Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.197
      1 /*	$NetBSD: kern_synch.c,v 1.197 2007/10/02 13:17:16 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.197 2007/10/02 13:17:16 ad Exp $");
     79 
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #if defined(PERFCTRS)
     92 #include <sys/pmc.h>
     93 #endif
     94 #include <sys/cpu.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/syscall_stats.h>
     98 #include <sys/sleepq.h>
     99 #include <sys/lockdebug.h>
    100 #include <sys/evcnt.h>
    101 
    102 #include <uvm/uvm_extern.h>
    103 
    104 callout_t sched_pstats_ch;
    105 unsigned int sched_pstats_ticks;
    106 
    107 kcondvar_t	lbolt;			/* once a second sleep address */
    108 
    109 static void	sched_unsleep(struct lwp *);
    110 static void	sched_changepri(struct lwp *, pri_t);
    111 static void	sched_lendpri(struct lwp *, pri_t);
    112 
    113 syncobj_t sleep_syncobj = {
    114 	SOBJ_SLEEPQ_SORTED,
    115 	sleepq_unsleep,
    116 	sleepq_changepri,
    117 	sleepq_lendpri,
    118 	syncobj_noowner,
    119 };
    120 
    121 syncobj_t sched_syncobj = {
    122 	SOBJ_SLEEPQ_SORTED,
    123 	sched_unsleep,
    124 	sched_changepri,
    125 	sched_lendpri,
    126 	syncobj_noowner,
    127 };
    128 
    129 /*
    130  * During autoconfiguration or after a panic, a sleep will simply lower the
    131  * priority briefly to allow interrupts, then return.  The priority to be
    132  * used (safepri) is machine-dependent, thus this value is initialized and
    133  * maintained in the machine-dependent layers.  This priority will typically
    134  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    135  * it can be made higher to block network software interrupts after panics.
    136  */
    137 int	safepri;
    138 
    139 /*
    140  * OBSOLETE INTERFACE
    141  *
    142  * General sleep call.  Suspends the current process until a wakeup is
    143  * performed on the specified identifier.  The process will then be made
    144  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    145  * means no timeout).  If pri includes PCATCH flag, signals are checked
    146  * before and after sleeping, else signals are not checked.  Returns 0 if
    147  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    148  * signal needs to be delivered, ERESTART is returned if the current system
    149  * call should be restarted if possible, and EINTR is returned if the system
    150  * call should be interrupted by the signal (return EINTR).
    151  *
    152  * The interlock is held until we are on a sleep queue. The interlock will
    153  * be locked before returning back to the caller unless the PNORELOCK flag
    154  * is specified, in which case the interlock will always be unlocked upon
    155  * return.
    156  */
    157 int
    158 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    159 	volatile struct simplelock *interlock)
    160 {
    161 	struct lwp *l = curlwp;
    162 	sleepq_t *sq;
    163 	int error;
    164 
    165 	if (sleepq_dontsleep(l)) {
    166 		(void)sleepq_abort(NULL, 0);
    167 		if ((priority & PNORELOCK) != 0)
    168 			simple_unlock(interlock);
    169 		return 0;
    170 	}
    171 
    172 	sq = sleeptab_lookup(&sleeptab, ident);
    173 	sleepq_enter(sq, l);
    174 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    175 
    176 	if (interlock != NULL) {
    177 		LOCK_ASSERT(simple_lock_held(interlock));
    178 		simple_unlock(interlock);
    179 	}
    180 
    181 	error = sleepq_block(timo, priority & PCATCH);
    182 
    183 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    184 		simple_lock(interlock);
    185 
    186 	return error;
    187 }
    188 
    189 int
    190 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    191 	kmutex_t *mtx)
    192 {
    193 	struct lwp *l = curlwp;
    194 	sleepq_t *sq;
    195 	int error;
    196 
    197 	if (sleepq_dontsleep(l)) {
    198 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    199 		return 0;
    200 	}
    201 
    202 	sq = sleeptab_lookup(&sleeptab, ident);
    203 	sleepq_enter(sq, l);
    204 	sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
    205 	mutex_exit(mtx);
    206 	error = sleepq_block(timo, priority & PCATCH);
    207 
    208 	if ((priority & PNORELOCK) == 0)
    209 		mutex_enter(mtx);
    210 
    211 	return error;
    212 }
    213 
    214 /*
    215  * General sleep call for situations where a wake-up is not expected.
    216  */
    217 int
    218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    219 {
    220 	struct lwp *l = curlwp;
    221 	sleepq_t *sq;
    222 	int error;
    223 
    224 	if (sleepq_dontsleep(l))
    225 		return sleepq_abort(NULL, 0);
    226 
    227 	if (mtx != NULL)
    228 		mutex_exit(mtx);
    229 	sq = sleeptab_lookup(&sleeptab, l);
    230 	sleepq_enter(sq, l);
    231 	sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
    232 	error = sleepq_block(timo, intr);
    233 	if (mtx != NULL)
    234 		mutex_enter(mtx);
    235 
    236 	return error;
    237 }
    238 
    239 /*
    240  * OBSOLETE INTERFACE
    241  *
    242  * Make all processes sleeping on the specified identifier runnable.
    243  */
    244 void
    245 wakeup(wchan_t ident)
    246 {
    247 	sleepq_t *sq;
    248 
    249 	if (cold)
    250 		return;
    251 
    252 	sq = sleeptab_lookup(&sleeptab, ident);
    253 	sleepq_wake(sq, ident, (u_int)-1);
    254 }
    255 
    256 /*
    257  * OBSOLETE INTERFACE
    258  *
    259  * Make the highest priority process first in line on the specified
    260  * identifier runnable.
    261  */
    262 void
    263 wakeup_one(wchan_t ident)
    264 {
    265 	sleepq_t *sq;
    266 
    267 	if (cold)
    268 		return;
    269 
    270 	sq = sleeptab_lookup(&sleeptab, ident);
    271 	sleepq_wake(sq, ident, 1);
    272 }
    273 
    274 
    275 /*
    276  * General yield call.  Puts the current process back on its run queue and
    277  * performs a voluntary context switch.  Should only be called when the
    278  * current process explicitly requests it (eg sched_yield(2) in compat code).
    279  */
    280 void
    281 yield(void)
    282 {
    283 	struct lwp *l = curlwp;
    284 
    285 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    286 	lwp_lock(l);
    287 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    288 	KASSERT(l->l_stat == LSONPROC);
    289 	l->l_priority = l->l_usrpri;
    290 	(void)mi_switch(l);
    291 	KERNEL_LOCK(l->l_biglocks, l);
    292 }
    293 
    294 /*
    295  * General preemption call.  Puts the current process back on its run queue
    296  * and performs an involuntary context switch.
    297  */
    298 void
    299 preempt(void)
    300 {
    301 	struct lwp *l = curlwp;
    302 
    303 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    304 	lwp_lock(l);
    305 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    306 	KASSERT(l->l_stat == LSONPROC);
    307 	l->l_priority = l->l_usrpri;
    308 	l->l_nivcsw++;
    309 	(void)mi_switch(l);
    310 	KERNEL_LOCK(l->l_biglocks, l);
    311 }
    312 
    313 /*
    314  * Compute the amount of time during which the current lwp was running.
    315  *
    316  * - update l_rtime unless it's an idle lwp.
    317  * - update spc_runtime for the next lwp.
    318  */
    319 
    320 static inline void
    321 updatertime(struct lwp *l, struct schedstate_percpu *spc)
    322 {
    323 	struct timeval tv;
    324 	long s, u;
    325 
    326 	if ((l->l_flag & LW_IDLE) != 0) {
    327 		microtime(&spc->spc_runtime);
    328 		return;
    329 	}
    330 
    331 	microtime(&tv);
    332 	u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
    333 	s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
    334 	if (u < 0) {
    335 		u += 1000000;
    336 		s--;
    337 	} else if (u >= 1000000) {
    338 		u -= 1000000;
    339 		s++;
    340 	}
    341 	l->l_rtime.tv_usec = u;
    342 	l->l_rtime.tv_sec = s;
    343 
    344 	spc->spc_runtime = tv;
    345 }
    346 
    347 /*
    348  * The machine independent parts of context switch.
    349  *
    350  * Returns 1 if another LWP was actually run.
    351  */
    352 int
    353 mi_switch(struct lwp *l)
    354 {
    355 	struct schedstate_percpu *spc;
    356 	struct lwp *newl;
    357 	int retval, oldspl;
    358 	struct cpu_info *ci;
    359 
    360 	KASSERT(lwp_locked(l, NULL));
    361 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    362 
    363 #ifdef KSTACK_CHECK_MAGIC
    364 	kstack_check_magic(l);
    365 #endif
    366 
    367 	/*
    368 	 * It's safe to read the per CPU schedstate unlocked here, as all we
    369 	 * are after is the run time and that's guarenteed to have been last
    370 	 * updated by this CPU.
    371 	 */
    372 	ci = l->l_cpu;
    373 	KDASSERT(ci == curcpu());
    374 
    375 	/*
    376 	 * Process is about to yield the CPU; clear the appropriate
    377 	 * scheduling flags.
    378 	 */
    379 	spc = &ci->ci_schedstate;
    380 	newl = NULL;
    381 
    382 	if (l->l_switchto != NULL) {
    383 		newl = l->l_switchto;
    384 		l->l_switchto = NULL;
    385 	}
    386 
    387 	/* Count time spent in current system call */
    388 	SYSCALL_TIME_SLEEP(l);
    389 
    390 	/*
    391 	 * XXXSMP If we are using h/w performance counters,
    392 	 * save context.
    393 	 */
    394 #if PERFCTRS
    395 	if (PMC_ENABLED(l->l_proc)) {
    396 		pmc_save_context(l->l_proc);
    397 	}
    398 #endif
    399 	updatertime(l, spc);
    400 
    401 	/*
    402 	 * If on the CPU and we have gotten this far, then we must yield.
    403 	 */
    404 	mutex_spin_enter(spc->spc_mutex);
    405 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    406 	KASSERT(l->l_stat != LSRUN);
    407 	if (l->l_stat == LSONPROC) {
    408 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    409 		if ((l->l_flag & LW_IDLE) == 0) {
    410 			l->l_stat = LSRUN;
    411 			lwp_setlock(l, spc->spc_mutex);
    412 			sched_enqueue(l, true);
    413 		} else
    414 			l->l_stat = LSIDL;
    415 	}
    416 
    417 	/*
    418 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    419 	 * If no LWP is runnable, switch to the idle LWP.
    420 	 */
    421 	if (newl == NULL) {
    422 		newl = sched_nextlwp();
    423 		if (newl != NULL) {
    424 			sched_dequeue(newl);
    425 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    426 			newl->l_stat = LSONPROC;
    427 			newl->l_cpu = ci;
    428 			newl->l_flag |= LW_RUNNING;
    429 			lwp_setlock(newl, &spc->spc_lwplock);
    430 		} else {
    431 			newl = ci->ci_data.cpu_idlelwp;
    432 			newl->l_stat = LSONPROC;
    433 			newl->l_flag |= LW_RUNNING;
    434 		}
    435 		spc->spc_curpriority = newl->l_usrpri;
    436 		newl->l_priority = newl->l_usrpri;
    437 		ci->ci_want_resched = 0;
    438 	}
    439 
    440 	if (l != newl) {
    441 		struct lwp *prevlwp;
    442 
    443 		/*
    444 		 * If the old LWP has been moved to a run queue above,
    445 		 * drop the general purpose LWP lock: it's now locked
    446 		 * by the scheduler lock.
    447 		 *
    448 		 * Otherwise, drop the scheduler lock.  We're done with
    449 		 * the run queues for now.
    450 		 */
    451 		if (l->l_mutex == spc->spc_mutex) {
    452 			mutex_spin_exit(&spc->spc_lwplock);
    453 		} else {
    454 			mutex_spin_exit(spc->spc_mutex);
    455 		}
    456 
    457 		/* Unlocked, but for statistics only. */
    458 		uvmexp.swtch++;
    459 
    460 		/* Save old VM context. */
    461 		pmap_deactivate(l);
    462 
    463 		/* Switch to the new LWP.. */
    464 		l->l_ncsw++;
    465 		l->l_flag &= ~LW_RUNNING;
    466 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    467 		prevlwp = cpu_switchto(l, newl);
    468 
    469 		/*
    470 		 * .. we have switched away and are now back so we must
    471 		 * be the new curlwp.  prevlwp is who we replaced.
    472 		 */
    473 		if (prevlwp != NULL) {
    474 			curcpu()->ci_mtx_oldspl = oldspl;
    475 			lwp_unlock(prevlwp);
    476 		} else {
    477 			splx(oldspl);
    478 		}
    479 
    480 		/* Restore VM context. */
    481 		pmap_activate(l);
    482 		retval = 1;
    483 	} else {
    484 		/* Nothing to do - just unlock and return. */
    485 		mutex_spin_exit(spc->spc_mutex);
    486 		lwp_unlock(l);
    487 		retval = 0;
    488 	}
    489 
    490 	KASSERT(l == curlwp);
    491 	KASSERT(l->l_stat == LSONPROC);
    492 
    493 	/*
    494 	 * XXXSMP If we are using h/w performance counters, restore context.
    495 	 */
    496 #if PERFCTRS
    497 	if (PMC_ENABLED(l->l_proc)) {
    498 		pmc_restore_context(l->l_proc);
    499 	}
    500 #endif
    501 
    502 	/*
    503 	 * We're running again; record our new start time.  We might
    504 	 * be running on a new CPU now, so don't use the cached
    505 	 * schedstate_percpu pointer.
    506 	 */
    507 	SYSCALL_TIME_WAKEUP(l);
    508 	KASSERT(curlwp == l);
    509 	KDASSERT(l->l_cpu == curcpu());
    510 	LOCKDEBUG_BARRIER(NULL, 1);
    511 
    512 	return retval;
    513 }
    514 
    515 /*
    516  * Change process state to be runnable, placing it on the run queue if it is
    517  * in memory, and awakening the swapper if it isn't in memory.
    518  *
    519  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    520  */
    521 void
    522 setrunnable(struct lwp *l)
    523 {
    524 	struct proc *p = l->l_proc;
    525 	sigset_t *ss;
    526 
    527 	KASSERT((l->l_flag & LW_IDLE) == 0);
    528 	KASSERT(mutex_owned(&p->p_smutex));
    529 	KASSERT(lwp_locked(l, NULL));
    530 
    531 	switch (l->l_stat) {
    532 	case LSSTOP:
    533 		/*
    534 		 * If we're being traced (possibly because someone attached us
    535 		 * while we were stopped), check for a signal from the debugger.
    536 		 */
    537 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    538 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    539 				ss = &l->l_sigpend.sp_set;
    540 			else
    541 				ss = &p->p_sigpend.sp_set;
    542 			sigaddset(ss, p->p_xstat);
    543 			signotify(l);
    544 		}
    545 		p->p_nrlwps++;
    546 		break;
    547 	case LSSUSPENDED:
    548 		l->l_flag &= ~LW_WSUSPEND;
    549 		p->p_nrlwps++;
    550 		cv_broadcast(&p->p_lwpcv);
    551 		break;
    552 	case LSSLEEP:
    553 		KASSERT(l->l_wchan != NULL);
    554 		break;
    555 	default:
    556 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    557 	}
    558 
    559 	/*
    560 	 * If the LWP was sleeping interruptably, then it's OK to start it
    561 	 * again.  If not, mark it as still sleeping.
    562 	 */
    563 	if (l->l_wchan != NULL) {
    564 		l->l_stat = LSSLEEP;
    565 		/* lwp_unsleep() will release the lock. */
    566 		lwp_unsleep(l);
    567 		return;
    568 	}
    569 
    570 	/*
    571 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    572 	 * about to call mi_switch(), in which case it will yield.
    573 	 */
    574 	if ((l->l_flag & LW_RUNNING) != 0) {
    575 		l->l_stat = LSONPROC;
    576 		l->l_slptime = 0;
    577 		lwp_unlock(l);
    578 		return;
    579 	}
    580 
    581 	/*
    582 	 * Set the LWP runnable.  If it's swapped out, we need to wake the swapper
    583 	 * to bring it back in.  Otherwise, enter it into a run queue.
    584 	 */
    585 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    586 		spc_lock(l->l_cpu);
    587 		lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
    588 	}
    589 
    590 	sched_setrunnable(l);
    591 	l->l_stat = LSRUN;
    592 	l->l_slptime = 0;
    593 
    594 	if (l->l_flag & LW_INMEM) {
    595 		sched_enqueue(l, false);
    596 		resched_cpu(l);
    597 		lwp_unlock(l);
    598 	} else {
    599 		lwp_unlock(l);
    600 		uvm_kick_scheduler();
    601 	}
    602 }
    603 
    604 /*
    605  * suspendsched:
    606  *
    607  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    608  */
    609 void
    610 suspendsched(void)
    611 {
    612 	CPU_INFO_ITERATOR cii;
    613 	struct cpu_info *ci;
    614 	struct lwp *l;
    615 	struct proc *p;
    616 
    617 	/*
    618 	 * We do this by process in order not to violate the locking rules.
    619 	 */
    620 	mutex_enter(&proclist_mutex);
    621 	PROCLIST_FOREACH(p, &allproc) {
    622 		mutex_enter(&p->p_smutex);
    623 
    624 		if ((p->p_flag & PK_SYSTEM) != 0) {
    625 			mutex_exit(&p->p_smutex);
    626 			continue;
    627 		}
    628 
    629 		p->p_stat = SSTOP;
    630 
    631 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    632 			if (l == curlwp)
    633 				continue;
    634 
    635 			lwp_lock(l);
    636 
    637 			/*
    638 			 * Set L_WREBOOT so that the LWP will suspend itself
    639 			 * when it tries to return to user mode.  We want to
    640 			 * try and get to get as many LWPs as possible to
    641 			 * the user / kernel boundary, so that they will
    642 			 * release any locks that they hold.
    643 			 */
    644 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    645 
    646 			if (l->l_stat == LSSLEEP &&
    647 			    (l->l_flag & LW_SINTR) != 0) {
    648 				/* setrunnable() will release the lock. */
    649 				setrunnable(l);
    650 				continue;
    651 			}
    652 
    653 			lwp_unlock(l);
    654 		}
    655 
    656 		mutex_exit(&p->p_smutex);
    657 	}
    658 	mutex_exit(&proclist_mutex);
    659 
    660 	/*
    661 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    662 	 * They'll trap into the kernel and suspend themselves in userret().
    663 	 */
    664 	for (CPU_INFO_FOREACH(cii, ci))
    665 		cpu_need_resched(ci, 0);
    666 }
    667 
    668 /*
    669  * sched_kpri:
    670  *
    671  *	Scale a priority level to a kernel priority level, usually
    672  *	for an LWP that is about to sleep.
    673  */
    674 pri_t
    675 sched_kpri(struct lwp *l)
    676 {
    677 	/*
    678 	 * Scale user priorities (127 -> 50) up to kernel priorities
    679 	 * in the range (49 -> 8).  Reserve the top 8 kernel priorities
    680 	 * for high priority kthreads.  Kernel priorities passed in
    681 	 * are left "as is".  XXX This is somewhat arbitrary.
    682 	 */
    683 	static const uint8_t kpri_tab[] = {
    684 		 0,   1,   2,   3,   4,   5,   6,   7,
    685 		 8,   9,  10,  11,  12,  13,  14,  15,
    686 		16,  17,  18,  19,  20,  21,  22,  23,
    687 		24,  25,  26,  27,  28,  29,  30,  31,
    688 		32,  33,  34,  35,  36,  37,  38,  39,
    689 		40,  41,  42,  43,  44,  45,  46,  47,
    690 		48,  49,   8,   8,   9,   9,  10,  10,
    691 		11,  11,  12,  12,  13,  14,  14,  15,
    692 		15,  16,  16,  17,  17,  18,  18,  19,
    693 		20,  20,  21,  21,  22,  22,  23,  23,
    694 		24,  24,  25,  26,  26,  27,  27,  28,
    695 		28,  29,  29,  30,  30,  31,  32,  32,
    696 		33,  33,  34,  34,  35,  35,  36,  36,
    697 		37,  38,  38,  39,  39,  40,  40,  41,
    698 		41,  42,  42,  43,  44,  44,  45,  45,
    699 		46,  46,  47,  47,  48,  48,  49,  49,
    700 	};
    701 
    702 	return (pri_t)kpri_tab[l->l_usrpri];
    703 }
    704 
    705 /*
    706  * sched_unsleep:
    707  *
    708  *	The is called when the LWP has not been awoken normally but instead
    709  *	interrupted: for example, if the sleep timed out.  Because of this,
    710  *	it's not a valid action for running or idle LWPs.
    711  */
    712 static void
    713 sched_unsleep(struct lwp *l)
    714 {
    715 
    716 	lwp_unlock(l);
    717 	panic("sched_unsleep");
    718 }
    719 
    720 inline void
    721 resched_cpu(struct lwp *l)
    722 {
    723 	struct cpu_info *ci;
    724 	const pri_t pri = lwp_eprio(l);
    725 
    726 	/*
    727 	 * XXXSMP
    728 	 * Since l->l_cpu persists across a context switch,
    729 	 * this gives us *very weak* processor affinity, in
    730 	 * that we notify the CPU on which the process last
    731 	 * ran that it should try to switch.
    732 	 *
    733 	 * This does not guarantee that the process will run on
    734 	 * that processor next, because another processor might
    735 	 * grab it the next time it performs a context switch.
    736 	 *
    737 	 * This also does not handle the case where its last
    738 	 * CPU is running a higher-priority process, but every
    739 	 * other CPU is running a lower-priority process.  There
    740 	 * are ways to handle this situation, but they're not
    741 	 * currently very pretty, and we also need to weigh the
    742 	 * cost of moving a process from one CPU to another.
    743 	 */
    744 	ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
    745 	if (pri < ci->ci_schedstate.spc_curpriority)
    746 		cpu_need_resched(ci, 0);
    747 }
    748 
    749 static void
    750 sched_changepri(struct lwp *l, pri_t pri)
    751 {
    752 
    753 	KASSERT(lwp_locked(l, NULL));
    754 
    755 	l->l_usrpri = pri;
    756 	if (l->l_priority < PUSER)
    757 		return;
    758 
    759 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    760 		l->l_priority = pri;
    761 		return;
    762 	}
    763 
    764 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    765 
    766 	sched_dequeue(l);
    767 	l->l_priority = pri;
    768 	sched_enqueue(l, false);
    769 	resched_cpu(l);
    770 }
    771 
    772 static void
    773 sched_lendpri(struct lwp *l, pri_t pri)
    774 {
    775 
    776 	KASSERT(lwp_locked(l, NULL));
    777 
    778 	if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
    779 		l->l_inheritedprio = pri;
    780 		return;
    781 	}
    782 
    783 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    784 
    785 	sched_dequeue(l);
    786 	l->l_inheritedprio = pri;
    787 	sched_enqueue(l, false);
    788 	resched_cpu(l);
    789 }
    790 
    791 struct lwp *
    792 syncobj_noowner(wchan_t wchan)
    793 {
    794 
    795 	return NULL;
    796 }
    797 
    798 
    799 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    800 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    801 
    802 /*
    803  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    804  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    805  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    806  *
    807  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    808  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    809  *
    810  * If you dont want to bother with the faster/more-accurate formula, you
    811  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    812  * (more general) method of calculating the %age of CPU used by a process.
    813  */
    814 #define	CCPU_SHIFT	(FSHIFT + 1)
    815 
    816 /*
    817  * sched_pstats:
    818  *
    819  * Update process statistics and check CPU resource allocation.
    820  * Call scheduler-specific hook to eventually adjust process/LWP
    821  * priorities.
    822  *
    823  *	XXXSMP This needs to be reorganised in order to reduce the locking
    824  *	burden.
    825  */
    826 /* ARGSUSED */
    827 void
    828 sched_pstats(void *arg)
    829 {
    830 	struct rlimit *rlim;
    831 	struct lwp *l;
    832 	struct proc *p;
    833 	int minslp, sig, clkhz;
    834 	long runtm;
    835 
    836 	sched_pstats_ticks++;
    837 
    838 	mutex_enter(&proclist_mutex);
    839 	PROCLIST_FOREACH(p, &allproc) {
    840 		/*
    841 		 * Increment time in/out of memory and sleep time (if
    842 		 * sleeping).  We ignore overflow; with 16-bit int's
    843 		 * (remember them?) overflow takes 45 days.
    844 		 */
    845 		minslp = 2;
    846 		mutex_enter(&p->p_smutex);
    847 		mutex_spin_enter(&p->p_stmutex);
    848 		runtm = p->p_rtime.tv_sec;
    849 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    850 			if ((l->l_flag & LW_IDLE) != 0)
    851 				continue;
    852 			lwp_lock(l);
    853 			runtm += l->l_rtime.tv_sec;
    854 			l->l_swtime++;
    855 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    856 			    l->l_stat == LSSUSPENDED) {
    857 				l->l_slptime++;
    858 				minslp = min(minslp, l->l_slptime);
    859 			} else
    860 				minslp = 0;
    861 			lwp_unlock(l);
    862 
    863 			/*
    864 			 * p_pctcpu is only for ps.
    865 			 */
    866 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    867 			if (l->l_slptime < 1) {
    868 				clkhz = stathz != 0 ? stathz : hz;
    869 #if	(FSHIFT >= CCPU_SHIFT)
    870 				l->l_pctcpu += (clkhz == 100) ?
    871 				    ((fixpt_t)l->l_cpticks) <<
    872 				        (FSHIFT - CCPU_SHIFT) :
    873 				    100 * (((fixpt_t) p->p_cpticks)
    874 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    875 #else
    876 				l->l_pctcpu += ((FSCALE - ccpu) *
    877 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    878 #endif
    879 				l->l_cpticks = 0;
    880 			}
    881 		}
    882 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    883 		sched_pstats_hook(p, minslp);
    884 		mutex_spin_exit(&p->p_stmutex);
    885 
    886 		/*
    887 		 * Check if the process exceeds its CPU resource allocation.
    888 		 * If over max, kill it.
    889 		 */
    890 		rlim = &p->p_rlimit[RLIMIT_CPU];
    891 		sig = 0;
    892 		if (runtm >= rlim->rlim_cur) {
    893 			if (runtm >= rlim->rlim_max)
    894 				sig = SIGKILL;
    895 			else {
    896 				sig = SIGXCPU;
    897 				if (rlim->rlim_cur < rlim->rlim_max)
    898 					rlim->rlim_cur += 5;
    899 			}
    900 		}
    901 		mutex_exit(&p->p_smutex);
    902 		if (sig) {
    903 			psignal(p, sig);
    904 		}
    905 	}
    906 	mutex_exit(&proclist_mutex);
    907 	uvm_meter();
    908 	cv_wakeup(&lbolt);
    909 	callout_schedule(&sched_pstats_ch, hz);
    910 }
    911 
    912 void
    913 sched_init(void)
    914 {
    915 
    916 	cv_init(&lbolt, "lbolt");
    917 	callout_init(&sched_pstats_ch, 0);
    918 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    919 	sched_setup();
    920 	sched_pstats(NULL);
    921 }
    922