kern_synch.c revision 1.187 1 /* $NetBSD: kern_synch.c,v 1.187 2007/03/11 21:36:49 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*-
41 * Copyright (c) 1982, 1986, 1990, 1991, 1993
42 * The Regents of the University of California. All rights reserved.
43 * (c) UNIX System Laboratories, Inc.
44 * All or some portions of this file are derived from material licensed
45 * to the University of California by American Telephone and Telegraph
46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47 * the permission of UNIX System Laboratories, Inc.
48 *
49 * Redistribution and use in source and binary forms, with or without
50 * modification, are permitted provided that the following conditions
51 * are met:
52 * 1. Redistributions of source code must retain the above copyright
53 * notice, this list of conditions and the following disclaimer.
54 * 2. Redistributions in binary form must reproduce the above copyright
55 * notice, this list of conditions and the following disclaimer in the
56 * documentation and/or other materials provided with the distribution.
57 * 3. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.187 2007/03/11 21:36:49 ad Exp $");
78
79 #include "opt_ddb.h"
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/proc.h>
91 #include <sys/kernel.h>
92 #include <sys/buf.h>
93 #if defined(PERFCTRS)
94 #include <sys/pmc.h>
95 #endif
96 #include <sys/signalvar.h>
97 #include <sys/resourcevar.h>
98 #include <sys/sched.h>
99 #include <sys/syscall_stats.h>
100 #include <sys/kauth.h>
101 #include <sys/sleepq.h>
102 #include <sys/lockdebug.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <machine/cpu.h>
107
108 int lbolt; /* once a second sleep address */
109 int rrticks; /* number of hardclock ticks per roundrobin() */
110
111 /*
112 * The global scheduler state.
113 */
114 kmutex_t sched_mutex; /* global sched state mutex */
115 struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
116 volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
117
118 void schedcpu(void *);
119 void updatepri(struct lwp *);
120
121 void sched_unsleep(struct lwp *);
122 void sched_changepri(struct lwp *, pri_t);
123 void sched_lendpri(struct lwp *, pri_t);
124
125 struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
126 static unsigned int schedcpu_ticks;
127
128 syncobj_t sleep_syncobj = {
129 SOBJ_SLEEPQ_SORTED,
130 sleepq_unsleep,
131 sleepq_changepri,
132 sleepq_lendpri,
133 syncobj_noowner,
134 };
135
136 syncobj_t sched_syncobj = {
137 SOBJ_SLEEPQ_SORTED,
138 sched_unsleep,
139 sched_changepri,
140 sched_lendpri,
141 syncobj_noowner,
142 };
143
144 /*
145 * Force switch among equal priority processes every 100ms.
146 * Called from hardclock every hz/10 == rrticks hardclock ticks.
147 */
148 /* ARGSUSED */
149 void
150 roundrobin(struct cpu_info *ci)
151 {
152 struct schedstate_percpu *spc = &ci->ci_schedstate;
153
154 spc->spc_rrticks = rrticks;
155
156 if (curlwp != NULL) {
157 if (spc->spc_flags & SPCF_SEENRR) {
158 /*
159 * The process has already been through a roundrobin
160 * without switching and may be hogging the CPU.
161 * Indicate that the process should yield.
162 */
163 spc->spc_flags |= SPCF_SHOULDYIELD;
164 } else
165 spc->spc_flags |= SPCF_SEENRR;
166 }
167 cpu_need_resched(curcpu());
168 }
169
170 #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
171 #define NICE_WEIGHT 2 /* priorities per nice level */
172
173 #define ESTCPU_SHIFT 11
174 #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
175 #define ESTCPULIM(e) min((e), ESTCPU_MAX)
176
177 /*
178 * Constants for digital decay and forget:
179 * 90% of (p_estcpu) usage in 5 * loadav time
180 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
181 * Note that, as ps(1) mentions, this can let percentages
182 * total over 100% (I've seen 137.9% for 3 processes).
183 *
184 * Note that hardclock updates p_estcpu and p_cpticks independently.
185 *
186 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
187 * That is, the system wants to compute a value of decay such
188 * that the following for loop:
189 * for (i = 0; i < (5 * loadavg); i++)
190 * p_estcpu *= decay;
191 * will compute
192 * p_estcpu *= 0.1;
193 * for all values of loadavg:
194 *
195 * Mathematically this loop can be expressed by saying:
196 * decay ** (5 * loadavg) ~= .1
197 *
198 * The system computes decay as:
199 * decay = (2 * loadavg) / (2 * loadavg + 1)
200 *
201 * We wish to prove that the system's computation of decay
202 * will always fulfill the equation:
203 * decay ** (5 * loadavg) ~= .1
204 *
205 * If we compute b as:
206 * b = 2 * loadavg
207 * then
208 * decay = b / (b + 1)
209 *
210 * We now need to prove two things:
211 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
212 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
213 *
214 * Facts:
215 * For x close to zero, exp(x) =~ 1 + x, since
216 * exp(x) = 0! + x**1/1! + x**2/2! + ... .
217 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
218 * For x close to zero, ln(1+x) =~ x, since
219 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
220 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
221 * ln(.1) =~ -2.30
222 *
223 * Proof of (1):
224 * Solve (factor)**(power) =~ .1 given power (5*loadav):
225 * solving for factor,
226 * ln(factor) =~ (-2.30/5*loadav), or
227 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
228 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
229 *
230 * Proof of (2):
231 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
232 * solving for power,
233 * power*ln(b/(b+1)) =~ -2.30, or
234 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
235 *
236 * Actual power values for the implemented algorithm are as follows:
237 * loadav: 1 2 3 4
238 * power: 5.68 10.32 14.94 19.55
239 */
240
241 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
242 #define loadfactor(loadav) (2 * (loadav))
243
244 static fixpt_t
245 decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
246 {
247
248 if (estcpu == 0) {
249 return 0;
250 }
251
252 #if !defined(_LP64)
253 /* avoid 64bit arithmetics. */
254 #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
255 if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
256 return estcpu * loadfac / (loadfac + FSCALE);
257 }
258 #endif /* !defined(_LP64) */
259
260 return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
261 }
262
263 /*
264 * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
265 * sleeping for at least seven times the loadfactor will decay p_estcpu to
266 * less than (1 << ESTCPU_SHIFT).
267 *
268 * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
269 */
270 static fixpt_t
271 decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
272 {
273
274 if ((n << FSHIFT) >= 7 * loadfac) {
275 return 0;
276 }
277
278 while (estcpu != 0 && n > 1) {
279 estcpu = decay_cpu(loadfac, estcpu);
280 n--;
281 }
282
283 return estcpu;
284 }
285
286 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
287 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
288
289 /*
290 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
291 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
292 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
293 *
294 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
295 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
296 *
297 * If you dont want to bother with the faster/more-accurate formula, you
298 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
299 * (more general) method of calculating the %age of CPU used by a process.
300 */
301 #define CCPU_SHIFT 11
302
303 /*
304 * schedcpu:
305 *
306 * Recompute process priorities, every hz ticks.
307 *
308 * XXXSMP This needs to be reorganised in order to reduce the locking
309 * burden.
310 */
311 /* ARGSUSED */
312 void
313 schedcpu(void *arg)
314 {
315 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
316 struct rlimit *rlim;
317 struct lwp *l;
318 struct proc *p;
319 int minslp, clkhz, sig;
320 long runtm;
321
322 schedcpu_ticks++;
323
324 mutex_enter(&proclist_mutex);
325 PROCLIST_FOREACH(p, &allproc) {
326 /*
327 * Increment time in/out of memory and sleep time (if
328 * sleeping). We ignore overflow; with 16-bit int's
329 * (remember them?) overflow takes 45 days.
330 */
331 minslp = 2;
332 mutex_enter(&p->p_smutex);
333 runtm = p->p_rtime.tv_sec;
334 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
335 lwp_lock(l);
336 runtm += l->l_rtime.tv_sec;
337 l->l_swtime++;
338 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
339 l->l_stat == LSSUSPENDED) {
340 l->l_slptime++;
341 minslp = min(minslp, l->l_slptime);
342 } else
343 minslp = 0;
344 lwp_unlock(l);
345 }
346 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
347
348 /*
349 * Check if the process exceeds its CPU resource allocation.
350 * If over max, kill it.
351 */
352 rlim = &p->p_rlimit[RLIMIT_CPU];
353 sig = 0;
354 if (runtm >= rlim->rlim_cur) {
355 if (runtm >= rlim->rlim_max)
356 sig = SIGKILL;
357 else {
358 sig = SIGXCPU;
359 if (rlim->rlim_cur < rlim->rlim_max)
360 rlim->rlim_cur += 5;
361 }
362 }
363
364 /*
365 * If the process has run for more than autonicetime, reduce
366 * priority to give others a chance.
367 */
368 if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
369 && kauth_cred_geteuid(p->p_cred)) {
370 mutex_spin_enter(&p->p_stmutex);
371 p->p_nice = autoniceval + NZERO;
372 resetprocpriority(p);
373 mutex_spin_exit(&p->p_stmutex);
374 }
375
376 /*
377 * If the process has slept the entire second,
378 * stop recalculating its priority until it wakes up.
379 */
380 if (minslp <= 1) {
381 /*
382 * p_pctcpu is only for ps.
383 */
384 mutex_spin_enter(&p->p_stmutex);
385 clkhz = stathz != 0 ? stathz : hz;
386 #if (FSHIFT >= CCPU_SHIFT)
387 p->p_pctcpu += (clkhz == 100)?
388 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
389 100 * (((fixpt_t) p->p_cpticks)
390 << (FSHIFT - CCPU_SHIFT)) / clkhz;
391 #else
392 p->p_pctcpu += ((FSCALE - ccpu) *
393 (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
394 #endif
395 p->p_cpticks = 0;
396 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
397
398 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
399 lwp_lock(l);
400 if (l->l_slptime <= 1 &&
401 l->l_priority >= PUSER)
402 resetpriority(l);
403 lwp_unlock(l);
404 }
405 mutex_spin_exit(&p->p_stmutex);
406 }
407
408 mutex_exit(&p->p_smutex);
409 if (sig) {
410 psignal(p, sig);
411 }
412 }
413 mutex_exit(&proclist_mutex);
414 uvm_meter();
415 wakeup((void *)&lbolt);
416 callout_schedule(&schedcpu_ch, hz);
417 }
418
419 /*
420 * Recalculate the priority of a process after it has slept for a while.
421 */
422 void
423 updatepri(struct lwp *l)
424 {
425 struct proc *p = l->l_proc;
426 fixpt_t loadfac;
427
428 LOCK_ASSERT(lwp_locked(l, NULL));
429 KASSERT(l->l_slptime > 1);
430
431 loadfac = loadfactor(averunnable.ldavg[0]);
432
433 l->l_slptime--; /* the first time was done in schedcpu */
434 /* XXX NJWLWP */
435 /* XXXSMP occasionally unlocked, should be per-LWP */
436 p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
437 resetpriority(l);
438 }
439
440 /*
441 * During autoconfiguration or after a panic, a sleep will simply lower the
442 * priority briefly to allow interrupts, then return. The priority to be
443 * used (safepri) is machine-dependent, thus this value is initialized and
444 * maintained in the machine-dependent layers. This priority will typically
445 * be 0, or the lowest priority that is safe for use on the interrupt stack;
446 * it can be made higher to block network software interrupts after panics.
447 */
448 int safepri;
449
450 /*
451 * OBSOLETE INTERFACE
452 *
453 * General sleep call. Suspends the current process until a wakeup is
454 * performed on the specified identifier. The process will then be made
455 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
456 * means no timeout). If pri includes PCATCH flag, signals are checked
457 * before and after sleeping, else signals are not checked. Returns 0 if
458 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
459 * signal needs to be delivered, ERESTART is returned if the current system
460 * call should be restarted if possible, and EINTR is returned if the system
461 * call should be interrupted by the signal (return EINTR).
462 *
463 * The interlock is held until we are on a sleep queue. The interlock will
464 * be locked before returning back to the caller unless the PNORELOCK flag
465 * is specified, in which case the interlock will always be unlocked upon
466 * return.
467 */
468 int
469 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
470 volatile struct simplelock *interlock)
471 {
472 struct lwp *l = curlwp;
473 sleepq_t *sq;
474 int error, catch;
475
476 if (sleepq_dontsleep(l)) {
477 (void)sleepq_abort(NULL, 0);
478 if ((priority & PNORELOCK) != 0)
479 simple_unlock(interlock);
480 return 0;
481 }
482
483 sq = sleeptab_lookup(&sleeptab, ident);
484 sleepq_enter(sq, l);
485
486 if (interlock != NULL) {
487 LOCK_ASSERT(simple_lock_held(interlock));
488 simple_unlock(interlock);
489 }
490
491 catch = priority & PCATCH;
492 sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
493 &sleep_syncobj);
494 error = sleepq_unblock(timo, catch);
495
496 if (interlock != NULL && (priority & PNORELOCK) == 0)
497 simple_lock(interlock);
498
499 return error;
500 }
501
502 int
503 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
504 kmutex_t *mtx)
505 {
506 struct lwp *l = curlwp;
507 sleepq_t *sq;
508 int error, catch;
509
510 if (sleepq_dontsleep(l)) {
511 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
512 return 0;
513 }
514
515 sq = sleeptab_lookup(&sleeptab, ident);
516 sleepq_enter(sq, l);
517 mutex_exit(mtx);
518
519 catch = priority & PCATCH;
520 sleepq_block(sq, priority & PRIMASK, ident, wmesg, timo, catch,
521 &sleep_syncobj);
522 error = sleepq_unblock(timo, catch);
523
524 if ((priority & PNORELOCK) == 0)
525 mutex_enter(mtx);
526
527 return error;
528 }
529
530 /*
531 * General sleep call for situations where a wake-up is not expected.
532 */
533 int
534 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
535 {
536 struct lwp *l = curlwp;
537 sleepq_t *sq;
538 int error;
539
540 if (sleepq_dontsleep(l))
541 return sleepq_abort(NULL, 0);
542
543 if (mtx != NULL)
544 mutex_exit(mtx);
545 sq = sleeptab_lookup(&sleeptab, l);
546 sleepq_enter(sq, l);
547 sleepq_block(sq, sched_kpri(l), l, wmesg, timo, intr, &sleep_syncobj);
548 error = sleepq_unblock(timo, intr);
549 if (mtx != NULL)
550 mutex_enter(mtx);
551
552 return error;
553 }
554
555 /*
556 * OBSOLETE INTERFACE
557 *
558 * Make all processes sleeping on the specified identifier runnable.
559 */
560 void
561 wakeup(wchan_t ident)
562 {
563 sleepq_t *sq;
564
565 if (cold)
566 return;
567
568 sq = sleeptab_lookup(&sleeptab, ident);
569 sleepq_wake(sq, ident, (u_int)-1);
570 }
571
572 /*
573 * OBSOLETE INTERFACE
574 *
575 * Make the highest priority process first in line on the specified
576 * identifier runnable.
577 */
578 void
579 wakeup_one(wchan_t ident)
580 {
581 sleepq_t *sq;
582
583 if (cold)
584 return;
585
586 sq = sleeptab_lookup(&sleeptab, ident);
587 sleepq_wake(sq, ident, 1);
588 }
589
590
591 /*
592 * General yield call. Puts the current process back on its run queue and
593 * performs a voluntary context switch. Should only be called when the
594 * current process explicitly requests it (eg sched_yield(2) in compat code).
595 */
596 void
597 yield(void)
598 {
599 struct lwp *l = curlwp;
600
601 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
602 lwp_lock(l);
603 if (l->l_stat == LSONPROC) {
604 KASSERT(lwp_locked(l, &sched_mutex));
605 l->l_priority = l->l_usrpri;
606 }
607 l->l_nvcsw++;
608 mi_switch(l, NULL);
609 KERNEL_LOCK(l->l_biglocks, l);
610 }
611
612 /*
613 * General preemption call. Puts the current process back on its run queue
614 * and performs an involuntary context switch.
615 */
616 void
617 preempt(void)
618 {
619 struct lwp *l = curlwp;
620
621 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
622 lwp_lock(l);
623 if (l->l_stat == LSONPROC) {
624 KASSERT(lwp_locked(l, &sched_mutex));
625 l->l_priority = l->l_usrpri;
626 }
627 l->l_nivcsw++;
628 (void)mi_switch(l, NULL);
629 KERNEL_LOCK(l->l_biglocks, l);
630 }
631
632 /*
633 * The machine independent parts of context switch. Switch to "new"
634 * if non-NULL, otherwise let cpu_switch choose the next lwp.
635 *
636 * Returns 1 if another process was actually run.
637 */
638 int
639 mi_switch(struct lwp *l, struct lwp *newl)
640 {
641 struct schedstate_percpu *spc;
642 struct timeval tv;
643 int retval, oldspl;
644 long s, u;
645
646 LOCK_ASSERT(lwp_locked(l, NULL));
647
648 #ifdef LOCKDEBUG
649 spinlock_switchcheck();
650 simple_lock_switchcheck();
651 #endif
652 #ifdef KSTACK_CHECK_MAGIC
653 kstack_check_magic(l);
654 #endif
655
656 /*
657 * It's safe to read the per CPU schedstate unlocked here, as all we
658 * are after is the run time and that's guarenteed to have been last
659 * updated by this CPU.
660 */
661 KDASSERT(l->l_cpu == curcpu());
662 spc = &l->l_cpu->ci_schedstate;
663
664 /*
665 * Compute the amount of time during which the current
666 * process was running.
667 */
668 microtime(&tv);
669 u = l->l_rtime.tv_usec +
670 (tv.tv_usec - spc->spc_runtime.tv_usec);
671 s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
672 if (u < 0) {
673 u += 1000000;
674 s--;
675 } else if (u >= 1000000) {
676 u -= 1000000;
677 s++;
678 }
679 l->l_rtime.tv_usec = u;
680 l->l_rtime.tv_sec = s;
681
682 /* Count time spent in current system call */
683 SYSCALL_TIME_SLEEP(l);
684
685 /*
686 * XXXSMP If we are using h/w performance counters, save context.
687 */
688 #if PERFCTRS
689 if (PMC_ENABLED(l->l_proc)) {
690 pmc_save_context(l->l_proc);
691 }
692 #endif
693
694 /*
695 * Acquire the sched_mutex if necessary. It will be released by
696 * cpu_switch once it has decided to idle, or picked another LWP
697 * to run.
698 */
699 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
700 if (l->l_mutex != &sched_mutex) {
701 mutex_spin_enter(&sched_mutex);
702 lwp_unlock(l);
703 }
704 #endif
705
706 /*
707 * If on the CPU and we have gotten this far, then we must yield.
708 */
709 KASSERT(l->l_stat != LSRUN);
710 if (l->l_stat == LSONPROC) {
711 KASSERT(lwp_locked(l, &sched_mutex));
712 l->l_stat = LSRUN;
713 setrunqueue(l);
714 }
715 uvmexp.swtch++;
716
717 /*
718 * Process is about to yield the CPU; clear the appropriate
719 * scheduling flags.
720 */
721 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
722
723 LOCKDEBUG_BARRIER(&sched_mutex, 1);
724
725 /*
726 * Switch to the new current LWP. When we run again, we'll
727 * return back here.
728 */
729 oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
730
731 if (newl == NULL || newl->l_back == NULL)
732 retval = cpu_switch(l, NULL);
733 else {
734 KASSERT(lwp_locked(newl, &sched_mutex));
735 remrunqueue(newl);
736 cpu_switchto(l, newl);
737 retval = 0;
738 }
739
740 /*
741 * XXXSMP If we are using h/w performance counters, restore context.
742 */
743 #if PERFCTRS
744 if (PMC_ENABLED(l->l_proc)) {
745 pmc_restore_context(l->l_proc);
746 }
747 #endif
748
749 /*
750 * We're running again; record our new start time. We might
751 * be running on a new CPU now, so don't use the cached
752 * schedstate_percpu pointer.
753 */
754 SYSCALL_TIME_WAKEUP(l);
755 KDASSERT(l->l_cpu == curcpu());
756 microtime(&l->l_cpu->ci_schedstate.spc_runtime);
757 splx(oldspl);
758
759 return retval;
760 }
761
762 /*
763 * Initialize the (doubly-linked) run queues
764 * to be empty.
765 */
766 void
767 rqinit()
768 {
769 int i;
770
771 for (i = 0; i < RUNQUE_NQS; i++)
772 sched_qs[i].ph_link = sched_qs[i].ph_rlink =
773 (struct lwp *)&sched_qs[i];
774
775 mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
776 }
777
778 static inline void
779 resched_lwp(struct lwp *l)
780 {
781 struct cpu_info *ci;
782 const pri_t pri = lwp_eprio(l);
783
784 /*
785 * XXXSMP
786 * Since l->l_cpu persists across a context switch,
787 * this gives us *very weak* processor affinity, in
788 * that we notify the CPU on which the process last
789 * ran that it should try to switch.
790 *
791 * This does not guarantee that the process will run on
792 * that processor next, because another processor might
793 * grab it the next time it performs a context switch.
794 *
795 * This also does not handle the case where its last
796 * CPU is running a higher-priority process, but every
797 * other CPU is running a lower-priority process. There
798 * are ways to handle this situation, but they're not
799 * currently very pretty, and we also need to weigh the
800 * cost of moving a process from one CPU to another.
801 *
802 * XXXSMP
803 * There is also the issue of locking the other CPU's
804 * sched state, which we currently do not do.
805 */
806 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
807 if (pri < ci->ci_schedstate.spc_curpriority)
808 cpu_need_resched(ci);
809 }
810
811 /*
812 * Change process state to be runnable, placing it on the run queue if it is
813 * in memory, and awakening the swapper if it isn't in memory.
814 *
815 * Call with the process and LWP locked. Will return with the LWP unlocked.
816 */
817 void
818 setrunnable(struct lwp *l)
819 {
820 struct proc *p = l->l_proc;
821 sigset_t *ss;
822
823 KASSERT(mutex_owned(&p->p_smutex));
824 KASSERT(lwp_locked(l, NULL));
825
826 switch (l->l_stat) {
827 case LSSTOP:
828 /*
829 * If we're being traced (possibly because someone attached us
830 * while we were stopped), check for a signal from the debugger.
831 */
832 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
833 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
834 ss = &l->l_sigpend.sp_set;
835 else
836 ss = &p->p_sigpend.sp_set;
837 sigaddset(ss, p->p_xstat);
838 signotify(l);
839 }
840 p->p_nrlwps++;
841 break;
842 case LSSUSPENDED:
843 l->l_flag &= ~LW_WSUSPEND;
844 p->p_nrlwps++;
845 break;
846 case LSSLEEP:
847 KASSERT(l->l_wchan != NULL);
848 break;
849 default:
850 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
851 }
852
853 /*
854 * If the LWP was sleeping interruptably, then it's OK to start it
855 * again. If not, mark it as still sleeping.
856 */
857 if (l->l_wchan != NULL) {
858 l->l_stat = LSSLEEP;
859 /* lwp_unsleep() will release the lock. */
860 lwp_unsleep(l);
861 return;
862 }
863
864 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
865
866 /*
867 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
868 * about to call mi_switch(), in which case it will yield.
869 *
870 * XXXSMP Will need to change for preemption.
871 */
872 #ifdef MULTIPROCESSOR
873 if (l->l_cpu->ci_curlwp == l) {
874 #else
875 if (l == curlwp) {
876 #endif
877 l->l_stat = LSONPROC;
878 l->l_slptime = 0;
879 lwp_unlock(l);
880 return;
881 }
882
883 /*
884 * Set the LWP runnable. If it's swapped out, we need to wake the swapper
885 * to bring it back in. Otherwise, enter it into a run queue.
886 */
887 if (l->l_slptime > 1)
888 updatepri(l);
889 l->l_stat = LSRUN;
890 l->l_slptime = 0;
891
892 if (l->l_flag & LW_INMEM) {
893 setrunqueue(l);
894 resched_lwp(l);
895 lwp_unlock(l);
896 } else {
897 lwp_unlock(l);
898 uvm_kick_scheduler();
899 }
900 }
901
902 /*
903 * Compute the priority of a process when running in user mode.
904 * Arrange to reschedule if the resulting priority is better
905 * than that of the current process.
906 */
907 void
908 resetpriority(struct lwp *l)
909 {
910 pri_t newpriority;
911 struct proc *p = l->l_proc;
912
913 /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
914 LOCK_ASSERT(lwp_locked(l, NULL));
915
916 if ((l->l_flag & LW_SYSTEM) != 0)
917 return;
918
919 newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
920 NICE_WEIGHT * (p->p_nice - NZERO);
921 newpriority = min(newpriority, MAXPRI);
922 lwp_changepri(l, newpriority);
923 }
924
925 /*
926 * Recompute priority for all LWPs in a process.
927 */
928 void
929 resetprocpriority(struct proc *p)
930 {
931 struct lwp *l;
932
933 LOCK_ASSERT(mutex_owned(&p->p_stmutex));
934
935 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
936 lwp_lock(l);
937 resetpriority(l);
938 lwp_unlock(l);
939 }
940 }
941
942 /*
943 * We adjust the priority of the current process. The priority of a process
944 * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
945 * is increased here. The formula for computing priorities (in kern_synch.c)
946 * will compute a different value each time p_estcpu increases. This can
947 * cause a switch, but unless the priority crosses a PPQ boundary the actual
948 * queue will not change. The CPU usage estimator ramps up quite quickly
949 * when the process is running (linearly), and decays away exponentially, at
950 * a rate which is proportionally slower when the system is busy. The basic
951 * principle is that the system will 90% forget that the process used a lot
952 * of CPU time in 5 * loadav seconds. This causes the system to favor
953 * processes which haven't run much recently, and to round-robin among other
954 * processes.
955 */
956
957 void
958 schedclock(struct lwp *l)
959 {
960 struct proc *p = l->l_proc;
961
962 mutex_spin_enter(&p->p_stmutex);
963 p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
964 lwp_lock(l);
965 resetpriority(l);
966 mutex_spin_exit(&p->p_stmutex);
967 if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
968 l->l_priority = l->l_usrpri;
969 lwp_unlock(l);
970 }
971
972 /*
973 * suspendsched:
974 *
975 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
976 */
977 void
978 suspendsched(void)
979 {
980 #ifdef MULTIPROCESSOR
981 CPU_INFO_ITERATOR cii;
982 struct cpu_info *ci;
983 #endif
984 struct lwp *l;
985 struct proc *p;
986
987 /*
988 * We do this by process in order not to violate the locking rules.
989 */
990 mutex_enter(&proclist_mutex);
991 PROCLIST_FOREACH(p, &allproc) {
992 mutex_enter(&p->p_smutex);
993
994 if ((p->p_flag & PK_SYSTEM) != 0) {
995 mutex_exit(&p->p_smutex);
996 continue;
997 }
998
999 p->p_stat = SSTOP;
1000
1001 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1002 if (l == curlwp)
1003 continue;
1004
1005 lwp_lock(l);
1006
1007 /*
1008 * Set L_WREBOOT so that the LWP will suspend itself
1009 * when it tries to return to user mode. We want to
1010 * try and get to get as many LWPs as possible to
1011 * the user / kernel boundary, so that they will
1012 * release any locks that they hold.
1013 */
1014 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1015
1016 if (l->l_stat == LSSLEEP &&
1017 (l->l_flag & LW_SINTR) != 0) {
1018 /* setrunnable() will release the lock. */
1019 setrunnable(l);
1020 continue;
1021 }
1022
1023 lwp_unlock(l);
1024 }
1025
1026 mutex_exit(&p->p_smutex);
1027 }
1028 mutex_exit(&proclist_mutex);
1029
1030 /*
1031 * Kick all CPUs to make them preempt any LWPs running in user mode.
1032 * They'll trap into the kernel and suspend themselves in userret().
1033 */
1034 sched_lock(0);
1035 #ifdef MULTIPROCESSOR
1036 for (CPU_INFO_FOREACH(cii, ci))
1037 cpu_need_resched(ci);
1038 #else
1039 cpu_need_resched(curcpu());
1040 #endif
1041 sched_unlock(0);
1042 }
1043
1044 /*
1045 * scheduler_fork_hook:
1046 *
1047 * Inherit the parent's scheduler history.
1048 */
1049 void
1050 scheduler_fork_hook(struct proc *parent, struct proc *child)
1051 {
1052
1053 LOCK_ASSERT(mutex_owned(&parent->p_smutex));
1054
1055 child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
1056 child->p_forktime = schedcpu_ticks;
1057 }
1058
1059 /*
1060 * scheduler_wait_hook:
1061 *
1062 * Chargeback parents for the sins of their children.
1063 */
1064 void
1065 scheduler_wait_hook(struct proc *parent, struct proc *child)
1066 {
1067 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
1068 fixpt_t estcpu;
1069
1070 /* XXX Only if parent != init?? */
1071
1072 mutex_spin_enter(&parent->p_stmutex);
1073 estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
1074 schedcpu_ticks - child->p_forktime);
1075 if (child->p_estcpu > estcpu)
1076 parent->p_estcpu =
1077 ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
1078 mutex_spin_exit(&parent->p_stmutex);
1079 }
1080
1081 /*
1082 * sched_kpri:
1083 *
1084 * Scale a priority level to a kernel priority level, usually
1085 * for an LWP that is about to sleep.
1086 */
1087 pri_t
1088 sched_kpri(struct lwp *l)
1089 {
1090 /*
1091 * Scale user priorities (127 -> 50) up to kernel priorities
1092 * in the range (49 -> 8). Reserve the top 8 kernel priorities
1093 * for high priority kthreads. Kernel priorities passed in
1094 * are left "as is". XXX This is somewhat arbitrary.
1095 */
1096 static const uint8_t kpri_tab[] = {
1097 0, 1, 2, 3, 4, 5, 6, 7,
1098 8, 9, 10, 11, 12, 13, 14, 15,
1099 16, 17, 18, 19, 20, 21, 22, 23,
1100 24, 25, 26, 27, 28, 29, 30, 31,
1101 32, 33, 34, 35, 36, 37, 38, 39,
1102 40, 41, 42, 43, 44, 45, 46, 47,
1103 48, 49, 8, 8, 9, 9, 10, 10,
1104 11, 11, 12, 12, 13, 14, 14, 15,
1105 15, 16, 16, 17, 17, 18, 18, 19,
1106 20, 20, 21, 21, 22, 22, 23, 23,
1107 24, 24, 25, 26, 26, 27, 27, 28,
1108 28, 29, 29, 30, 30, 31, 32, 32,
1109 33, 33, 34, 34, 35, 35, 36, 36,
1110 37, 38, 38, 39, 39, 40, 40, 41,
1111 41, 42, 42, 43, 44, 44, 45, 45,
1112 46, 46, 47, 47, 48, 48, 49, 49,
1113 };
1114
1115 return (pri_t)kpri_tab[l->l_usrpri];
1116 }
1117
1118 /*
1119 * sched_unsleep:
1120 *
1121 * The is called when the LWP has not been awoken normally but instead
1122 * interrupted: for example, if the sleep timed out. Because of this,
1123 * it's not a valid action for running or idle LWPs.
1124 */
1125 void
1126 sched_unsleep(struct lwp *l)
1127 {
1128
1129 lwp_unlock(l);
1130 panic("sched_unsleep");
1131 }
1132
1133 /*
1134 * sched_changepri:
1135 *
1136 * Adjust the priority of an LWP.
1137 */
1138 void
1139 sched_changepri(struct lwp *l, pri_t pri)
1140 {
1141
1142 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1143
1144 l->l_usrpri = pri;
1145 if (l->l_priority < PUSER)
1146 return;
1147
1148 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
1149 l->l_priority = pri;
1150 return;
1151 }
1152
1153 remrunqueue(l);
1154 l->l_priority = pri;
1155 setrunqueue(l);
1156 resched_lwp(l);
1157 }
1158
1159 void
1160 sched_lendpri(struct lwp *l, pri_t pri)
1161 {
1162
1163 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1164
1165 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
1166 l->l_inheritedprio = pri;
1167 return;
1168 }
1169
1170 remrunqueue(l);
1171 l->l_inheritedprio = pri;
1172 setrunqueue(l);
1173 resched_lwp(l);
1174 }
1175
1176 struct lwp *
1177 syncobj_noowner(wchan_t wchan)
1178 {
1179
1180 return NULL;
1181 }
1182
1183 /*
1184 * Low-level routines to access the run queue. Optimised assembler
1185 * routines can override these.
1186 */
1187
1188 #ifndef __HAVE_MD_RUNQUEUE
1189
1190 /*
1191 * On some architectures, it's faster to use a MSB ordering for the priorites
1192 * than the traditional LSB ordering.
1193 */
1194 #ifdef __HAVE_BIGENDIAN_BITOPS
1195 #define RQMASK(n) (0x80000000 >> (n))
1196 #else
1197 #define RQMASK(n) (0x00000001 << (n))
1198 #endif
1199
1200 /*
1201 * The primitives that manipulate the run queues. whichqs tells which
1202 * of the 32 queues qs have processes in them. Setrunqueue puts processes
1203 * into queues, remrunqueue removes them from queues. The running process is
1204 * on no queue, other processes are on a queue related to p->p_priority,
1205 * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1206 * available queues.
1207 */
1208 #ifdef RQDEBUG
1209 static void
1210 checkrunqueue(int whichq, struct lwp *l)
1211 {
1212 const struct prochd * const rq = &sched_qs[whichq];
1213 struct lwp *l2;
1214 int found = 0;
1215 int die = 0;
1216 int empty = 1;
1217 for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
1218 if (l2->l_stat != LSRUN) {
1219 printf("checkrunqueue[%d]: lwp %p state (%d) "
1220 " != LSRUN\n", whichq, l2, l2->l_stat);
1221 }
1222 if (l2->l_back->l_forw != l2) {
1223 printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
1224 "corrupt %p\n", whichq, l2, l2->l_back,
1225 l2->l_back->l_forw);
1226 die = 1;
1227 }
1228 if (l2->l_forw->l_back != l2) {
1229 printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
1230 "corrupt %p\n", whichq, l2, l2->l_forw,
1231 l2->l_forw->l_back);
1232 die = 1;
1233 }
1234 if (l2 == l)
1235 found = 1;
1236 empty = 0;
1237 }
1238 if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
1239 printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
1240 whichq, rq);
1241 die = 1;
1242 } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
1243 printf("checkrunqueue[%d]: bit clear for non-empty "
1244 "run-queue %p\n", whichq, rq);
1245 die = 1;
1246 }
1247 if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
1248 printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
1249 whichq, l);
1250 die = 1;
1251 }
1252 if (l != NULL && empty) {
1253 printf("checkrunqueue[%d]: empty run-queue %p with "
1254 "active lwp %p\n", whichq, rq, l);
1255 die = 1;
1256 }
1257 if (l != NULL && !found) {
1258 printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
1259 whichq, l, rq);
1260 die = 1;
1261 }
1262 if (die)
1263 panic("checkrunqueue: inconsistency found");
1264 }
1265 #endif /* RQDEBUG */
1266
1267 void
1268 setrunqueue(struct lwp *l)
1269 {
1270 struct prochd *rq;
1271 struct lwp *prev;
1272 const int whichq = lwp_eprio(l) / PPQ;
1273
1274 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1275
1276 #ifdef RQDEBUG
1277 checkrunqueue(whichq, NULL);
1278 #endif
1279 #ifdef DIAGNOSTIC
1280 if (l->l_back != NULL || l->l_stat != LSRUN)
1281 panic("setrunqueue");
1282 #endif
1283 sched_whichqs |= RQMASK(whichq);
1284 rq = &sched_qs[whichq];
1285 prev = rq->ph_rlink;
1286 l->l_forw = (struct lwp *)rq;
1287 rq->ph_rlink = l;
1288 prev->l_forw = l;
1289 l->l_back = prev;
1290 #ifdef RQDEBUG
1291 checkrunqueue(whichq, l);
1292 #endif
1293 }
1294
1295 /*
1296 * XXXSMP When LWP dispatch (cpu_switch()) is changed to use remrunqueue(),
1297 * drop of the effective priority level from kernel to user needs to be
1298 * moved here from userret(). The assignment in userret() is currently
1299 * done unlocked.
1300 */
1301 void
1302 remrunqueue(struct lwp *l)
1303 {
1304 struct lwp *prev, *next;
1305 const int whichq = lwp_eprio(l) / PPQ;
1306
1307 LOCK_ASSERT(lwp_locked(l, &sched_mutex));
1308
1309 #ifdef RQDEBUG
1310 checkrunqueue(whichq, l);
1311 #endif
1312
1313 #if defined(DIAGNOSTIC)
1314 if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
1315 /* Shouldn't happen - interrupts disabled. */
1316 panic("remrunqueue: bit %d not set", whichq);
1317 }
1318 #endif
1319 prev = l->l_back;
1320 l->l_back = NULL;
1321 next = l->l_forw;
1322 prev->l_forw = next;
1323 next->l_back = prev;
1324 if (prev == next)
1325 sched_whichqs &= ~RQMASK(whichq);
1326 #ifdef RQDEBUG
1327 checkrunqueue(whichq, NULL);
1328 #endif
1329 }
1330
1331 #undef RQMASK
1332 #endif /* !defined(__HAVE_MD_RUNQUEUE) */
1333