Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.193
      1 /*	$NetBSD: kern_synch.c,v 1.193 2007/08/04 11:03:01 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.193 2007/08/04 11:03:01 ad Exp $");
     79 
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #if defined(PERFCTRS)
     92 #include <sys/pmc.h>
     93 #endif
     94 #include <sys/cpu.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/syscall_stats.h>
     98 #include <sys/sleepq.h>
     99 #include <sys/lockdebug.h>
    100 #include <sys/evcnt.h>
    101 
    102 #include <uvm/uvm_extern.h>
    103 
    104 callout_t sched_pstats_ch;
    105 unsigned int sched_pstats_ticks;
    106 
    107 kcondvar_t	lbolt;			/* once a second sleep address */
    108 
    109 static void	sched_unsleep(struct lwp *);
    110 static void	sched_changepri(struct lwp *, pri_t);
    111 static void	sched_lendpri(struct lwp *, pri_t);
    112 
    113 syncobj_t sleep_syncobj = {
    114 	SOBJ_SLEEPQ_SORTED,
    115 	sleepq_unsleep,
    116 	sleepq_changepri,
    117 	sleepq_lendpri,
    118 	syncobj_noowner,
    119 };
    120 
    121 syncobj_t sched_syncobj = {
    122 	SOBJ_SLEEPQ_SORTED,
    123 	sched_unsleep,
    124 	sched_changepri,
    125 	sched_lendpri,
    126 	syncobj_noowner,
    127 };
    128 
    129 /*
    130  * During autoconfiguration or after a panic, a sleep will simply lower the
    131  * priority briefly to allow interrupts, then return.  The priority to be
    132  * used (safepri) is machine-dependent, thus this value is initialized and
    133  * maintained in the machine-dependent layers.  This priority will typically
    134  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    135  * it can be made higher to block network software interrupts after panics.
    136  */
    137 int	safepri;
    138 
    139 /*
    140  * OBSOLETE INTERFACE
    141  *
    142  * General sleep call.  Suspends the current process until a wakeup is
    143  * performed on the specified identifier.  The process will then be made
    144  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    145  * means no timeout).  If pri includes PCATCH flag, signals are checked
    146  * before and after sleeping, else signals are not checked.  Returns 0 if
    147  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    148  * signal needs to be delivered, ERESTART is returned if the current system
    149  * call should be restarted if possible, and EINTR is returned if the system
    150  * call should be interrupted by the signal (return EINTR).
    151  *
    152  * The interlock is held until we are on a sleep queue. The interlock will
    153  * be locked before returning back to the caller unless the PNORELOCK flag
    154  * is specified, in which case the interlock will always be unlocked upon
    155  * return.
    156  */
    157 int
    158 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    159 	volatile struct simplelock *interlock)
    160 {
    161 	struct lwp *l = curlwp;
    162 	sleepq_t *sq;
    163 	int error;
    164 
    165 	if (sleepq_dontsleep(l)) {
    166 		(void)sleepq_abort(NULL, 0);
    167 		if ((priority & PNORELOCK) != 0)
    168 			simple_unlock(interlock);
    169 		return 0;
    170 	}
    171 
    172 	sq = sleeptab_lookup(&sleeptab, ident);
    173 	sleepq_enter(sq, l);
    174 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    175 
    176 	if (interlock != NULL) {
    177 		LOCK_ASSERT(simple_lock_held(interlock));
    178 		simple_unlock(interlock);
    179 	}
    180 
    181 	error = sleepq_block(timo, priority & PCATCH);
    182 
    183 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    184 		simple_lock(interlock);
    185 
    186 	return error;
    187 }
    188 
    189 int
    190 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    191 	kmutex_t *mtx)
    192 {
    193 	struct lwp *l = curlwp;
    194 	sleepq_t *sq;
    195 	int error;
    196 
    197 	if (sleepq_dontsleep(l)) {
    198 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    199 		return 0;
    200 	}
    201 
    202 	sq = sleeptab_lookup(&sleeptab, ident);
    203 	sleepq_enter(sq, l);
    204 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    205 	mutex_exit(mtx);
    206 	error = sleepq_block(timo, priority & PCATCH);
    207 
    208 	if ((priority & PNORELOCK) == 0)
    209 		mutex_enter(mtx);
    210 
    211 	return error;
    212 }
    213 
    214 /*
    215  * General sleep call for situations where a wake-up is not expected.
    216  */
    217 int
    218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    219 {
    220 	struct lwp *l = curlwp;
    221 	sleepq_t *sq;
    222 	int error;
    223 
    224 	if (sleepq_dontsleep(l))
    225 		return sleepq_abort(NULL, 0);
    226 
    227 	if (mtx != NULL)
    228 		mutex_exit(mtx);
    229 	sq = sleeptab_lookup(&sleeptab, l);
    230 	sleepq_enter(sq, l);
    231 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
    232 	error = sleepq_block(timo, intr);
    233 	if (mtx != NULL)
    234 		mutex_enter(mtx);
    235 
    236 	return error;
    237 }
    238 
    239 /*
    240  * OBSOLETE INTERFACE
    241  *
    242  * Make all processes sleeping on the specified identifier runnable.
    243  */
    244 void
    245 wakeup(wchan_t ident)
    246 {
    247 	sleepq_t *sq;
    248 
    249 	if (cold)
    250 		return;
    251 
    252 	sq = sleeptab_lookup(&sleeptab, ident);
    253 	sleepq_wake(sq, ident, (u_int)-1);
    254 }
    255 
    256 /*
    257  * OBSOLETE INTERFACE
    258  *
    259  * Make the highest priority process first in line on the specified
    260  * identifier runnable.
    261  */
    262 void
    263 wakeup_one(wchan_t ident)
    264 {
    265 	sleepq_t *sq;
    266 
    267 	if (cold)
    268 		return;
    269 
    270 	sq = sleeptab_lookup(&sleeptab, ident);
    271 	sleepq_wake(sq, ident, 1);
    272 }
    273 
    274 
    275 /*
    276  * General yield call.  Puts the current process back on its run queue and
    277  * performs a voluntary context switch.  Should only be called when the
    278  * current process explicitly requests it (eg sched_yield(2) in compat code).
    279  */
    280 void
    281 yield(void)
    282 {
    283 	struct lwp *l = curlwp;
    284 
    285 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    286 	lwp_lock(l);
    287 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    288 	KASSERT(l->l_stat == LSONPROC);
    289 	l->l_priority = l->l_usrpri;
    290 	(void)mi_switch(l);
    291 	KERNEL_LOCK(l->l_biglocks, l);
    292 }
    293 
    294 /*
    295  * General preemption call.  Puts the current process back on its run queue
    296  * and performs an involuntary context switch.
    297  */
    298 void
    299 preempt(void)
    300 {
    301 	struct lwp *l = curlwp;
    302 
    303 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    304 	lwp_lock(l);
    305 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    306 	KASSERT(l->l_stat == LSONPROC);
    307 	l->l_priority = l->l_usrpri;
    308 	l->l_nivcsw++;
    309 	(void)mi_switch(l);
    310 	KERNEL_LOCK(l->l_biglocks, l);
    311 }
    312 
    313 /*
    314  * Compute the amount of time during which the current lwp was running.
    315  *
    316  * - update l_rtime unless it's an idle lwp.
    317  * - update spc_runtime for the next lwp.
    318  */
    319 
    320 static inline void
    321 updatertime(struct lwp *l, struct schedstate_percpu *spc)
    322 {
    323 	struct timeval tv;
    324 	long s, u;
    325 
    326 	if ((l->l_flag & LW_IDLE) != 0) {
    327 		microtime(&spc->spc_runtime);
    328 		return;
    329 	}
    330 
    331 	microtime(&tv);
    332 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    333 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    334 	if (u < 0) {
    335 		u += 1000000;
    336 		s--;
    337 	} else if (u >= 1000000) {
    338 		u -= 1000000;
    339 		s++;
    340 	}
    341 	l->l_rtime.tv_usec = u;
    342 	l->l_rtime.tv_sec = s;
    343 
    344 	spc->spc_runtime = tv;
    345 }
    346 
    347 /*
    348  * The machine independent parts of context switch.
    349  *
    350  * Returns 1 if another LWP was actually run.
    351  */
    352 int
    353 mi_switch(struct lwp *l)
    354 {
    355 	struct schedstate_percpu *spc;
    356 	struct lwp *newl;
    357 	int retval, oldspl;
    358 
    359 	KASSERT(lwp_locked(l, NULL));
    360 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    361 
    362 #ifdef KSTACK_CHECK_MAGIC
    363 	kstack_check_magic(l);
    364 #endif
    365 
    366 	/*
    367 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    368 	 * are after is the run time and that's guarenteed to have been last
    369 	 * updated by this CPU.
    370 	 */
    371 	KDASSERT(l->l_cpu == curcpu());
    372 
    373 	/*
    374 	 * Process is about to yield the CPU; clear the appropriate
    375 	 * scheduling flags.
    376 	 */
    377 	spc = &l->l_cpu->ci_schedstate;
    378 	newl = NULL;
    379 
    380 	if (l->l_switchto != NULL) {
    381 		newl = l->l_switchto;
    382 		l->l_switchto = NULL;
    383 	}
    384 
    385 	/* Count time spent in current system call */
    386 	SYSCALL_TIME_SLEEP(l);
    387 
    388 	/*
    389 	 * XXXSMP If we are using h/w performance counters,
    390 	 * save context.
    391 	 */
    392 #if PERFCTRS
    393 	if (PMC_ENABLED(l->l_proc)) {
    394 		pmc_save_context(l->l_proc);
    395 	}
    396 #endif
    397 	updatertime(l, spc);
    398 
    399 	/*
    400 	 * If on the CPU and we have gotten this far, then we must yield.
    401 	 */
    402 	mutex_spin_enter(spc->spc_mutex);
    403 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    404 	KASSERT(l->l_stat != LSRUN);
    405 	if (l->l_stat == LSONPROC) {
    406 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    407 		if ((l->l_flag & LW_IDLE) == 0) {
    408 			l->l_stat = LSRUN;
    409 			lwp_setlock(l, spc->spc_mutex);
    410 			sched_enqueue(l, true);
    411 		} else
    412 			l->l_stat = LSIDL;
    413 	}
    414 
    415 	/*
    416 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    417 	 * If no LWP is runnable, switch to the idle LWP.
    418 	 */
    419 	if (newl == NULL) {
    420 		newl = sched_nextlwp();
    421 		if (newl != NULL) {
    422 			sched_dequeue(newl);
    423 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    424 			newl->l_stat = LSONPROC;
    425 			newl->l_cpu = l->l_cpu;
    426 			newl->l_flag |= LW_RUNNING;
    427 			lwp_setlock(newl, &spc->spc_lwplock);
    428 		} else {
    429 			newl = l->l_cpu->ci_data.cpu_idlelwp;
    430 			newl->l_stat = LSONPROC;
    431 			newl->l_flag |= LW_RUNNING;
    432 		}
    433 		spc->spc_curpriority = newl->l_usrpri;
    434 		newl->l_priority = newl->l_usrpri;
    435 		cpu_did_resched();
    436 	}
    437 
    438 	if (l != newl) {
    439 		struct lwp *prevlwp;
    440 
    441 		/*
    442 		 * If the old LWP has been moved to a run queue above,
    443 		 * drop the general purpose LWP lock: it's now locked
    444 		 * by the scheduler lock.
    445 		 *
    446 		 * Otherwise, drop the scheduler lock.  We're done with
    447 		 * the run queues for now.
    448 		 */
    449 		if (l->l_mutex == spc->spc_mutex) {
    450 			mutex_spin_exit(&spc->spc_lwplock);
    451 		} else {
    452 			mutex_spin_exit(spc->spc_mutex);
    453 		}
    454 
    455 		/* Unlocked, but for statistics only. */
    456 		uvmexp.swtch++;
    457 
    458 		/* Save old VM context. */
    459 		pmap_deactivate(l);
    460 
    461 		/* Switch to the new LWP.. */
    462 		l->l_ncsw++;
    463 		l->l_flag &= ~LW_RUNNING;
    464 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    465 		prevlwp = cpu_switchto(l, newl);
    466 
    467 		/*
    468 		 * .. we have switched away and are now back so we must
    469 		 * be the new curlwp.  prevlwp is who we replaced.
    470 		 */
    471 		curlwp = l;
    472 		if (prevlwp != NULL) {
    473 			curcpu()->ci_mtx_oldspl = oldspl;
    474 			lwp_unlock(prevlwp);
    475 		} else {
    476 			splx(oldspl);
    477 		}
    478 
    479 		/* Restore VM context. */
    480 		pmap_activate(l);
    481 		retval = 1;
    482 	} else {
    483 		/* Nothing to do - just unlock and return. */
    484 		mutex_spin_exit(spc->spc_mutex);
    485 		lwp_unlock(l);
    486 		retval = 0;
    487 	}
    488 
    489 	KASSERT(l == curlwp);
    490 	KASSERT(l->l_stat == LSONPROC);
    491 
    492 	/*
    493 	 * XXXSMP If we are using h/w performance counters, restore context.
    494 	 */
    495 #if PERFCTRS
    496 	if (PMC_ENABLED(l->l_proc)) {
    497 		pmc_restore_context(l->l_proc);
    498 	}
    499 #endif
    500 
    501 	/*
    502 	 * We're running again; record our new start time.  We might
    503 	 * be running on a new CPU now, so don't use the cached
    504 	 * schedstate_percpu pointer.
    505 	 */
    506 	SYSCALL_TIME_WAKEUP(l);
    507 	KDASSERT(l->l_cpu == curcpu());
    508 	LOCKDEBUG_BARRIER(NULL, 1);
    509 
    510 	return retval;
    511 }
    512 
    513 /*
    514  * Change process state to be runnable, placing it on the run queue if it is
    515  * in memory, and awakening the swapper if it isn't in memory.
    516  *
    517  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    518  */
    519 void
    520 setrunnable(struct lwp *l)
    521 {
    522 	struct proc *p = l->l_proc;
    523 	sigset_t *ss;
    524 
    525 	KASSERT((l->l_flag & LW_IDLE) == 0);
    526 	KASSERT(mutex_owned(&p->p_smutex));
    527 	KASSERT(lwp_locked(l, NULL));
    528 
    529 	switch (l->l_stat) {
    530 	case LSSTOP:
    531 		/*
    532 		 * If we're being traced (possibly because someone attached us
    533 		 * while we were stopped), check for a signal from the debugger.
    534 		 */
    535 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    536 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    537 				ss = &l->l_sigpend.sp_set;
    538 			else
    539 				ss = &p->p_sigpend.sp_set;
    540 			sigaddset(ss, p->p_xstat);
    541 			signotify(l);
    542 		}
    543 		p->p_nrlwps++;
    544 		break;
    545 	case LSSUSPENDED:
    546 		l->l_flag &= ~LW_WSUSPEND;
    547 		p->p_nrlwps++;
    548 		cv_broadcast(&p->p_lwpcv);
    549 		break;
    550 	case LSSLEEP:
    551 		KASSERT(l->l_wchan != NULL);
    552 		break;
    553 	default:
    554 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    555 	}
    556 
    557 	/*
    558 	 * If the LWP was sleeping interruptably, then it's OK to start it
    559 	 * again.  If not, mark it as still sleeping.
    560 	 */
    561 	if (l->l_wchan != NULL) {
    562 		l->l_stat = LSSLEEP;
    563 		/* lwp_unsleep() will release the lock. */
    564 		lwp_unsleep(l);
    565 		return;
    566 	}
    567 
    568 	/*
    569 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    570 	 * about to call mi_switch(), in which case it will yield.
    571 	 */
    572 	if ((l->l_flag & LW_RUNNING) != 0) {
    573 		l->l_stat = LSONPROC;
    574 		l->l_slptime = 0;
    575 		lwp_unlock(l);
    576 		return;
    577 	}
    578 
    579 	/*
    580 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    581 	 * to bring it back in.  Otherwise, enter it into a run queue.
    582 	 */
    583 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    584 		spc_lock(l->l_cpu);
    585 		lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
    586 	}
    587 
    588 	sched_setrunnable(l);
    589 	l->l_stat = LSRUN;
    590 	l->l_slptime = 0;
    591 
    592 	if (l->l_flag & LW_INMEM) {
    593 		sched_enqueue(l, false);
    594 		resched_cpu(l);
    595 		lwp_unlock(l);
    596 	} else {
    597 		lwp_unlock(l);
    598 		uvm_kick_scheduler();
    599 	}
    600 }
    601 
    602 /*
    603  * suspendsched:
    604  *
    605  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    606  */
    607 void
    608 suspendsched(void)
    609 {
    610 #ifdef MULTIPROCESSOR
    611 	CPU_INFO_ITERATOR cii;
    612 	struct cpu_info *ci;
    613 #endif
    614 	struct lwp *l;
    615 	struct proc *p;
    616 
    617 	/*
    618 	 * We do this by process in order not to violate the locking rules.
    619 	 */
    620 	mutex_enter(&proclist_mutex);
    621 	PROCLIST_FOREACH(p, &allproc) {
    622 		mutex_enter(&p->p_smutex);
    623 
    624 		if ((p->p_flag & PK_SYSTEM) != 0) {
    625 			mutex_exit(&p->p_smutex);
    626 			continue;
    627 		}
    628 
    629 		p->p_stat = SSTOP;
    630 
    631 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    632 			if (l == curlwp)
    633 				continue;
    634 
    635 			lwp_lock(l);
    636 
    637 			/*
    638 			 * Set L_WREBOOT so that the LWP will suspend itself
    639 			 * when it tries to return to user mode.  We want to
    640 			 * try and get to get as many LWPs as possible to
    641 			 * the user / kernel boundary, so that they will
    642 			 * release any locks that they hold.
    643 			 */
    644 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    645 
    646 			if (l->l_stat == LSSLEEP &&
    647 			    (l->l_flag & LW_SINTR) != 0) {
    648 				/* setrunnable() will release the lock. */
    649 				setrunnable(l);
    650 				continue;
    651 			}
    652 
    653 			lwp_unlock(l);
    654 		}
    655 
    656 		mutex_exit(&p->p_smutex);
    657 	}
    658 	mutex_exit(&proclist_mutex);
    659 
    660 	/*
    661 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    662 	 * They'll trap into the kernel and suspend themselves in userret().
    663 	 */
    664 #ifdef MULTIPROCESSOR
    665 	for (CPU_INFO_FOREACH(cii, ci))
    666 		cpu_need_resched(ci, 0);
    667 #else
    668 	cpu_need_resched(curcpu(), 0);
    669 #endif
    670 }
    671 
    672 /*
    673  * sched_kpri:
    674  *
    675  *	Scale a priority level to a kernel priority level, usually
    676  *	for an LWP that is about to sleep.
    677  */
    678 pri_t
    679 sched_kpri(struct lwp *l)
    680 {
    681 	/*
    682 	 * Scale user priorities (127 -> 50) up to kernel priorities
    683 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
    684 	 * for high priority kthreads.  Kernel priorities passed in
    685 	 * are left "as is".  XXX This is somewhat arbitrary.
    686 	 */
    687 	static const uint8_t kpri_tab[] = {
    688 		 0,   1,   2,   3,   4,   5,   6,   7,
    689 		 8,   9,  10,  11,  12,  13,  14,  15,
    690 		16,  17,  18,  19,  20,  21,  22,  23,
    691 		24,  25,  26,  27,  28,  29,  30,  31,
    692 		32,  33,  34,  35,  36,  37,  38,  39,
    693 		40,  41,  42,  43,  44,  45,  46,  47,
    694 		48,  49,   8,   8,   9,   9,  10,  10,
    695 		11,  11,  12,  12,  13,  14,  14,  15,
    696 		15,  16,  16,  17,  17,  18,  18,  19,
    697 		20,  20,  21,  21,  22,  22,  23,  23,
    698 		24,  24,  25,  26,  26,  27,  27,  28,
    699 		28,  29,  29,  30,  30,  31,  32,  32,
    700 		33,  33,  34,  34,  35,  35,  36,  36,
    701 		37,  38,  38,  39,  39,  40,  40,  41,
    702 		41,  42,  42,  43,  44,  44,  45,  45,
    703 		46,  46,  47,  47,  48,  48,  49,  49,
    704 	};
    705 
    706 	return (pri_t)kpri_tab[l->l_usrpri];
    707 }
    708 
    709 /*
    710  * sched_unsleep:
    711  *
    712  *	The is called when the LWP has not been awoken normally but instead
    713  *	interrupted: for example, if the sleep timed out.  Because of this,
    714  *	it's not a valid action for running or idle LWPs.
    715  */
    716 static void
    717 sched_unsleep(struct lwp *l)
    718 {
    719 
    720 	lwp_unlock(l);
    721 	panic("sched_unsleep");
    722 }
    723 
    724 inline void
    725 resched_cpu(struct lwp *l)
    726 {
    727 	struct cpu_info *ci;
    728 	const pri_t pri = lwp_eprio(l);
    729 
    730 	/*
    731 	 * XXXSMP
    732 	 * Since l->l_cpu persists across a context switch,
    733 	 * this gives us *very weak* processor affinity, in
    734 	 * that we notify the CPU on which the process last
    735 	 * ran that it should try to switch.
    736 	 *
    737 	 * This does not guarantee that the process will run on
    738 	 * that processor next, because another processor might
    739 	 * grab it the next time it performs a context switch.
    740 	 *
    741 	 * This also does not handle the case where its last
    742 	 * CPU is running a higher-priority process, but every
    743 	 * other CPU is running a lower-priority process.  There
    744 	 * are ways to handle this situation, but they're not
    745 	 * currently very pretty, and we also need to weigh the
    746 	 * cost of moving a process from one CPU to another.
    747 	 */
    748 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    749 	if (pri < ci->ci_schedstate.spc_curpriority)
    750 		cpu_need_resched(ci, 0);
    751 }
    752 
    753 static void
    754 sched_changepri(struct lwp *l, pri_t pri)
    755 {
    756 
    757 	KASSERT(lwp_locked(l, NULL));
    758 
    759 	l->l_usrpri = pri;
    760 	if (l->l_priority < PUSER)
    761 		return;
    762 
    763 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    764 		l->l_priority = pri;
    765 		return;
    766 	}
    767 
    768 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    769 
    770 	sched_dequeue(l);
    771 	l->l_priority = pri;
    772 	sched_enqueue(l, false);
    773 	resched_cpu(l);
    774 }
    775 
    776 static void
    777 sched_lendpri(struct lwp *l, pri_t pri)
    778 {
    779 
    780 	KASSERT(lwp_locked(l, NULL));
    781 
    782 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    783 		l->l_inheritedprio = pri;
    784 		return;
    785 	}
    786 
    787 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    788 
    789 	sched_dequeue(l);
    790 	l->l_inheritedprio = pri;
    791 	sched_enqueue(l, false);
    792 	resched_cpu(l);
    793 }
    794 
    795 struct lwp *
    796 syncobj_noowner(wchan_t wchan)
    797 {
    798 
    799 	return NULL;
    800 }
    801 
    802 
    803 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    804 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    805 
    806 /*
    807  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    808  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    809  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    810  *
    811  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    812  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    813  *
    814  * If you dont want to bother with the faster/more-accurate formula, you
    815  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    816  * (more general) method of calculating the %age of CPU used by a process.
    817  */
    818 #define	CCPU_SHIFT	(FSHIFT + 1)
    819 
    820 /*
    821  * sched_pstats:
    822  *
    823  * Update process statistics and check CPU resource allocation.
    824  * Call scheduler-specific hook to eventually adjust process/LWP
    825  * priorities.
    826  *
    827  *	XXXSMP This needs to be reorganised in order to reduce the locking
    828  *	burden.
    829  */
    830 /* ARGSUSED */
    831 void
    832 sched_pstats(void *arg)
    833 {
    834 	struct rlimit *rlim;
    835 	struct lwp *l;
    836 	struct proc *p;
    837 	int minslp, sig, clkhz;
    838 	long runtm;
    839 
    840 	sched_pstats_ticks++;
    841 
    842 	mutex_enter(&proclist_mutex);
    843 	PROCLIST_FOREACH(p, &allproc) {
    844 		/*
    845 		 * Increment time in/out of memory and sleep time (if
    846 		 * sleeping).  We ignore overflow; with 16-bit int's
    847 		 * (remember them?) overflow takes 45 days.
    848 		 */
    849 		minslp = 2;
    850 		mutex_enter(&p->p_smutex);
    851 		mutex_spin_enter(&p->p_stmutex);
    852 		runtm = p->p_rtime.tv_sec;
    853 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    854 			if ((l->l_flag & LW_IDLE) != 0)
    855 				continue;
    856 			lwp_lock(l);
    857 			runtm += l->l_rtime.tv_sec;
    858 			l->l_swtime++;
    859 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    860 			    l->l_stat == LSSUSPENDED) {
    861 				l->l_slptime++;
    862 				minslp = min(minslp, l->l_slptime);
    863 			} else
    864 				minslp = 0;
    865 			lwp_unlock(l);
    866 
    867 			/*
    868 			 * p_pctcpu is only for ps.
    869 			 */
    870 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    871 			if (l->l_slptime < 1) {
    872 				clkhz = stathz != 0 ? stathz : hz;
    873 #if	(FSHIFT >= CCPU_SHIFT)
    874 				l->l_pctcpu += (clkhz == 100) ?
    875 				    ((fixpt_t)l->l_cpticks) <<
    876 				        (FSHIFT - CCPU_SHIFT) :
    877 				    100 * (((fixpt_t) p->p_cpticks)
    878 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    879 #else
    880 				l->l_pctcpu += ((FSCALE - ccpu) *
    881 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    882 #endif
    883 				l->l_cpticks = 0;
    884 			}
    885 		}
    886 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    887 		sched_pstats_hook(p, minslp);
    888 		mutex_spin_exit(&p->p_stmutex);
    889 
    890 		/*
    891 		 * Check if the process exceeds its CPU resource allocation.
    892 		 * If over max, kill it.
    893 		 */
    894 		rlim = &p->p_rlimit[RLIMIT_CPU];
    895 		sig = 0;
    896 		if (runtm >= rlim->rlim_cur) {
    897 			if (runtm >= rlim->rlim_max)
    898 				sig = SIGKILL;
    899 			else {
    900 				sig = SIGXCPU;
    901 				if (rlim->rlim_cur < rlim->rlim_max)
    902 					rlim->rlim_cur += 5;
    903 			}
    904 		}
    905 		mutex_exit(&p->p_smutex);
    906 		if (sig) {
    907 			psignal(p, sig);
    908 		}
    909 	}
    910 	mutex_exit(&proclist_mutex);
    911 	uvm_meter();
    912 	cv_wakeup(&lbolt);
    913 	callout_schedule(&sched_pstats_ch, hz);
    914 }
    915 
    916 void
    917 sched_init(void)
    918 {
    919 
    920 	cv_init(&lbolt, "lbolt");
    921 	callout_init(&sched_pstats_ch, 0);
    922 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    923 	sched_setup();
    924 	sched_pstats(NULL);
    925 }
    926