Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.195
      1 /*	$NetBSD: kern_synch.c,v 1.195 2007/09/25 21:38:57 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.195 2007/09/25 21:38:57 ad Exp $");
     79 
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #if defined(PERFCTRS)
     92 #include <sys/pmc.h>
     93 #endif
     94 #include <sys/cpu.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/syscall_stats.h>
     98 #include <sys/sleepq.h>
     99 #include <sys/lockdebug.h>
    100 #include <sys/evcnt.h>
    101 
    102 #include <uvm/uvm_extern.h>
    103 
    104 callout_t sched_pstats_ch;
    105 unsigned int sched_pstats_ticks;
    106 
    107 kcondvar_t	lbolt;			/* once a second sleep address */
    108 
    109 static void	sched_unsleep(struct lwp *);
    110 static void	sched_changepri(struct lwp *, pri_t);
    111 static void	sched_lendpri(struct lwp *, pri_t);
    112 
    113 syncobj_t sleep_syncobj = {
    114 	SOBJ_SLEEPQ_SORTED,
    115 	sleepq_unsleep,
    116 	sleepq_changepri,
    117 	sleepq_lendpri,
    118 	syncobj_noowner,
    119 };
    120 
    121 syncobj_t sched_syncobj = {
    122 	SOBJ_SLEEPQ_SORTED,
    123 	sched_unsleep,
    124 	sched_changepri,
    125 	sched_lendpri,
    126 	syncobj_noowner,
    127 };
    128 
    129 /*
    130  * During autoconfiguration or after a panic, a sleep will simply lower the
    131  * priority briefly to allow interrupts, then return.  The priority to be
    132  * used (safepri) is machine-dependent, thus this value is initialized and
    133  * maintained in the machine-dependent layers.  This priority will typically
    134  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    135  * it can be made higher to block network software interrupts after panics.
    136  */
    137 int	safepri;
    138 
    139 /*
    140  * OBSOLETE INTERFACE
    141  *
    142  * General sleep call.  Suspends the current process until a wakeup is
    143  * performed on the specified identifier.  The process will then be made
    144  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    145  * means no timeout).  If pri includes PCATCH flag, signals are checked
    146  * before and after sleeping, else signals are not checked.  Returns 0 if
    147  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    148  * signal needs to be delivered, ERESTART is returned if the current system
    149  * call should be restarted if possible, and EINTR is returned if the system
    150  * call should be interrupted by the signal (return EINTR).
    151  *
    152  * The interlock is held until we are on a sleep queue. The interlock will
    153  * be locked before returning back to the caller unless the PNORELOCK flag
    154  * is specified, in which case the interlock will always be unlocked upon
    155  * return.
    156  */
    157 int
    158 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    159 	volatile struct simplelock *interlock)
    160 {
    161 	struct lwp *l = curlwp;
    162 	sleepq_t *sq;
    163 	int error;
    164 
    165 	if (sleepq_dontsleep(l)) {
    166 		(void)sleepq_abort(NULL, 0);
    167 		if ((priority & PNORELOCK) != 0)
    168 			simple_unlock(interlock);
    169 		return 0;
    170 	}
    171 
    172 	sq = sleeptab_lookup(&sleeptab, ident);
    173 	sleepq_enter(sq, l);
    174 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    175 
    176 	if (interlock != NULL) {
    177 		LOCK_ASSERT(simple_lock_held(interlock));
    178 		simple_unlock(interlock);
    179 	}
    180 
    181 	error = sleepq_block(timo, priority & PCATCH);
    182 
    183 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    184 		simple_lock(interlock);
    185 
    186 	return error;
    187 }
    188 
    189 int
    190 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    191 	kmutex_t *mtx)
    192 {
    193 	struct lwp *l = curlwp;
    194 	sleepq_t *sq;
    195 	int error;
    196 
    197 	if (sleepq_dontsleep(l)) {
    198 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    199 		return 0;
    200 	}
    201 
    202 	sq = sleeptab_lookup(&sleeptab, ident);
    203 	sleepq_enter(sq, l);
    204 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    205 	mutex_exit(mtx);
    206 	error = sleepq_block(timo, priority & PCATCH);
    207 
    208 	if ((priority & PNORELOCK) == 0)
    209 		mutex_enter(mtx);
    210 
    211 	return error;
    212 }
    213 
    214 /*
    215  * General sleep call for situations where a wake-up is not expected.
    216  */
    217 int
    218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    219 {
    220 	struct lwp *l = curlwp;
    221 	sleepq_t *sq;
    222 	int error;
    223 
    224 	if (sleepq_dontsleep(l))
    225 		return sleepq_abort(NULL, 0);
    226 
    227 	if (mtx != NULL)
    228 		mutex_exit(mtx);
    229 	sq = sleeptab_lookup(&sleeptab, l);
    230 	sleepq_enter(sq, l);
    231 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
    232 	error = sleepq_block(timo, intr);
    233 	if (mtx != NULL)
    234 		mutex_enter(mtx);
    235 
    236 	return error;
    237 }
    238 
    239 /*
    240  * OBSOLETE INTERFACE
    241  *
    242  * Make all processes sleeping on the specified identifier runnable.
    243  */
    244 void
    245 wakeup(wchan_t ident)
    246 {
    247 	sleepq_t *sq;
    248 
    249 	if (cold)
    250 		return;
    251 
    252 	sq = sleeptab_lookup(&sleeptab, ident);
    253 	sleepq_wake(sq, ident, (u_int)-1);
    254 }
    255 
    256 /*
    257  * OBSOLETE INTERFACE
    258  *
    259  * Make the highest priority process first in line on the specified
    260  * identifier runnable.
    261  */
    262 void
    263 wakeup_one(wchan_t ident)
    264 {
    265 	sleepq_t *sq;
    266 
    267 	if (cold)
    268 		return;
    269 
    270 	sq = sleeptab_lookup(&sleeptab, ident);
    271 	sleepq_wake(sq, ident, 1);
    272 }
    273 
    274 
    275 /*
    276  * General yield call.  Puts the current process back on its run queue and
    277  * performs a voluntary context switch.  Should only be called when the
    278  * current process explicitly requests it (eg sched_yield(2) in compat code).
    279  */
    280 void
    281 yield(void)
    282 {
    283 	struct lwp *l = curlwp;
    284 
    285 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    286 	lwp_lock(l);
    287 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    288 	KASSERT(l->l_stat == LSONPROC);
    289 	l->l_priority = l->l_usrpri;
    290 	(void)mi_switch(l);
    291 	KERNEL_LOCK(l->l_biglocks, l);
    292 }
    293 
    294 /*
    295  * General preemption call.  Puts the current process back on its run queue
    296  * and performs an involuntary context switch.
    297  */
    298 void
    299 preempt(void)
    300 {
    301 	struct lwp *l = curlwp;
    302 
    303 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    304 	lwp_lock(l);
    305 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    306 	KASSERT(l->l_stat == LSONPROC);
    307 	l->l_priority = l->l_usrpri;
    308 	l->l_nivcsw++;
    309 	(void)mi_switch(l);
    310 	KERNEL_LOCK(l->l_biglocks, l);
    311 }
    312 
    313 /*
    314  * Compute the amount of time during which the current lwp was running.
    315  *
    316  * - update l_rtime unless it's an idle lwp.
    317  * - update spc_runtime for the next lwp.
    318  */
    319 
    320 static inline void
    321 updatertime(struct lwp *l, struct schedstate_percpu *spc)
    322 {
    323 	struct timeval tv;
    324 	long s, u;
    325 
    326 	if ((l->l_flag & LW_IDLE) != 0) {
    327 		microtime(&spc->spc_runtime);
    328 		return;
    329 	}
    330 
    331 	microtime(&tv);
    332 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    333 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    334 	if (u < 0) {
    335 		u += 1000000;
    336 		s--;
    337 	} else if (u >= 1000000) {
    338 		u -= 1000000;
    339 		s++;
    340 	}
    341 	l->l_rtime.tv_usec = u;
    342 	l->l_rtime.tv_sec = s;
    343 
    344 	spc->spc_runtime = tv;
    345 }
    346 
    347 /*
    348  * The machine independent parts of context switch.
    349  *
    350  * Returns 1 if another LWP was actually run.
    351  */
    352 int
    353 mi_switch(struct lwp *l)
    354 {
    355 	struct schedstate_percpu *spc;
    356 	struct lwp *newl;
    357 	int retval, oldspl;
    358 
    359 	KASSERT(lwp_locked(l, NULL));
    360 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    361 
    362 #ifdef KSTACK_CHECK_MAGIC
    363 	kstack_check_magic(l);
    364 #endif
    365 
    366 	/*
    367 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    368 	 * are after is the run time and that's guarenteed to have been last
    369 	 * updated by this CPU.
    370 	 */
    371 	KDASSERT(l->l_cpu == curcpu());
    372 
    373 	/*
    374 	 * Process is about to yield the CPU; clear the appropriate
    375 	 * scheduling flags.
    376 	 */
    377 	spc = &l->l_cpu->ci_schedstate;
    378 	newl = NULL;
    379 
    380 	if (l->l_switchto != NULL) {
    381 		newl = l->l_switchto;
    382 		l->l_switchto = NULL;
    383 	}
    384 
    385 	/* Count time spent in current system call */
    386 	SYSCALL_TIME_SLEEP(l);
    387 
    388 	/*
    389 	 * XXXSMP If we are using h/w performance counters,
    390 	 * save context.
    391 	 */
    392 #if PERFCTRS
    393 	if (PMC_ENABLED(l->l_proc)) {
    394 		pmc_save_context(l->l_proc);
    395 	}
    396 #endif
    397 	updatertime(l, spc);
    398 
    399 	/*
    400 	 * If on the CPU and we have gotten this far, then we must yield.
    401 	 */
    402 	mutex_spin_enter(spc->spc_mutex);
    403 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    404 	KASSERT(l->l_stat != LSRUN);
    405 	if (l->l_stat == LSONPROC) {
    406 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    407 		if ((l->l_flag & LW_IDLE) == 0) {
    408 			l->l_stat = LSRUN;
    409 			lwp_setlock(l, spc->spc_mutex);
    410 			sched_enqueue(l, true);
    411 		} else
    412 			l->l_stat = LSIDL;
    413 	}
    414 
    415 	/*
    416 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    417 	 * If no LWP is runnable, switch to the idle LWP.
    418 	 */
    419 	if (newl == NULL) {
    420 		newl = sched_nextlwp();
    421 		if (newl != NULL) {
    422 			sched_dequeue(newl);
    423 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    424 			newl->l_stat = LSONPROC;
    425 			newl->l_cpu = l->l_cpu;
    426 			newl->l_flag |= LW_RUNNING;
    427 			lwp_setlock(newl, &spc->spc_lwplock);
    428 		} else {
    429 			newl = l->l_cpu->ci_data.cpu_idlelwp;
    430 			newl->l_stat = LSONPROC;
    431 			newl->l_flag |= LW_RUNNING;
    432 		}
    433 		spc->spc_curpriority = newl->l_usrpri;
    434 		newl->l_priority = newl->l_usrpri;
    435 		cpu_did_resched();
    436 	}
    437 
    438 	if (l != newl) {
    439 		struct lwp *prevlwp;
    440 
    441 		/*
    442 		 * If the old LWP has been moved to a run queue above,
    443 		 * drop the general purpose LWP lock: it's now locked
    444 		 * by the scheduler lock.
    445 		 *
    446 		 * Otherwise, drop the scheduler lock.  We're done with
    447 		 * the run queues for now.
    448 		 */
    449 		if (l->l_mutex == spc->spc_mutex) {
    450 			mutex_spin_exit(&spc->spc_lwplock);
    451 		} else {
    452 			mutex_spin_exit(spc->spc_mutex);
    453 		}
    454 
    455 		/* Unlocked, but for statistics only. */
    456 		uvmexp.swtch++;
    457 
    458 		/* Save old VM context. */
    459 		pmap_deactivate(l);
    460 
    461 		/* Switch to the new LWP.. */
    462 		l->l_ncsw++;
    463 		l->l_flag &= ~LW_RUNNING;
    464 		oldspl = MUTEX_SPIN_OLDSPL(l->l_cpu);
    465 		prevlwp = cpu_switchto(l, newl);
    466 
    467 		/*
    468 		 * .. we have switched away and are now back so we must
    469 		 * be the new curlwp.  prevlwp is who we replaced.
    470 		 */
    471 		if (prevlwp != NULL) {
    472 			curcpu()->ci_mtx_oldspl = oldspl;
    473 			lwp_unlock(prevlwp);
    474 		} else {
    475 			splx(oldspl);
    476 		}
    477 
    478 		/* Restore VM context. */
    479 		pmap_activate(l);
    480 		retval = 1;
    481 	} else {
    482 		/* Nothing to do - just unlock and return. */
    483 		mutex_spin_exit(spc->spc_mutex);
    484 		lwp_unlock(l);
    485 		retval = 0;
    486 	}
    487 
    488 	KASSERT(l == curlwp);
    489 	KASSERT(l->l_stat == LSONPROC);
    490 
    491 	/*
    492 	 * XXXSMP If we are using h/w performance counters, restore context.
    493 	 */
    494 #if PERFCTRS
    495 	if (PMC_ENABLED(l->l_proc)) {
    496 		pmc_restore_context(l->l_proc);
    497 	}
    498 #endif
    499 
    500 	/*
    501 	 * We're running again; record our new start time.  We might
    502 	 * be running on a new CPU now, so don't use the cached
    503 	 * schedstate_percpu pointer.
    504 	 */
    505 	SYSCALL_TIME_WAKEUP(l);
    506 	KASSERT(curlwp == l);
    507 	KDASSERT(l->l_cpu == curcpu());
    508 	LOCKDEBUG_BARRIER(NULL, 1);
    509 
    510 	return retval;
    511 }
    512 
    513 /*
    514  * Change process state to be runnable, placing it on the run queue if it is
    515  * in memory, and awakening the swapper if it isn't in memory.
    516  *
    517  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    518  */
    519 void
    520 setrunnable(struct lwp *l)
    521 {
    522 	struct proc *p = l->l_proc;
    523 	sigset_t *ss;
    524 
    525 	KASSERT((l->l_flag & LW_IDLE) == 0);
    526 	KASSERT(mutex_owned(&p->p_smutex));
    527 	KASSERT(lwp_locked(l, NULL));
    528 
    529 	switch (l->l_stat) {
    530 	case LSSTOP:
    531 		/*
    532 		 * If we're being traced (possibly because someone attached us
    533 		 * while we were stopped), check for a signal from the debugger.
    534 		 */
    535 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    536 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    537 				ss = &l->l_sigpend.sp_set;
    538 			else
    539 				ss = &p->p_sigpend.sp_set;
    540 			sigaddset(ss, p->p_xstat);
    541 			signotify(l);
    542 		}
    543 		p->p_nrlwps++;
    544 		break;
    545 	case LSSUSPENDED:
    546 		l->l_flag &= ~LW_WSUSPEND;
    547 		p->p_nrlwps++;
    548 		cv_broadcast(&p->p_lwpcv);
    549 		break;
    550 	case LSSLEEP:
    551 		KASSERT(l->l_wchan != NULL);
    552 		break;
    553 	default:
    554 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    555 	}
    556 
    557 	/*
    558 	 * If the LWP was sleeping interruptably, then it's OK to start it
    559 	 * again.  If not, mark it as still sleeping.
    560 	 */
    561 	if (l->l_wchan != NULL) {
    562 		l->l_stat = LSSLEEP;
    563 		/* lwp_unsleep() will release the lock. */
    564 		lwp_unsleep(l);
    565 		return;
    566 	}
    567 
    568 	/*
    569 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    570 	 * about to call mi_switch(), in which case it will yield.
    571 	 */
    572 	if ((l->l_flag & LW_RUNNING) != 0) {
    573 		l->l_stat = LSONPROC;
    574 		l->l_slptime = 0;
    575 		lwp_unlock(l);
    576 		return;
    577 	}
    578 
    579 	/*
    580 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    581 	 * to bring it back in.  Otherwise, enter it into a run queue.
    582 	 */
    583 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    584 		spc_lock(l->l_cpu);
    585 		lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
    586 	}
    587 
    588 	sched_setrunnable(l);
    589 	l->l_stat = LSRUN;
    590 	l->l_slptime = 0;
    591 
    592 	if (l->l_flag & LW_INMEM) {
    593 		sched_enqueue(l, false);
    594 		resched_cpu(l);
    595 		lwp_unlock(l);
    596 	} else {
    597 		lwp_unlock(l);
    598 		uvm_kick_scheduler();
    599 	}
    600 }
    601 
    602 /*
    603  * suspendsched:
    604  *
    605  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    606  */
    607 void
    608 suspendsched(void)
    609 {
    610 	CPU_INFO_ITERATOR cii;
    611 	struct cpu_info *ci;
    612 	struct lwp *l;
    613 	struct proc *p;
    614 
    615 	/*
    616 	 * We do this by process in order not to violate the locking rules.
    617 	 */
    618 	mutex_enter(&proclist_mutex);
    619 	PROCLIST_FOREACH(p, &allproc) {
    620 		mutex_enter(&p->p_smutex);
    621 
    622 		if ((p->p_flag & PK_SYSTEM) != 0) {
    623 			mutex_exit(&p->p_smutex);
    624 			continue;
    625 		}
    626 
    627 		p->p_stat = SSTOP;
    628 
    629 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    630 			if (l == curlwp)
    631 				continue;
    632 
    633 			lwp_lock(l);
    634 
    635 			/*
    636 			 * Set L_WREBOOT so that the LWP will suspend itself
    637 			 * when it tries to return to user mode.  We want to
    638 			 * try and get to get as many LWPs as possible to
    639 			 * the user / kernel boundary, so that they will
    640 			 * release any locks that they hold.
    641 			 */
    642 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    643 
    644 			if (l->l_stat == LSSLEEP &&
    645 			    (l->l_flag & LW_SINTR) != 0) {
    646 				/* setrunnable() will release the lock. */
    647 				setrunnable(l);
    648 				continue;
    649 			}
    650 
    651 			lwp_unlock(l);
    652 		}
    653 
    654 		mutex_exit(&p->p_smutex);
    655 	}
    656 	mutex_exit(&proclist_mutex);
    657 
    658 	/*
    659 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    660 	 * They'll trap into the kernel and suspend themselves in userret().
    661 	 */
    662 	for (CPU_INFO_FOREACH(cii, ci))
    663 		cpu_need_resched(ci, 0);
    664 }
    665 
    666 /*
    667  * sched_kpri:
    668  *
    669  *	Scale a priority level to a kernel priority level, usually
    670  *	for an LWP that is about to sleep.
    671  */
    672 pri_t
    673 sched_kpri(struct lwp *l)
    674 {
    675 	/*
    676 	 * Scale user priorities (127 -> 50) up to kernel priorities
    677 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
    678 	 * for high priority kthreads.  Kernel priorities passed in
    679 	 * are left "as is".  XXX This is somewhat arbitrary.
    680 	 */
    681 	static const uint8_t kpri_tab[] = {
    682 		 0,   1,   2,   3,   4,   5,   6,   7,
    683 		 8,   9,  10,  11,  12,  13,  14,  15,
    684 		16,  17,  18,  19,  20,  21,  22,  23,
    685 		24,  25,  26,  27,  28,  29,  30,  31,
    686 		32,  33,  34,  35,  36,  37,  38,  39,
    687 		40,  41,  42,  43,  44,  45,  46,  47,
    688 		48,  49,   8,   8,   9,   9,  10,  10,
    689 		11,  11,  12,  12,  13,  14,  14,  15,
    690 		15,  16,  16,  17,  17,  18,  18,  19,
    691 		20,  20,  21,  21,  22,  22,  23,  23,
    692 		24,  24,  25,  26,  26,  27,  27,  28,
    693 		28,  29,  29,  30,  30,  31,  32,  32,
    694 		33,  33,  34,  34,  35,  35,  36,  36,
    695 		37,  38,  38,  39,  39,  40,  40,  41,
    696 		41,  42,  42,  43,  44,  44,  45,  45,
    697 		46,  46,  47,  47,  48,  48,  49,  49,
    698 	};
    699 
    700 	return (pri_t)kpri_tab[l->l_usrpri];
    701 }
    702 
    703 /*
    704  * sched_unsleep:
    705  *
    706  *	The is called when the LWP has not been awoken normally but instead
    707  *	interrupted: for example, if the sleep timed out.  Because of this,
    708  *	it's not a valid action for running or idle LWPs.
    709  */
    710 static void
    711 sched_unsleep(struct lwp *l)
    712 {
    713 
    714 	lwp_unlock(l);
    715 	panic("sched_unsleep");
    716 }
    717 
    718 inline void
    719 resched_cpu(struct lwp *l)
    720 {
    721 	struct cpu_info *ci;
    722 	const pri_t pri = lwp_eprio(l);
    723 
    724 	/*
    725 	 * XXXSMP
    726 	 * Since l->l_cpu persists across a context switch,
    727 	 * this gives us *very weak* processor affinity, in
    728 	 * that we notify the CPU on which the process last
    729 	 * ran that it should try to switch.
    730 	 *
    731 	 * This does not guarantee that the process will run on
    732 	 * that processor next, because another processor might
    733 	 * grab it the next time it performs a context switch.
    734 	 *
    735 	 * This also does not handle the case where its last
    736 	 * CPU is running a higher-priority process, but every
    737 	 * other CPU is running a lower-priority process.  There
    738 	 * are ways to handle this situation, but they're not
    739 	 * currently very pretty, and we also need to weigh the
    740 	 * cost of moving a process from one CPU to another.
    741 	 */
    742 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    743 	if (pri < ci->ci_schedstate.spc_curpriority)
    744 		cpu_need_resched(ci, 0);
    745 }
    746 
    747 static void
    748 sched_changepri(struct lwp *l, pri_t pri)
    749 {
    750 
    751 	KASSERT(lwp_locked(l, NULL));
    752 
    753 	l->l_usrpri = pri;
    754 	if (l->l_priority < PUSER)
    755 		return;
    756 
    757 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    758 		l->l_priority = pri;
    759 		return;
    760 	}
    761 
    762 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    763 
    764 	sched_dequeue(l);
    765 	l->l_priority = pri;
    766 	sched_enqueue(l, false);
    767 	resched_cpu(l);
    768 }
    769 
    770 static void
    771 sched_lendpri(struct lwp *l, pri_t pri)
    772 {
    773 
    774 	KASSERT(lwp_locked(l, NULL));
    775 
    776 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    777 		l->l_inheritedprio = pri;
    778 		return;
    779 	}
    780 
    781 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    782 
    783 	sched_dequeue(l);
    784 	l->l_inheritedprio = pri;
    785 	sched_enqueue(l, false);
    786 	resched_cpu(l);
    787 }
    788 
    789 struct lwp *
    790 syncobj_noowner(wchan_t wchan)
    791 {
    792 
    793 	return NULL;
    794 }
    795 
    796 
    797 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    798 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    799 
    800 /*
    801  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    802  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    803  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    804  *
    805  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    806  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    807  *
    808  * If you dont want to bother with the faster/more-accurate formula, you
    809  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    810  * (more general) method of calculating the %age of CPU used by a process.
    811  */
    812 #define	CCPU_SHIFT	(FSHIFT + 1)
    813 
    814 /*
    815  * sched_pstats:
    816  *
    817  * Update process statistics and check CPU resource allocation.
    818  * Call scheduler-specific hook to eventually adjust process/LWP
    819  * priorities.
    820  *
    821  *	XXXSMP This needs to be reorganised in order to reduce the locking
    822  *	burden.
    823  */
    824 /* ARGSUSED */
    825 void
    826 sched_pstats(void *arg)
    827 {
    828 	struct rlimit *rlim;
    829 	struct lwp *l;
    830 	struct proc *p;
    831 	int minslp, sig, clkhz;
    832 	long runtm;
    833 
    834 	sched_pstats_ticks++;
    835 
    836 	mutex_enter(&proclist_mutex);
    837 	PROCLIST_FOREACH(p, &allproc) {
    838 		/*
    839 		 * Increment time in/out of memory and sleep time (if
    840 		 * sleeping).  We ignore overflow; with 16-bit int's
    841 		 * (remember them?) overflow takes 45 days.
    842 		 */
    843 		minslp = 2;
    844 		mutex_enter(&p->p_smutex);
    845 		mutex_spin_enter(&p->p_stmutex);
    846 		runtm = p->p_rtime.tv_sec;
    847 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    848 			if ((l->l_flag & LW_IDLE) != 0)
    849 				continue;
    850 			lwp_lock(l);
    851 			runtm += l->l_rtime.tv_sec;
    852 			l->l_swtime++;
    853 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    854 			    l->l_stat == LSSUSPENDED) {
    855 				l->l_slptime++;
    856 				minslp = min(minslp, l->l_slptime);
    857 			} else
    858 				minslp = 0;
    859 			lwp_unlock(l);
    860 
    861 			/*
    862 			 * p_pctcpu is only for ps.
    863 			 */
    864 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    865 			if (l->l_slptime < 1) {
    866 				clkhz = stathz != 0 ? stathz : hz;
    867 #if	(FSHIFT >= CCPU_SHIFT)
    868 				l->l_pctcpu += (clkhz == 100) ?
    869 				    ((fixpt_t)l->l_cpticks) <<
    870 				        (FSHIFT - CCPU_SHIFT) :
    871 				    100 * (((fixpt_t) p->p_cpticks)
    872 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    873 #else
    874 				l->l_pctcpu += ((FSCALE - ccpu) *
    875 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    876 #endif
    877 				l->l_cpticks = 0;
    878 			}
    879 		}
    880 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    881 		sched_pstats_hook(p, minslp);
    882 		mutex_spin_exit(&p->p_stmutex);
    883 
    884 		/*
    885 		 * Check if the process exceeds its CPU resource allocation.
    886 		 * If over max, kill it.
    887 		 */
    888 		rlim = &p->p_rlimit[RLIMIT_CPU];
    889 		sig = 0;
    890 		if (runtm >= rlim->rlim_cur) {
    891 			if (runtm >= rlim->rlim_max)
    892 				sig = SIGKILL;
    893 			else {
    894 				sig = SIGXCPU;
    895 				if (rlim->rlim_cur < rlim->rlim_max)
    896 					rlim->rlim_cur += 5;
    897 			}
    898 		}
    899 		mutex_exit(&p->p_smutex);
    900 		if (sig) {
    901 			psignal(p, sig);
    902 		}
    903 	}
    904 	mutex_exit(&proclist_mutex);
    905 	uvm_meter();
    906 	cv_wakeup(&lbolt);
    907 	callout_schedule(&sched_pstats_ch, hz);
    908 }
    909 
    910 void
    911 sched_init(void)
    912 {
    913 
    914 	cv_init(&lbolt, "lbolt");
    915 	callout_init(&sched_pstats_ch, 0);
    916 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    917 	sched_setup();
    918 	sched_pstats(NULL);
    919 }
    920