kern_synch.c revision 1.192.2.4 1 /* $NetBSD: kern_synch.c,v 1.192.2.4 2007/10/04 15:44:52 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.192.2.4 2007/10/04 15:44:52 joerg Exp $");
79
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100 #include <sys/evcnt.h>
101
102 #include <uvm/uvm_extern.h>
103
104 callout_t sched_pstats_ch;
105 unsigned int sched_pstats_ticks;
106
107 kcondvar_t lbolt; /* once a second sleep address */
108
109 static void sched_unsleep(struct lwp *);
110 static void sched_changepri(struct lwp *, pri_t);
111 static void sched_lendpri(struct lwp *, pri_t);
112
113 syncobj_t sleep_syncobj = {
114 SOBJ_SLEEPQ_SORTED,
115 sleepq_unsleep,
116 sleepq_changepri,
117 sleepq_lendpri,
118 syncobj_noowner,
119 };
120
121 syncobj_t sched_syncobj = {
122 SOBJ_SLEEPQ_SORTED,
123 sched_unsleep,
124 sched_changepri,
125 sched_lendpri,
126 syncobj_noowner,
127 };
128
129 /*
130 * During autoconfiguration or after a panic, a sleep will simply lower the
131 * priority briefly to allow interrupts, then return. The priority to be
132 * used (safepri) is machine-dependent, thus this value is initialized and
133 * maintained in the machine-dependent layers. This priority will typically
134 * be 0, or the lowest priority that is safe for use on the interrupt stack;
135 * it can be made higher to block network software interrupts after panics.
136 */
137 int safepri;
138
139 /*
140 * OBSOLETE INTERFACE
141 *
142 * General sleep call. Suspends the current process until a wakeup is
143 * performed on the specified identifier. The process will then be made
144 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
145 * means no timeout). If pri includes PCATCH flag, signals are checked
146 * before and after sleeping, else signals are not checked. Returns 0 if
147 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
148 * signal needs to be delivered, ERESTART is returned if the current system
149 * call should be restarted if possible, and EINTR is returned if the system
150 * call should be interrupted by the signal (return EINTR).
151 *
152 * The interlock is held until we are on a sleep queue. The interlock will
153 * be locked before returning back to the caller unless the PNORELOCK flag
154 * is specified, in which case the interlock will always be unlocked upon
155 * return.
156 */
157 int
158 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
159 volatile struct simplelock *interlock)
160 {
161 struct lwp *l = curlwp;
162 sleepq_t *sq;
163 int error;
164
165 if (sleepq_dontsleep(l)) {
166 (void)sleepq_abort(NULL, 0);
167 if ((priority & PNORELOCK) != 0)
168 simple_unlock(interlock);
169 return 0;
170 }
171
172 sq = sleeptab_lookup(&sleeptab, ident);
173 sleepq_enter(sq, l);
174 sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
175
176 if (interlock != NULL) {
177 LOCK_ASSERT(simple_lock_held(interlock));
178 simple_unlock(interlock);
179 }
180
181 error = sleepq_block(timo, priority & PCATCH);
182
183 if (interlock != NULL && (priority & PNORELOCK) == 0)
184 simple_lock(interlock);
185
186 return error;
187 }
188
189 int
190 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
191 kmutex_t *mtx)
192 {
193 struct lwp *l = curlwp;
194 sleepq_t *sq;
195 int error;
196
197 if (sleepq_dontsleep(l)) {
198 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
199 return 0;
200 }
201
202 sq = sleeptab_lookup(&sleeptab, ident);
203 sleepq_enter(sq, l);
204 sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
205 mutex_exit(mtx);
206 error = sleepq_block(timo, priority & PCATCH);
207
208 if ((priority & PNORELOCK) == 0)
209 mutex_enter(mtx);
210
211 return error;
212 }
213
214 /*
215 * General sleep call for situations where a wake-up is not expected.
216 */
217 int
218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
219 {
220 struct lwp *l = curlwp;
221 sleepq_t *sq;
222 int error;
223
224 if (sleepq_dontsleep(l))
225 return sleepq_abort(NULL, 0);
226
227 if (mtx != NULL)
228 mutex_exit(mtx);
229 sq = sleeptab_lookup(&sleeptab, l);
230 sleepq_enter(sq, l);
231 sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
232 error = sleepq_block(timo, intr);
233 if (mtx != NULL)
234 mutex_enter(mtx);
235
236 return error;
237 }
238
239 /*
240 * OBSOLETE INTERFACE
241 *
242 * Make all processes sleeping on the specified identifier runnable.
243 */
244 void
245 wakeup(wchan_t ident)
246 {
247 sleepq_t *sq;
248
249 if (cold)
250 return;
251
252 sq = sleeptab_lookup(&sleeptab, ident);
253 sleepq_wake(sq, ident, (u_int)-1);
254 }
255
256 /*
257 * OBSOLETE INTERFACE
258 *
259 * Make the highest priority process first in line on the specified
260 * identifier runnable.
261 */
262 void
263 wakeup_one(wchan_t ident)
264 {
265 sleepq_t *sq;
266
267 if (cold)
268 return;
269
270 sq = sleeptab_lookup(&sleeptab, ident);
271 sleepq_wake(sq, ident, 1);
272 }
273
274
275 /*
276 * General yield call. Puts the current process back on its run queue and
277 * performs a voluntary context switch. Should only be called when the
278 * current process explicitly requests it (eg sched_yield(2)).
279 */
280 void
281 yield(void)
282 {
283 struct lwp *l = curlwp;
284
285 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
286 lwp_lock(l);
287 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
288 KASSERT(l->l_stat == LSONPROC);
289 /* XXX Only do this for timeshared threads. */
290 l->l_priority = MAXPRI;
291 (void)mi_switch(l);
292 KERNEL_LOCK(l->l_biglocks, l);
293 }
294
295 /*
296 * General preemption call. Puts the current process back on its run queue
297 * and performs an involuntary context switch.
298 */
299 void
300 preempt(void)
301 {
302 struct lwp *l = curlwp;
303
304 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
305 lwp_lock(l);
306 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
307 KASSERT(l->l_stat == LSONPROC);
308 l->l_priority = l->l_usrpri;
309 l->l_nivcsw++;
310 (void)mi_switch(l);
311 KERNEL_LOCK(l->l_biglocks, l);
312 }
313
314 /*
315 * Compute the amount of time during which the current lwp was running.
316 *
317 * - update l_rtime unless it's an idle lwp.
318 * - update spc_runtime for the next lwp.
319 */
320
321 static inline void
322 updatertime(struct lwp *l, struct schedstate_percpu *spc)
323 {
324 struct timeval tv;
325 long s, u;
326
327 if ((l->l_flag & LW_IDLE) != 0) {
328 microtime(&spc->spc_runtime);
329 return;
330 }
331
332 microtime(&tv);
333 u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
334 s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
335 if (u < 0) {
336 u += 1000000;
337 s--;
338 } else if (u >= 1000000) {
339 u -= 1000000;
340 s++;
341 }
342 l->l_rtime.tv_usec = u;
343 l->l_rtime.tv_sec = s;
344
345 spc->spc_runtime = tv;
346 }
347
348 /*
349 * The machine independent parts of context switch.
350 *
351 * Returns 1 if another LWP was actually run.
352 */
353 int
354 mi_switch(struct lwp *l)
355 {
356 struct schedstate_percpu *spc;
357 struct lwp *newl;
358 int retval, oldspl;
359 struct cpu_info *ci;
360
361 KASSERT(lwp_locked(l, NULL));
362 LOCKDEBUG_BARRIER(l->l_mutex, 1);
363
364 #ifdef KSTACK_CHECK_MAGIC
365 kstack_check_magic(l);
366 #endif
367
368 /*
369 * It's safe to read the per CPU schedstate unlocked here, as all we
370 * are after is the run time and that's guarenteed to have been last
371 * updated by this CPU.
372 */
373 ci = l->l_cpu;
374 KDASSERT(ci == curcpu());
375
376 /*
377 * Process is about to yield the CPU; clear the appropriate
378 * scheduling flags.
379 */
380 spc = &ci->ci_schedstate;
381 newl = NULL;
382
383 if (l->l_switchto != NULL) {
384 newl = l->l_switchto;
385 l->l_switchto = NULL;
386 }
387
388 /* Count time spent in current system call */
389 SYSCALL_TIME_SLEEP(l);
390
391 /*
392 * XXXSMP If we are using h/w performance counters,
393 * save context.
394 */
395 #if PERFCTRS
396 if (PMC_ENABLED(l->l_proc)) {
397 pmc_save_context(l->l_proc);
398 }
399 #endif
400 updatertime(l, spc);
401
402 /*
403 * If on the CPU and we have gotten this far, then we must yield.
404 */
405 mutex_spin_enter(spc->spc_mutex);
406 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
407 KASSERT(l->l_stat != LSRUN);
408 if (l->l_stat == LSONPROC) {
409 KASSERT(lwp_locked(l, &spc->spc_lwplock));
410 if ((l->l_flag & LW_IDLE) == 0) {
411 l->l_stat = LSRUN;
412 lwp_setlock(l, spc->spc_mutex);
413 sched_enqueue(l, true);
414 } else
415 l->l_stat = LSIDL;
416 }
417
418 /*
419 * Let sched_nextlwp() select the LWP to run the CPU next.
420 * If no LWP is runnable, switch to the idle LWP.
421 */
422 if (newl == NULL) {
423 newl = sched_nextlwp();
424 if (newl != NULL) {
425 sched_dequeue(newl);
426 KASSERT(lwp_locked(newl, spc->spc_mutex));
427 newl->l_stat = LSONPROC;
428 newl->l_cpu = ci;
429 newl->l_flag |= LW_RUNNING;
430 lwp_setlock(newl, &spc->spc_lwplock);
431 } else {
432 newl = ci->ci_data.cpu_idlelwp;
433 newl->l_stat = LSONPROC;
434 newl->l_flag |= LW_RUNNING;
435 }
436 ci->ci_want_resched = 0;
437 }
438
439 spc->spc_curpriority = newl->l_usrpri;
440 /* XXX The following may be done unlocked if newl != NULL above. */
441 newl->l_priority = newl->l_usrpri;
442
443 if (l != newl) {
444 struct lwp *prevlwp;
445
446 /*
447 * If the old LWP has been moved to a run queue above,
448 * drop the general purpose LWP lock: it's now locked
449 * by the scheduler lock.
450 *
451 * Otherwise, drop the scheduler lock. We're done with
452 * the run queues for now.
453 */
454 if (l->l_mutex == spc->spc_mutex) {
455 mutex_spin_exit(&spc->spc_lwplock);
456 } else {
457 mutex_spin_exit(spc->spc_mutex);
458 }
459
460 /* Unlocked, but for statistics only. */
461 uvmexp.swtch++;
462
463 /* Save old VM context. */
464 pmap_deactivate(l);
465
466 /* Switch to the new LWP.. */
467 l->l_ncsw++;
468 l->l_flag &= ~LW_RUNNING;
469 oldspl = MUTEX_SPIN_OLDSPL(ci);
470 prevlwp = cpu_switchto(l, newl);
471
472 /*
473 * .. we have switched away and are now back so we must
474 * be the new curlwp. prevlwp is who we replaced.
475 */
476 if (prevlwp != NULL) {
477 curcpu()->ci_mtx_oldspl = oldspl;
478 lwp_unlock(prevlwp);
479 } else {
480 splx(oldspl);
481 }
482
483 /* Restore VM context. */
484 pmap_activate(l);
485 retval = 1;
486 } else {
487 /* Nothing to do - just unlock and return. */
488 mutex_spin_exit(spc->spc_mutex);
489 lwp_unlock(l);
490 retval = 0;
491 }
492
493 KASSERT(l == curlwp);
494 KASSERT(l->l_stat == LSONPROC);
495
496 /*
497 * XXXSMP If we are using h/w performance counters, restore context.
498 */
499 #if PERFCTRS
500 if (PMC_ENABLED(l->l_proc)) {
501 pmc_restore_context(l->l_proc);
502 }
503 #endif
504
505 /*
506 * We're running again; record our new start time. We might
507 * be running on a new CPU now, so don't use the cached
508 * schedstate_percpu pointer.
509 */
510 SYSCALL_TIME_WAKEUP(l);
511 KASSERT(curlwp == l);
512 KDASSERT(l->l_cpu == curcpu());
513 LOCKDEBUG_BARRIER(NULL, 1);
514
515 return retval;
516 }
517
518 /*
519 * Change process state to be runnable, placing it on the run queue if it is
520 * in memory, and awakening the swapper if it isn't in memory.
521 *
522 * Call with the process and LWP locked. Will return with the LWP unlocked.
523 */
524 void
525 setrunnable(struct lwp *l)
526 {
527 struct proc *p = l->l_proc;
528 sigset_t *ss;
529
530 KASSERT((l->l_flag & LW_IDLE) == 0);
531 KASSERT(mutex_owned(&p->p_smutex));
532 KASSERT(lwp_locked(l, NULL));
533
534 switch (l->l_stat) {
535 case LSSTOP:
536 /*
537 * If we're being traced (possibly because someone attached us
538 * while we were stopped), check for a signal from the debugger.
539 */
540 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
541 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
542 ss = &l->l_sigpend.sp_set;
543 else
544 ss = &p->p_sigpend.sp_set;
545 sigaddset(ss, p->p_xstat);
546 signotify(l);
547 }
548 p->p_nrlwps++;
549 break;
550 case LSSUSPENDED:
551 l->l_flag &= ~LW_WSUSPEND;
552 p->p_nrlwps++;
553 cv_broadcast(&p->p_lwpcv);
554 break;
555 case LSSLEEP:
556 KASSERT(l->l_wchan != NULL);
557 break;
558 default:
559 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
560 }
561
562 /*
563 * If the LWP was sleeping interruptably, then it's OK to start it
564 * again. If not, mark it as still sleeping.
565 */
566 if (l->l_wchan != NULL) {
567 l->l_stat = LSSLEEP;
568 /* lwp_unsleep() will release the lock. */
569 lwp_unsleep(l);
570 return;
571 }
572
573 /*
574 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
575 * about to call mi_switch(), in which case it will yield.
576 */
577 if ((l->l_flag & LW_RUNNING) != 0) {
578 l->l_stat = LSONPROC;
579 l->l_slptime = 0;
580 lwp_unlock(l);
581 return;
582 }
583
584 /*
585 * Set the LWP runnable. If it's swapped out, we need to wake the swapper
586 * to bring it back in. Otherwise, enter it into a run queue.
587 */
588 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
589 spc_lock(l->l_cpu);
590 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
591 }
592
593 sched_setrunnable(l);
594 l->l_stat = LSRUN;
595 l->l_slptime = 0;
596
597 if (l->l_flag & LW_INMEM) {
598 sched_enqueue(l, false);
599 resched_cpu(l);
600 lwp_unlock(l);
601 } else {
602 lwp_unlock(l);
603 uvm_kick_scheduler();
604 }
605 }
606
607 /*
608 * suspendsched:
609 *
610 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
611 */
612 void
613 suspendsched(void)
614 {
615 CPU_INFO_ITERATOR cii;
616 struct cpu_info *ci;
617 struct lwp *l;
618 struct proc *p;
619
620 /*
621 * We do this by process in order not to violate the locking rules.
622 */
623 mutex_enter(&proclist_mutex);
624 PROCLIST_FOREACH(p, &allproc) {
625 mutex_enter(&p->p_smutex);
626
627 if ((p->p_flag & PK_SYSTEM) != 0) {
628 mutex_exit(&p->p_smutex);
629 continue;
630 }
631
632 p->p_stat = SSTOP;
633
634 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
635 if (l == curlwp)
636 continue;
637
638 lwp_lock(l);
639
640 /*
641 * Set L_WREBOOT so that the LWP will suspend itself
642 * when it tries to return to user mode. We want to
643 * try and get to get as many LWPs as possible to
644 * the user / kernel boundary, so that they will
645 * release any locks that they hold.
646 */
647 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
648
649 if (l->l_stat == LSSLEEP &&
650 (l->l_flag & LW_SINTR) != 0) {
651 /* setrunnable() will release the lock. */
652 setrunnable(l);
653 continue;
654 }
655
656 lwp_unlock(l);
657 }
658
659 mutex_exit(&p->p_smutex);
660 }
661 mutex_exit(&proclist_mutex);
662
663 /*
664 * Kick all CPUs to make them preempt any LWPs running in user mode.
665 * They'll trap into the kernel and suspend themselves in userret().
666 */
667 for (CPU_INFO_FOREACH(cii, ci))
668 cpu_need_resched(ci, 0);
669 }
670
671 /*
672 * sched_kpri:
673 *
674 * Scale a priority level to a kernel priority level, usually
675 * for an LWP that is about to sleep.
676 */
677 pri_t
678 sched_kpri(struct lwp *l)
679 {
680 /*
681 * Scale user priorities (127 -> 50) up to kernel priorities
682 * in the range (49 -> 8). Reserve the top 8 kernel priorities
683 * for high priority kthreads. Kernel priorities passed in
684 * are left "as is". XXX This is somewhat arbitrary.
685 */
686 static const uint8_t kpri_tab[] = {
687 0, 1, 2, 3, 4, 5, 6, 7,
688 8, 9, 10, 11, 12, 13, 14, 15,
689 16, 17, 18, 19, 20, 21, 22, 23,
690 24, 25, 26, 27, 28, 29, 30, 31,
691 32, 33, 34, 35, 36, 37, 38, 39,
692 40, 41, 42, 43, 44, 45, 46, 47,
693 48, 49, 8, 8, 9, 9, 10, 10,
694 11, 11, 12, 12, 13, 14, 14, 15,
695 15, 16, 16, 17, 17, 18, 18, 19,
696 20, 20, 21, 21, 22, 22, 23, 23,
697 24, 24, 25, 26, 26, 27, 27, 28,
698 28, 29, 29, 30, 30, 31, 32, 32,
699 33, 33, 34, 34, 35, 35, 36, 36,
700 37, 38, 38, 39, 39, 40, 40, 41,
701 41, 42, 42, 43, 44, 44, 45, 45,
702 46, 46, 47, 47, 48, 48, 49, 49,
703 };
704
705 return (pri_t)kpri_tab[l->l_usrpri];
706 }
707
708 /*
709 * sched_unsleep:
710 *
711 * The is called when the LWP has not been awoken normally but instead
712 * interrupted: for example, if the sleep timed out. Because of this,
713 * it's not a valid action for running or idle LWPs.
714 */
715 static void
716 sched_unsleep(struct lwp *l)
717 {
718
719 lwp_unlock(l);
720 panic("sched_unsleep");
721 }
722
723 inline void
724 resched_cpu(struct lwp *l)
725 {
726 struct cpu_info *ci;
727 const pri_t pri = lwp_eprio(l);
728
729 /*
730 * XXXSMP
731 * Since l->l_cpu persists across a context switch,
732 * this gives us *very weak* processor affinity, in
733 * that we notify the CPU on which the process last
734 * ran that it should try to switch.
735 *
736 * This does not guarantee that the process will run on
737 * that processor next, because another processor might
738 * grab it the next time it performs a context switch.
739 *
740 * This also does not handle the case where its last
741 * CPU is running a higher-priority process, but every
742 * other CPU is running a lower-priority process. There
743 * are ways to handle this situation, but they're not
744 * currently very pretty, and we also need to weigh the
745 * cost of moving a process from one CPU to another.
746 */
747 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
748 if (pri < ci->ci_schedstate.spc_curpriority)
749 cpu_need_resched(ci, 0);
750 }
751
752 static void
753 sched_changepri(struct lwp *l, pri_t pri)
754 {
755
756 KASSERT(lwp_locked(l, NULL));
757
758 l->l_usrpri = pri;
759 if (l->l_priority < PUSER)
760 return;
761
762 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
763 l->l_priority = pri;
764 return;
765 }
766
767 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
768
769 sched_dequeue(l);
770 l->l_priority = pri;
771 sched_enqueue(l, false);
772 resched_cpu(l);
773 }
774
775 static void
776 sched_lendpri(struct lwp *l, pri_t pri)
777 {
778
779 KASSERT(lwp_locked(l, NULL));
780
781 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
782 l->l_inheritedprio = pri;
783 return;
784 }
785
786 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
787
788 sched_dequeue(l);
789 l->l_inheritedprio = pri;
790 sched_enqueue(l, false);
791 resched_cpu(l);
792 }
793
794 struct lwp *
795 syncobj_noowner(wchan_t wchan)
796 {
797
798 return NULL;
799 }
800
801
802 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
803 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
804
805 /*
806 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
807 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
808 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
809 *
810 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
811 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
812 *
813 * If you dont want to bother with the faster/more-accurate formula, you
814 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
815 * (more general) method of calculating the %age of CPU used by a process.
816 */
817 #define CCPU_SHIFT (FSHIFT + 1)
818
819 /*
820 * sched_pstats:
821 *
822 * Update process statistics and check CPU resource allocation.
823 * Call scheduler-specific hook to eventually adjust process/LWP
824 * priorities.
825 *
826 * XXXSMP This needs to be reorganised in order to reduce the locking
827 * burden.
828 */
829 /* ARGSUSED */
830 void
831 sched_pstats(void *arg)
832 {
833 struct rlimit *rlim;
834 struct lwp *l;
835 struct proc *p;
836 int minslp, sig, clkhz;
837 long runtm;
838
839 sched_pstats_ticks++;
840
841 mutex_enter(&proclist_mutex);
842 PROCLIST_FOREACH(p, &allproc) {
843 /*
844 * Increment time in/out of memory and sleep time (if
845 * sleeping). We ignore overflow; with 16-bit int's
846 * (remember them?) overflow takes 45 days.
847 */
848 minslp = 2;
849 mutex_enter(&p->p_smutex);
850 mutex_spin_enter(&p->p_stmutex);
851 runtm = p->p_rtime.tv_sec;
852 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
853 if ((l->l_flag & LW_IDLE) != 0)
854 continue;
855 lwp_lock(l);
856 runtm += l->l_rtime.tv_sec;
857 l->l_swtime++;
858 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
859 l->l_stat == LSSUSPENDED) {
860 l->l_slptime++;
861 minslp = min(minslp, l->l_slptime);
862 } else
863 minslp = 0;
864 lwp_unlock(l);
865
866 /*
867 * p_pctcpu is only for ps.
868 */
869 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
870 if (l->l_slptime < 1) {
871 clkhz = stathz != 0 ? stathz : hz;
872 #if (FSHIFT >= CCPU_SHIFT)
873 l->l_pctcpu += (clkhz == 100) ?
874 ((fixpt_t)l->l_cpticks) <<
875 (FSHIFT - CCPU_SHIFT) :
876 100 * (((fixpt_t) p->p_cpticks)
877 << (FSHIFT - CCPU_SHIFT)) / clkhz;
878 #else
879 l->l_pctcpu += ((FSCALE - ccpu) *
880 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
881 #endif
882 l->l_cpticks = 0;
883 }
884 }
885 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
886 sched_pstats_hook(p, minslp);
887 mutex_spin_exit(&p->p_stmutex);
888
889 /*
890 * Check if the process exceeds its CPU resource allocation.
891 * If over max, kill it.
892 */
893 rlim = &p->p_rlimit[RLIMIT_CPU];
894 sig = 0;
895 if (runtm >= rlim->rlim_cur) {
896 if (runtm >= rlim->rlim_max)
897 sig = SIGKILL;
898 else {
899 sig = SIGXCPU;
900 if (rlim->rlim_cur < rlim->rlim_max)
901 rlim->rlim_cur += 5;
902 }
903 }
904 mutex_exit(&p->p_smutex);
905 if (sig) {
906 psignal(p, sig);
907 }
908 }
909 mutex_exit(&proclist_mutex);
910 uvm_meter();
911 cv_wakeup(&lbolt);
912 callout_schedule(&sched_pstats_ch, hz);
913 }
914
915 void
916 sched_init(void)
917 {
918
919 cv_init(&lbolt, "lbolt");
920 callout_init(&sched_pstats_ch, 0);
921 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
922 sched_setup();
923 sched_pstats(NULL);
924 }
925