kern_synch.c revision 1.197 1 /* $NetBSD: kern_synch.c,v 1.197 2007/10/02 13:17:16 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.197 2007/10/02 13:17:16 ad Exp $");
79
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100 #include <sys/evcnt.h>
101
102 #include <uvm/uvm_extern.h>
103
104 callout_t sched_pstats_ch;
105 unsigned int sched_pstats_ticks;
106
107 kcondvar_t lbolt; /* once a second sleep address */
108
109 static void sched_unsleep(struct lwp *);
110 static void sched_changepri(struct lwp *, pri_t);
111 static void sched_lendpri(struct lwp *, pri_t);
112
113 syncobj_t sleep_syncobj = {
114 SOBJ_SLEEPQ_SORTED,
115 sleepq_unsleep,
116 sleepq_changepri,
117 sleepq_lendpri,
118 syncobj_noowner,
119 };
120
121 syncobj_t sched_syncobj = {
122 SOBJ_SLEEPQ_SORTED,
123 sched_unsleep,
124 sched_changepri,
125 sched_lendpri,
126 syncobj_noowner,
127 };
128
129 /*
130 * During autoconfiguration or after a panic, a sleep will simply lower the
131 * priority briefly to allow interrupts, then return. The priority to be
132 * used (safepri) is machine-dependent, thus this value is initialized and
133 * maintained in the machine-dependent layers. This priority will typically
134 * be 0, or the lowest priority that is safe for use on the interrupt stack;
135 * it can be made higher to block network software interrupts after panics.
136 */
137 int safepri;
138
139 /*
140 * OBSOLETE INTERFACE
141 *
142 * General sleep call. Suspends the current process until a wakeup is
143 * performed on the specified identifier. The process will then be made
144 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
145 * means no timeout). If pri includes PCATCH flag, signals are checked
146 * before and after sleeping, else signals are not checked. Returns 0 if
147 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
148 * signal needs to be delivered, ERESTART is returned if the current system
149 * call should be restarted if possible, and EINTR is returned if the system
150 * call should be interrupted by the signal (return EINTR).
151 *
152 * The interlock is held until we are on a sleep queue. The interlock will
153 * be locked before returning back to the caller unless the PNORELOCK flag
154 * is specified, in which case the interlock will always be unlocked upon
155 * return.
156 */
157 int
158 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
159 volatile struct simplelock *interlock)
160 {
161 struct lwp *l = curlwp;
162 sleepq_t *sq;
163 int error;
164
165 if (sleepq_dontsleep(l)) {
166 (void)sleepq_abort(NULL, 0);
167 if ((priority & PNORELOCK) != 0)
168 simple_unlock(interlock);
169 return 0;
170 }
171
172 sq = sleeptab_lookup(&sleeptab, ident);
173 sleepq_enter(sq, l);
174 sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
175
176 if (interlock != NULL) {
177 LOCK_ASSERT(simple_lock_held(interlock));
178 simple_unlock(interlock);
179 }
180
181 error = sleepq_block(timo, priority & PCATCH);
182
183 if (interlock != NULL && (priority & PNORELOCK) == 0)
184 simple_lock(interlock);
185
186 return error;
187 }
188
189 int
190 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
191 kmutex_t *mtx)
192 {
193 struct lwp *l = curlwp;
194 sleepq_t *sq;
195 int error;
196
197 if (sleepq_dontsleep(l)) {
198 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
199 return 0;
200 }
201
202 sq = sleeptab_lookup(&sleeptab, ident);
203 sleepq_enter(sq, l);
204 sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
205 mutex_exit(mtx);
206 error = sleepq_block(timo, priority & PCATCH);
207
208 if ((priority & PNORELOCK) == 0)
209 mutex_enter(mtx);
210
211 return error;
212 }
213
214 /*
215 * General sleep call for situations where a wake-up is not expected.
216 */
217 int
218 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
219 {
220 struct lwp *l = curlwp;
221 sleepq_t *sq;
222 int error;
223
224 if (sleepq_dontsleep(l))
225 return sleepq_abort(NULL, 0);
226
227 if (mtx != NULL)
228 mutex_exit(mtx);
229 sq = sleeptab_lookup(&sleeptab, l);
230 sleepq_enter(sq, l);
231 sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
232 error = sleepq_block(timo, intr);
233 if (mtx != NULL)
234 mutex_enter(mtx);
235
236 return error;
237 }
238
239 /*
240 * OBSOLETE INTERFACE
241 *
242 * Make all processes sleeping on the specified identifier runnable.
243 */
244 void
245 wakeup(wchan_t ident)
246 {
247 sleepq_t *sq;
248
249 if (cold)
250 return;
251
252 sq = sleeptab_lookup(&sleeptab, ident);
253 sleepq_wake(sq, ident, (u_int)-1);
254 }
255
256 /*
257 * OBSOLETE INTERFACE
258 *
259 * Make the highest priority process first in line on the specified
260 * identifier runnable.
261 */
262 void
263 wakeup_one(wchan_t ident)
264 {
265 sleepq_t *sq;
266
267 if (cold)
268 return;
269
270 sq = sleeptab_lookup(&sleeptab, ident);
271 sleepq_wake(sq, ident, 1);
272 }
273
274
275 /*
276 * General yield call. Puts the current process back on its run queue and
277 * performs a voluntary context switch. Should only be called when the
278 * current process explicitly requests it (eg sched_yield(2) in compat code).
279 */
280 void
281 yield(void)
282 {
283 struct lwp *l = curlwp;
284
285 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
286 lwp_lock(l);
287 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
288 KASSERT(l->l_stat == LSONPROC);
289 l->l_priority = l->l_usrpri;
290 (void)mi_switch(l);
291 KERNEL_LOCK(l->l_biglocks, l);
292 }
293
294 /*
295 * General preemption call. Puts the current process back on its run queue
296 * and performs an involuntary context switch.
297 */
298 void
299 preempt(void)
300 {
301 struct lwp *l = curlwp;
302
303 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
304 lwp_lock(l);
305 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
306 KASSERT(l->l_stat == LSONPROC);
307 l->l_priority = l->l_usrpri;
308 l->l_nivcsw++;
309 (void)mi_switch(l);
310 KERNEL_LOCK(l->l_biglocks, l);
311 }
312
313 /*
314 * Compute the amount of time during which the current lwp was running.
315 *
316 * - update l_rtime unless it's an idle lwp.
317 * - update spc_runtime for the next lwp.
318 */
319
320 static inline void
321 updatertime(struct lwp *l, struct schedstate_percpu *spc)
322 {
323 struct timeval tv;
324 long s, u;
325
326 if ((l->l_flag & LW_IDLE) != 0) {
327 microtime(&spc->spc_runtime);
328 return;
329 }
330
331 microtime(&tv);
332 u = l->l_rtime.tv_usec + (tv.tv_usec - spc->spc_runtime.tv_usec);
333 s = l->l_rtime.tv_sec + (tv.tv_sec - spc->spc_runtime.tv_sec);
334 if (u < 0) {
335 u += 1000000;
336 s--;
337 } else if (u >= 1000000) {
338 u -= 1000000;
339 s++;
340 }
341 l->l_rtime.tv_usec = u;
342 l->l_rtime.tv_sec = s;
343
344 spc->spc_runtime = tv;
345 }
346
347 /*
348 * The machine independent parts of context switch.
349 *
350 * Returns 1 if another LWP was actually run.
351 */
352 int
353 mi_switch(struct lwp *l)
354 {
355 struct schedstate_percpu *spc;
356 struct lwp *newl;
357 int retval, oldspl;
358 struct cpu_info *ci;
359
360 KASSERT(lwp_locked(l, NULL));
361 LOCKDEBUG_BARRIER(l->l_mutex, 1);
362
363 #ifdef KSTACK_CHECK_MAGIC
364 kstack_check_magic(l);
365 #endif
366
367 /*
368 * It's safe to read the per CPU schedstate unlocked here, as all we
369 * are after is the run time and that's guarenteed to have been last
370 * updated by this CPU.
371 */
372 ci = l->l_cpu;
373 KDASSERT(ci == curcpu());
374
375 /*
376 * Process is about to yield the CPU; clear the appropriate
377 * scheduling flags.
378 */
379 spc = &ci->ci_schedstate;
380 newl = NULL;
381
382 if (l->l_switchto != NULL) {
383 newl = l->l_switchto;
384 l->l_switchto = NULL;
385 }
386
387 /* Count time spent in current system call */
388 SYSCALL_TIME_SLEEP(l);
389
390 /*
391 * XXXSMP If we are using h/w performance counters,
392 * save context.
393 */
394 #if PERFCTRS
395 if (PMC_ENABLED(l->l_proc)) {
396 pmc_save_context(l->l_proc);
397 }
398 #endif
399 updatertime(l, spc);
400
401 /*
402 * If on the CPU and we have gotten this far, then we must yield.
403 */
404 mutex_spin_enter(spc->spc_mutex);
405 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
406 KASSERT(l->l_stat != LSRUN);
407 if (l->l_stat == LSONPROC) {
408 KASSERT(lwp_locked(l, &spc->spc_lwplock));
409 if ((l->l_flag & LW_IDLE) == 0) {
410 l->l_stat = LSRUN;
411 lwp_setlock(l, spc->spc_mutex);
412 sched_enqueue(l, true);
413 } else
414 l->l_stat = LSIDL;
415 }
416
417 /*
418 * Let sched_nextlwp() select the LWP to run the CPU next.
419 * If no LWP is runnable, switch to the idle LWP.
420 */
421 if (newl == NULL) {
422 newl = sched_nextlwp();
423 if (newl != NULL) {
424 sched_dequeue(newl);
425 KASSERT(lwp_locked(newl, spc->spc_mutex));
426 newl->l_stat = LSONPROC;
427 newl->l_cpu = ci;
428 newl->l_flag |= LW_RUNNING;
429 lwp_setlock(newl, &spc->spc_lwplock);
430 } else {
431 newl = ci->ci_data.cpu_idlelwp;
432 newl->l_stat = LSONPROC;
433 newl->l_flag |= LW_RUNNING;
434 }
435 spc->spc_curpriority = newl->l_usrpri;
436 newl->l_priority = newl->l_usrpri;
437 ci->ci_want_resched = 0;
438 }
439
440 if (l != newl) {
441 struct lwp *prevlwp;
442
443 /*
444 * If the old LWP has been moved to a run queue above,
445 * drop the general purpose LWP lock: it's now locked
446 * by the scheduler lock.
447 *
448 * Otherwise, drop the scheduler lock. We're done with
449 * the run queues for now.
450 */
451 if (l->l_mutex == spc->spc_mutex) {
452 mutex_spin_exit(&spc->spc_lwplock);
453 } else {
454 mutex_spin_exit(spc->spc_mutex);
455 }
456
457 /* Unlocked, but for statistics only. */
458 uvmexp.swtch++;
459
460 /* Save old VM context. */
461 pmap_deactivate(l);
462
463 /* Switch to the new LWP.. */
464 l->l_ncsw++;
465 l->l_flag &= ~LW_RUNNING;
466 oldspl = MUTEX_SPIN_OLDSPL(ci);
467 prevlwp = cpu_switchto(l, newl);
468
469 /*
470 * .. we have switched away and are now back so we must
471 * be the new curlwp. prevlwp is who we replaced.
472 */
473 if (prevlwp != NULL) {
474 curcpu()->ci_mtx_oldspl = oldspl;
475 lwp_unlock(prevlwp);
476 } else {
477 splx(oldspl);
478 }
479
480 /* Restore VM context. */
481 pmap_activate(l);
482 retval = 1;
483 } else {
484 /* Nothing to do - just unlock and return. */
485 mutex_spin_exit(spc->spc_mutex);
486 lwp_unlock(l);
487 retval = 0;
488 }
489
490 KASSERT(l == curlwp);
491 KASSERT(l->l_stat == LSONPROC);
492
493 /*
494 * XXXSMP If we are using h/w performance counters, restore context.
495 */
496 #if PERFCTRS
497 if (PMC_ENABLED(l->l_proc)) {
498 pmc_restore_context(l->l_proc);
499 }
500 #endif
501
502 /*
503 * We're running again; record our new start time. We might
504 * be running on a new CPU now, so don't use the cached
505 * schedstate_percpu pointer.
506 */
507 SYSCALL_TIME_WAKEUP(l);
508 KASSERT(curlwp == l);
509 KDASSERT(l->l_cpu == curcpu());
510 LOCKDEBUG_BARRIER(NULL, 1);
511
512 return retval;
513 }
514
515 /*
516 * Change process state to be runnable, placing it on the run queue if it is
517 * in memory, and awakening the swapper if it isn't in memory.
518 *
519 * Call with the process and LWP locked. Will return with the LWP unlocked.
520 */
521 void
522 setrunnable(struct lwp *l)
523 {
524 struct proc *p = l->l_proc;
525 sigset_t *ss;
526
527 KASSERT((l->l_flag & LW_IDLE) == 0);
528 KASSERT(mutex_owned(&p->p_smutex));
529 KASSERT(lwp_locked(l, NULL));
530
531 switch (l->l_stat) {
532 case LSSTOP:
533 /*
534 * If we're being traced (possibly because someone attached us
535 * while we were stopped), check for a signal from the debugger.
536 */
537 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
538 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
539 ss = &l->l_sigpend.sp_set;
540 else
541 ss = &p->p_sigpend.sp_set;
542 sigaddset(ss, p->p_xstat);
543 signotify(l);
544 }
545 p->p_nrlwps++;
546 break;
547 case LSSUSPENDED:
548 l->l_flag &= ~LW_WSUSPEND;
549 p->p_nrlwps++;
550 cv_broadcast(&p->p_lwpcv);
551 break;
552 case LSSLEEP:
553 KASSERT(l->l_wchan != NULL);
554 break;
555 default:
556 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
557 }
558
559 /*
560 * If the LWP was sleeping interruptably, then it's OK to start it
561 * again. If not, mark it as still sleeping.
562 */
563 if (l->l_wchan != NULL) {
564 l->l_stat = LSSLEEP;
565 /* lwp_unsleep() will release the lock. */
566 lwp_unsleep(l);
567 return;
568 }
569
570 /*
571 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
572 * about to call mi_switch(), in which case it will yield.
573 */
574 if ((l->l_flag & LW_RUNNING) != 0) {
575 l->l_stat = LSONPROC;
576 l->l_slptime = 0;
577 lwp_unlock(l);
578 return;
579 }
580
581 /*
582 * Set the LWP runnable. If it's swapped out, we need to wake the swapper
583 * to bring it back in. Otherwise, enter it into a run queue.
584 */
585 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
586 spc_lock(l->l_cpu);
587 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_mutex);
588 }
589
590 sched_setrunnable(l);
591 l->l_stat = LSRUN;
592 l->l_slptime = 0;
593
594 if (l->l_flag & LW_INMEM) {
595 sched_enqueue(l, false);
596 resched_cpu(l);
597 lwp_unlock(l);
598 } else {
599 lwp_unlock(l);
600 uvm_kick_scheduler();
601 }
602 }
603
604 /*
605 * suspendsched:
606 *
607 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
608 */
609 void
610 suspendsched(void)
611 {
612 CPU_INFO_ITERATOR cii;
613 struct cpu_info *ci;
614 struct lwp *l;
615 struct proc *p;
616
617 /*
618 * We do this by process in order not to violate the locking rules.
619 */
620 mutex_enter(&proclist_mutex);
621 PROCLIST_FOREACH(p, &allproc) {
622 mutex_enter(&p->p_smutex);
623
624 if ((p->p_flag & PK_SYSTEM) != 0) {
625 mutex_exit(&p->p_smutex);
626 continue;
627 }
628
629 p->p_stat = SSTOP;
630
631 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
632 if (l == curlwp)
633 continue;
634
635 lwp_lock(l);
636
637 /*
638 * Set L_WREBOOT so that the LWP will suspend itself
639 * when it tries to return to user mode. We want to
640 * try and get to get as many LWPs as possible to
641 * the user / kernel boundary, so that they will
642 * release any locks that they hold.
643 */
644 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
645
646 if (l->l_stat == LSSLEEP &&
647 (l->l_flag & LW_SINTR) != 0) {
648 /* setrunnable() will release the lock. */
649 setrunnable(l);
650 continue;
651 }
652
653 lwp_unlock(l);
654 }
655
656 mutex_exit(&p->p_smutex);
657 }
658 mutex_exit(&proclist_mutex);
659
660 /*
661 * Kick all CPUs to make them preempt any LWPs running in user mode.
662 * They'll trap into the kernel and suspend themselves in userret().
663 */
664 for (CPU_INFO_FOREACH(cii, ci))
665 cpu_need_resched(ci, 0);
666 }
667
668 /*
669 * sched_kpri:
670 *
671 * Scale a priority level to a kernel priority level, usually
672 * for an LWP that is about to sleep.
673 */
674 pri_t
675 sched_kpri(struct lwp *l)
676 {
677 /*
678 * Scale user priorities (127 -> 50) up to kernel priorities
679 * in the range (49 -> 8). Reserve the top 8 kernel priorities
680 * for high priority kthreads. Kernel priorities passed in
681 * are left "as is". XXX This is somewhat arbitrary.
682 */
683 static const uint8_t kpri_tab[] = {
684 0, 1, 2, 3, 4, 5, 6, 7,
685 8, 9, 10, 11, 12, 13, 14, 15,
686 16, 17, 18, 19, 20, 21, 22, 23,
687 24, 25, 26, 27, 28, 29, 30, 31,
688 32, 33, 34, 35, 36, 37, 38, 39,
689 40, 41, 42, 43, 44, 45, 46, 47,
690 48, 49, 8, 8, 9, 9, 10, 10,
691 11, 11, 12, 12, 13, 14, 14, 15,
692 15, 16, 16, 17, 17, 18, 18, 19,
693 20, 20, 21, 21, 22, 22, 23, 23,
694 24, 24, 25, 26, 26, 27, 27, 28,
695 28, 29, 29, 30, 30, 31, 32, 32,
696 33, 33, 34, 34, 35, 35, 36, 36,
697 37, 38, 38, 39, 39, 40, 40, 41,
698 41, 42, 42, 43, 44, 44, 45, 45,
699 46, 46, 47, 47, 48, 48, 49, 49,
700 };
701
702 return (pri_t)kpri_tab[l->l_usrpri];
703 }
704
705 /*
706 * sched_unsleep:
707 *
708 * The is called when the LWP has not been awoken normally but instead
709 * interrupted: for example, if the sleep timed out. Because of this,
710 * it's not a valid action for running or idle LWPs.
711 */
712 static void
713 sched_unsleep(struct lwp *l)
714 {
715
716 lwp_unlock(l);
717 panic("sched_unsleep");
718 }
719
720 inline void
721 resched_cpu(struct lwp *l)
722 {
723 struct cpu_info *ci;
724 const pri_t pri = lwp_eprio(l);
725
726 /*
727 * XXXSMP
728 * Since l->l_cpu persists across a context switch,
729 * this gives us *very weak* processor affinity, in
730 * that we notify the CPU on which the process last
731 * ran that it should try to switch.
732 *
733 * This does not guarantee that the process will run on
734 * that processor next, because another processor might
735 * grab it the next time it performs a context switch.
736 *
737 * This also does not handle the case where its last
738 * CPU is running a higher-priority process, but every
739 * other CPU is running a lower-priority process. There
740 * are ways to handle this situation, but they're not
741 * currently very pretty, and we also need to weigh the
742 * cost of moving a process from one CPU to another.
743 */
744 ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
745 if (pri < ci->ci_schedstate.spc_curpriority)
746 cpu_need_resched(ci, 0);
747 }
748
749 static void
750 sched_changepri(struct lwp *l, pri_t pri)
751 {
752
753 KASSERT(lwp_locked(l, NULL));
754
755 l->l_usrpri = pri;
756 if (l->l_priority < PUSER)
757 return;
758
759 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
760 l->l_priority = pri;
761 return;
762 }
763
764 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
765
766 sched_dequeue(l);
767 l->l_priority = pri;
768 sched_enqueue(l, false);
769 resched_cpu(l);
770 }
771
772 static void
773 sched_lendpri(struct lwp *l, pri_t pri)
774 {
775
776 KASSERT(lwp_locked(l, NULL));
777
778 if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
779 l->l_inheritedprio = pri;
780 return;
781 }
782
783 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
784
785 sched_dequeue(l);
786 l->l_inheritedprio = pri;
787 sched_enqueue(l, false);
788 resched_cpu(l);
789 }
790
791 struct lwp *
792 syncobj_noowner(wchan_t wchan)
793 {
794
795 return NULL;
796 }
797
798
799 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
800 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
801
802 /*
803 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
804 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
805 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
806 *
807 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
808 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
809 *
810 * If you dont want to bother with the faster/more-accurate formula, you
811 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
812 * (more general) method of calculating the %age of CPU used by a process.
813 */
814 #define CCPU_SHIFT (FSHIFT + 1)
815
816 /*
817 * sched_pstats:
818 *
819 * Update process statistics and check CPU resource allocation.
820 * Call scheduler-specific hook to eventually adjust process/LWP
821 * priorities.
822 *
823 * XXXSMP This needs to be reorganised in order to reduce the locking
824 * burden.
825 */
826 /* ARGSUSED */
827 void
828 sched_pstats(void *arg)
829 {
830 struct rlimit *rlim;
831 struct lwp *l;
832 struct proc *p;
833 int minslp, sig, clkhz;
834 long runtm;
835
836 sched_pstats_ticks++;
837
838 mutex_enter(&proclist_mutex);
839 PROCLIST_FOREACH(p, &allproc) {
840 /*
841 * Increment time in/out of memory and sleep time (if
842 * sleeping). We ignore overflow; with 16-bit int's
843 * (remember them?) overflow takes 45 days.
844 */
845 minslp = 2;
846 mutex_enter(&p->p_smutex);
847 mutex_spin_enter(&p->p_stmutex);
848 runtm = p->p_rtime.tv_sec;
849 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
850 if ((l->l_flag & LW_IDLE) != 0)
851 continue;
852 lwp_lock(l);
853 runtm += l->l_rtime.tv_sec;
854 l->l_swtime++;
855 if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
856 l->l_stat == LSSUSPENDED) {
857 l->l_slptime++;
858 minslp = min(minslp, l->l_slptime);
859 } else
860 minslp = 0;
861 lwp_unlock(l);
862
863 /*
864 * p_pctcpu is only for ps.
865 */
866 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
867 if (l->l_slptime < 1) {
868 clkhz = stathz != 0 ? stathz : hz;
869 #if (FSHIFT >= CCPU_SHIFT)
870 l->l_pctcpu += (clkhz == 100) ?
871 ((fixpt_t)l->l_cpticks) <<
872 (FSHIFT - CCPU_SHIFT) :
873 100 * (((fixpt_t) p->p_cpticks)
874 << (FSHIFT - CCPU_SHIFT)) / clkhz;
875 #else
876 l->l_pctcpu += ((FSCALE - ccpu) *
877 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
878 #endif
879 l->l_cpticks = 0;
880 }
881 }
882 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
883 sched_pstats_hook(p, minslp);
884 mutex_spin_exit(&p->p_stmutex);
885
886 /*
887 * Check if the process exceeds its CPU resource allocation.
888 * If over max, kill it.
889 */
890 rlim = &p->p_rlimit[RLIMIT_CPU];
891 sig = 0;
892 if (runtm >= rlim->rlim_cur) {
893 if (runtm >= rlim->rlim_max)
894 sig = SIGKILL;
895 else {
896 sig = SIGXCPU;
897 if (rlim->rlim_cur < rlim->rlim_max)
898 rlim->rlim_cur += 5;
899 }
900 }
901 mutex_exit(&p->p_smutex);
902 if (sig) {
903 psignal(p, sig);
904 }
905 }
906 mutex_exit(&proclist_mutex);
907 uvm_meter();
908 cv_wakeup(&lbolt);
909 callout_schedule(&sched_pstats_ch, hz);
910 }
911
912 void
913 sched_init(void)
914 {
915
916 cv_init(&lbolt, "lbolt");
917 callout_init(&sched_pstats_ch, 0);
918 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
919 sched_setup();
920 sched_pstats(NULL);
921 }
922