchan_t ident)
    263 {
    264 	sleepq_t *sq;
    265 
    266 	if (cold)
    267 		return;
    268 
    269 	sq = sleeptab_lookup(&sleeptab, ident);
    270 	sleepq_wake(sq, ident, 1);
    271 }
    272 
    273 
    274 /*
    275  * General yield call.  Puts the current process back on its run queue and
    276  * performs a voluntary context switch.  Should only be called when the
    277  * current process explicitly requests it (eg sched_yield(2) in compat code).
    278  */
    279 void
    280 yield(void)
    281 {
    282 	struct lwp *l = curlwp;
    283 
    284 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    285 	lwp_lock(l);
    286 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    287 	KASSERT(l->l_stat == LSONPROC);
    288 	l->l_priority = l->l_usrpri;
    289 	(void)mi_switch(l);
    290 	KERNEL_LOCK(l->l_biglocks, l);
    291 }
    292 
    293 /*
    294  * General preemption call.  Puts the current process back on its run queue
    295  * and performs an involuntary context switch.
    296  */
    297 void
    298 preempt(void)
    299 {
    300 	struct lwp *l = curlwp;
    301 
    302 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    303 	lwp_lock(l);
    304 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    305 	KASSERT(l->l_stat == LSONPROC);
    306 	l->l_priority = l->l_usrpri;
    307 	l->l_nivcsw++;
    308 	(void)mi_switch(l);
    309 	KERNEL_LOCK(l->l_biglocks, l);
    310 }
    311 
    312 /*
    313  * Compute the amount of time during which the current lwp was running.
    314  *
    315  * - update l_rtime unless it's an idle lwp.
    316  * - update spc_runtime for the next lwp.
    317  */
    318 
    319 static inline void
    320 updatertime(struct lwp *l, struct schedstate_percpu *spc)
    321 {
    322 	struct timeval tv;
    323 	long s, u;
    324 
    325 	if ((l->l_flag & LW_IDLE) != 0) {
    326 		microtime(&spc->spc_runtime);
    327 		return;
    328 	}
    329 
    330 	microtime(&tv);
    331 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    332 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    333 	if (u < 0) {
    334 		u += 1000000;
    335 		s--;
    336 	} else if (u >= 1000000) {
    337 		u -= 1000000;
    338 		s++;
    339 	}
    340 	l->l_rtime.tv_usec = u;
    341 	l->l_rtime.tv_sec = s;
    342 
    343 	spc->spc_runtime = tv;
    344 }
    345 
    346 /*
    347  * The machine independent parts of context switch.
    348  *
    349  * Returns 1 if another LWP was actually run.
    350  */
    351 int
    352 mi_switch(struct lwp *l)
    353 {
    354 	struct schedstate_percpu *spc;
    355 	struct lwp *newl;
    356 	int retval, oldspl;
    357 	bool returning;
    358 
    359 	KASSERT(lwp_locked(l, NULL));
    360 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    361 
    362 #ifdef KSTACK_CHECK_MAGIC
    363 	kstack_check_magic(l);
    364 #endif
    365 
    366 	/*
    367 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    368 	 * are after is the run time and that's guarenteed to have been last
    369 	 * updated by this CPU.
    370 	 */
    371 	KDASSERT(l->l_cpu == curcpu());
    372 
    373 	/*
    374 	 * Process is about to yield the CPU; clear the appropriate
    375 	 * scheduling flags.
    376 	 */
    377 	spc = &l->l_cpu->ci_schedstate;
    378 	if (l->l_pinned != NULL) {
    379 		returning = true;
    380 		newl = l->l_pinned;
    381 		l->l_pinned = NULL;
    382 	} else {
    383 		returning = false;
    384 		newl = NULL;
    385 
    386 		/* Count time spent in current system call */
    387 		SYSCALL_TIME_SLEEP(l);
    388 
    389 		/*
    390 		 * XXXSMP If we are using h/w performance counters,
    391 		 * save context.
    392 		 */
    393 #if PERFCTRS
    394 		if (PMC_ENABLED(l->l_proc)) {
    395 			pmc_save_context(l->l_proc);
    396 		}
    397 #endif
    398 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    399 		updatertime(l, spc);
    400 	}
    401 
    402 	/*
    403 	 * If on the CPU and we have gotten this far, then we must yield.
    404 	 */
    405 	mutex_spin_enter(spc->spc_mutex);
    406 	KASSERT(l->l_stat != LSRUN);
    407 	if (l->l_stat == LSONPROC) {
    408 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    409 		if ((l->l_flag & LW_IDLE) == 0) {
    410 			l->l_stat = LSRUN;
    411 			lwp_setlock(l, spc->spc_mutex);
    412 			sched_enqueue(l, true);
    413 		} else
    414 			l->l_stat = LSIDL;
    415 	}
    416 
    417 	/*
    418 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    419 	 * If no LWP is runnable, switch to the idle LWP.
    420 	 */
    421 	if (!returning) {
    422 		newl = sched_nextlwp();
    423 		if (newl) {
    424 			sched_dequeue(newl);
    425 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    426 			newl->l_stat = LSONPROC;
    427 			newl->l_cpu = l->l_cpu;
    428 			newl->l_flag |= LW_RUNNING;
    429 			lwp_setlock(newl, &spc->spc_lwplock);
    430 		} else {
    431 			newl = l->l_cpu->ci_data.cpu_idlelwp;
    432 			newl->l_stat = LSONPROC;
    433 			newl->l_flag |= LW_RUNNING;
    434 		}
    435 		spc->spc_curpriority = newl->l_usrpri;
    436 		newl->l_priority = newl->l_usrpri;
    437 		cpu_did_resched();
    438 	}
    439 
    440 	if (l != newl) {
    441 		struct lwp *prevlwp;
    442 
    443 		/*
    444 		 * If the old LWP has been moved to a run queue above,
    445 		 * drop the general purpose LWP lock: it's now locked
    446 		 * by the scheduler lock.
    447 		 *
    448 		 * Otherwise, drop the scheduler lock.  We're done with
    449 		 * the run queues for now.
    450 		 */
    451 		if (l->l_mutex == spc->spc_mutex) {
    452 			mutex_spin_exit(&spc->spc_lwplock);
    453 		} else {
    454 			mutex_spin_exit(spc->spc_mutex);
    455 		}
    456 
    457 		/* Unlocked, but for statistics only. */
    458 		uvmexp.swtch++;
    459 
    460 		/*
    461 		 * Save old VM context, unless a soft interrupt
    462 		 * handler is blocking.
    463 		 */
    464 		if (!returning)
    465 			pmap_deactivate(l);
    466 
    467 		/* Switch to the new LWP.. */
    468 		l->l_ncsw++;
    469 		l->l_flag &= ~LW_RUNNING;
    470 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    471 		prevlwp = cpu_switchto(l, newl, returning);
    472 
    473 		/*
    474 		 * .. we have switched away and are now back so we must
    475 		 * be the new curlwp.  prevlwp is who we replaced.
    476 		 */
    477 		curlwp = l;
    478 		if (prevlwp != NULL) {
    479 			curcpu()->ci_mtx_oldspl = oldspl;
    480 			lwp_unlock(prevlwp);
    481 		} else {
    482 			splx(oldspl);
    483 		}
    484 
    485 		/* Restore VM context. */
    486 		pmap_activate(l);
    487 		retval = 1;
    488 	} else {
    489 		/* Nothing to do - just unlock and return. */
    490 		mutex_spin_exit(spc->spc_mutex);
    491 		lwp_unlock(l);
    492 		retval = 0;
    493 	}
    494 
    495 	KASSERT(l == curlwp);
    496 	KASSERT(l->l_stat == LSONPROC);
    497 
    498 	/*
    499 	 * XXXSMP If we are using h/w performance counters, restore context.
    500 	 */
    501 #if PERFCTRS
    502 	if (PMC_ENABLED(l->l_proc)) {
    503 		pmc_restore_context(l->l_proc);
    504 	}
    505 #endif
    506 
    507 	/*
    508 	 * We're running again; record our new start time.  We might
    509 	 * be running on a new CPU now, so don't use the cached
    510 	 * schedstate_percpu pointer.
    511 	 */
    512 	SYSCALL_TIME_WAKEUP(l);
    513 	KDASSERT(l->l_cpu == curcpu());
    514 	LOCKDEBUG_BARRIER(NULL, 1);
    515 
    516 	return retval;
    517 }
    518 
    519 /*
    520  * Change process state to be runnable, placing it on the run queue if it is
    521  * in memory, and awakening the swapper if it isn't in memory.
    522  *
    523  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    524  */
    525 void
    526 setrunnable(struct lwp *l)
    527 {
    528 	struct proc *p = l->l_proc;
    529 	sigset_t *ss;
    530 
    531 	KASSERT((l->l_flag & LW_IDLE) == 0);
    532 	KASSERT(mutex_owned(&p->p_smutex));
    533 	KASSERT(lwp_locked(l, NULL));
    534 
    535 	switch (l->l_stat) {
    536 	case LSSTOP:
    537 		/*
    538 		 * If we're being traced (possibly because someone attached us
    539 		 * while we were stopped), check for a signal from the debugger.
    540 		 */
    541 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    542 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    543 				ss = &l->l_sigpend.sp_set;
    544 			else
    545 				ss = &p->p_sigpend.sp_set;
    546 			sigaddset(ss, p->p_xstat);
    547 			signotify(l);
    548 		}
    549 		p->p_nrlwps++;
    550 		break;
    551 	case LSSUSPENDED:
    552 		l->l_flag &= ~LW_WSUSPEND;
    553 		p->p_nrlwps++;
    554 		break;
    555 	case LSSLEEP:
    556 		KASSERT(l->l_wchan != NULL);
    557 		break;
    558 	default:
    559 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    560 	}
    561 
    562 	/*
    563 	 * If the LWP was sleeping interruptably, then it's OK to start it
    564 	 * again.  If not, mark it as still sleeping.
    565 	 */
    566 	if (l->l_wchan != NULL) {
    567 		l->l_stat = LSSLEEP;
    568 		/* lwp_unsleep() will release the lock. */
    569 		lwp_unsleep(l);
    570 		return;
    571 	}
    572 
    573 	/*
    574 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    575 	 * about to call mi_switch(), in which case it will yield.
    576 	 */
    577 	if ((l->l_flag & LW_RUNNING) != 0) {
    578 		l->l_stat = LSONPROC;
    579 		l->l_slptime = 0;
    580 		lwp_unlock(l);
    581 		return;
    582 	}
    583 
    584 	/*
    585 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    586 	 * to bring it back in.  Otherwise, enter it into a run queue.
    587 	 */
    588 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    589 		spc_lock(l->l_cpu);
    590 		lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
    591 	}
    592 
    593 	sched_setrunnable(l);
    594 	l->l_stat = LSRUN;
    595 	l->l_slptime = 0;
    596 
    597 	if (l->l_flag & LW_INMEM) {
    598 		sched_enqueue(l, false);
    599 		resched_cpu(l);
    600 		lwp_unlock(l);
    601 	} else {
    602 		lwp_unlock(l);
    603 		uvm_kick_scheduler();
    604 	}
    605 }
    606 
    607 /*
    608  * suspendsched:
    609  *
    610  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    611  */
    612 void
    613 suspendsched(void)
    614 {
    615 #ifdef MULTIPROCESSOR
    616 	CPU_INFO_ITERATOR cii;
    617 	struct cpu_info *ci;
    618 #endif
    619 	struct lwp *l;
    620 	struct proc *p;
    621 
    622 	/*
    623 	 * We do this by process in order not to violate the locking rules.
    624 	 */
    625 	mutex_enter(&proclist_lock);
    626 	PROCLIST_FOREACH(p, &allproc) {
    627 		mutex_enter(&p->p_smutex);
    628 
    629 		if ((p->p_flag & PK_SYSTEM) != 0) {
    630 			mutex_exit(&p->p_smutex);
    631 			continue;
    632 		}
    633 
    634 		p->p_stat = SSTOP;
    635 
    636 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    637 			if (l == curlwp)
    638 				continue;
    639 
    640 			lwp_lock(l);
    641 
    642 			/*
    643 			 * Set L_WREBOOT so that the LWP will suspend itself
    644 			 * when it tries to return to user mode.  We want to
    645 			 * try and get to get as many LWPs as possible to
    646 			 * the user / kernel boundary, so that they will
    647 			 * release any locks that they hold.
    648 			 */
    649 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    650 
    651 			if (l->l_stat == LSSLEEP &&
    652 			    (l->l_flag & LW_SINTR) != 0) {
    653 				/* setrunnable() will release the lock. */
    654 				setrunnable(l);
    655 				continue;
    656 			}
    657 
    658 			lwp_unlock(l);
    659 		}
    660 
    661 		mutex_exit(&p->p_smutex);
    662 	}
    663 	mutex_exit(&proclist_lock);
    664 
    665 	/*
    666 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    667 	 * They'll trap into the kernel and suspend themselves in userret().
    668 	 */
    669 #ifdef MULTIPROCESSOR
    670 	for (CPU_INFO_FOREACH(cii, ci))
    671 		cpu_need_resched(ci, 0);
    672 #else
    673 	cpu_need_resched(curcpu(), 0);
    674 #endif
    675 }
    676 
    677 /*
    678  * sched_kpri:
    679  *
    680  *	Scale a priority level to a kernel priority level, usually
    681  *	for an LWP that is about to sleep.
    682  */
    683 pri_t
    684 sched_kpri(struct lwp *l)
    685 {
    686 	pri_t pri;
    687 
    688 	/*
    689 	 * Scale user priorities (0 -> 63) up to kernel priorities
    690 	 * in the range (64 -> 95).  This makes assumptions about
    691 	 * the priority space and so should be kept in sync with
    692 	 * param.h.
    693 	 */
    694 	if ((pri = l->l_usrpri) >= PRI_KERNEL)
    695 		return pri;
    696 
    697 	return (pri >> 1) + PRI_KERNEL;
    698 }
    699 
    700 /*
    701  * sched_unsleep:
    702  *
    703  *	The is called when the LWP has not been awoken normally but instead
    704  *	interrupted: for example, if the sleep timed out.  Because of this,
    705  *	it's not a valid action for running or idle LWPs.
    706  */
    707 static void
    708 sched_unsleep(struct lwp *l)
    709 {
    710 
    711 	lwp_unlock(l);
    712 	panic("sched_unsleep");
    713 }
    714 
    715 inline void
    716 resched_cpu(struct lwp *l)
    717 {
    718 	struct cpu_info *ci;
    719 	const pri_t pri = lwp_eprio(l);
    720 
    721 	/*
    722 	 * XXXSMP
    723 	 * Since l->l_cpu persists across a context switch,
    724 	 * this gives us *very weak* processor affinity, in
    725 	 * that we notify the CPU on which the process last
    726 	 * ran that it should try to switch.
    727 	 *
    728 	 * This does not guarantee that the process will run on
    729 	 * that processor next, because another processor might
    730 	 * grab it the next time it performs a context switch.
    731 	 *
    732 	 * This also does not handle the case where its last
    733 	 * CPU is running a higher-priority process, but every
    734 	 * other CPU is running a lower-priority process.  There
    735 	 * are ways to handle this situation, but they're not
    736 	 * currently very pretty, and we also need to weigh the
    737 	 * cost of moving a process from one CPU to another.
    738 	 */
    739 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    740 	if (pri < ci->ci_schedstate.spc_curpriority)
    741 		cpu_need_resched(ci, 0);
    742 }
    743 
    744 static void
    745 sched_changepri(struct lwp *l, pri_t pri)
    746 {
    747 
    748 	KASSERT(lwp_locked(l, NULL));
    749 
    750 	l->l_usrpri = pri;
    751 	if (l->l_priority >= PRI_KERNEL)
    752 		return;
    753 
    754 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    755 		l->l_priority = pri;
    756 		return;
    757 	}
    758 
    759 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    760 
    761 	sched_dequeue(l);
    762 	l->l_priority = pri;
    763 	sched_enqueue(l, false);
    764 	resched_cpu(l);
    765 }
    766 
    767 static void
    768 sched_lendpri(struct lwp *l, pri_t pri)
    769 {
    770 
    771 	KASSERT(lwp_locked(l, NULL));
    772 
    773 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    774 		l->l_inheritedprio = pri;
    775 		return;
    776 	}
    777 
    778 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    779 
    780 	sched_dequeue(l);
    781 	l->l_inheritedprio = pri;
    782 	sched_enqueue(l, false);
    783 	resched_cpu(l);
    784 }
    785 
    786 struct lwp *
    787 syncobj_noowner(wchan_t wchan)
    788 {
    789 
    790 	return NULL;
    791 }
    792 
    793 
    794 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    795 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    796 
    797 /*
    798  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    799  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    800  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    801  *
    802  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    803  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    804  *
    805  * If you dont want to bother with the faster/more-accurate formula, you
    806  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    807  * (more general) method of calculating the %age of CPU used by a process.
    808  */
    809 #define	CCPU_SHIFT	(FSHIFT + 1)
    810 
    811 /*
    812  * sched_pstats:
    813  *
    814  * Update process statistics and check CPU resource allocation.
    815  * Call scheduler-specific hook to eventually adjust process/LWP
    816  * priorities.
    817  *
    818  *	XXXSMP This needs to be reorganised in order to reduce the locking
    819  *	burden.
    820  */
    821 /* ARGSUSED */
    822 void
    823 sched_pstats(void *arg)
    824 {
    825 	struct rlimit *rlim;
    826 	struct lwp *l;
    827 	struct proc *p;
    828 	int minslp, sig, clkhz;
    829 	long runtm;
    830 
    831 	sched_pstats_ticks++;
    832 
    833 	mutex_enter(&proclist_lock);
    834 	PROCLIST_FOREACH(p, &allproc) {
    835 		/*
    836 		 * Increment time in/out of memory and sleep time (if
    837 		 * sleeping).  We ignore overflow; with 16-bit int's
    838 		 * (remember them?) overflow takes 45 days.
    839 		 */
    840 		minslp = 2;
    841 		mutex_enter(&p->p_smutex);
    842 		mutex_spin_enter(&p->p_stmutex);
    843 		runtm = p->p_rtime.tv_sec;
    844 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    845 			if ((l->l_flag & LW_IDLE) != 0)
    846 				continue;
    847 			lwp_lock(l);
    848 			runtm += l->l_rtime.tv_sec;
    849 			l->l_swtime++;
    850 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    851 			    l->l_stat == LSSUSPENDED) {
    852 				l->l_slptime++;
    853 				minslp = min(minslp, l->l_slptime);
    854 			} else
    855 				minslp = 0;
    856 			lwp_unlock(l);
    857 
    858 			/*
    859 			 * p_pctcpu is only for ps.
    860 			 */
    861 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    862 			if (l->l_slptime < 1) {
    863 				clkhz = stathz != 0 ? stathz : hz;
    864 #if	(FSHIFT >= CCPU_SHIFT)
    865 				l->l_pctcpu += (clkhz == 100) ?
    866 				    ((fixpt_t)l->l_cpticks) <<
    867 				        (FSHIFT - CCPU_SHIFT) :
    868 				    100 * (((fixpt_t) p->p_cpticks)
    869 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    870 #else
    871 				l->l_pctcpu += ((FSCALE - ccpu) *
    872 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    873 #endif
    874 				l->l_cpticks = 0;
    875 			}
    876 		}
    877 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    878 		sched_pstats_hook(p, minslp);
    879 		mutex_spin_exit(&p->p_stmutex);
    880 
    881 		/*
    882 		 * Check if the process exceeds its CPU resource allocation.
    883 		 * If over max, kill it.
    884 		 */
    885 		rlim = &p->p_rlimit[RLIMIT_CPU];
    886 		sig = 0;
    887 		if (runtm >= rlim->rlim_cur) {
    888 			if (runtm >= rlim->rlim_max)
    889 				sig = SIGKILL;
    890 			else {
    891 				sig = SIGXCPU;
    892 				if (rlim->rlim_cur < rlim->rlim_max)
    893 					rlim->rlim_cur += 5;
    894 			}
    895 		}
    896 		mutex_exit(&p->p_smutex);
    897 		if (sig) {
    898 			/* XXXAD */
    899 			mutex_enter(&proclist_mutex);
    900 			psignal(p, sig);
    901 			mutex_enter(&proclist_mutex);
    902 		}
    903 	}
    904 	mutex_exit(&proclist_lock);
    905 	uvm_meter();
    906 	cv_broadcast(&lbolt);
    907 	callout_schedule(&sched_pstats_ch, hz);
    908 }
    909