kern_synch.c revision 1.205 1 /* $NetBSD: kern_synch.c,v 1.205 2007/11/06 17:57:46 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.205 2007/11/06 17:57:46 ad Exp $");
79
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100 #include <sys/evcnt.h>
101 #include <sys/intr.h>
102
103 #include <uvm/uvm_extern.h>
104
105 callout_t sched_pstats_ch;
106 unsigned int sched_pstats_ticks;
107
108 kcondvar_t lbolt; /* once a second sleep address */
109
110 static void sched_unsleep(struct lwp *);
111 static void sched_changepri(struct lwp *, pri_t);
112 static void sched_lendpri(struct lwp *, pri_t);
113
114 syncobj_t sleep_syncobj = {
115 SOBJ_SLEEPQ_SORTED,
116 sleepq_unsleep,
117 sleepq_changepri,
118 sleepq_lendpri,
119 syncobj_noowner,
120 };
121
122 syncobj_t sched_syncobj = {
123 SOBJ_SLEEPQ_SORTED,
124 sched_unsleep,
125 sched_changepri,
126 sched_lendpri,
127 syncobj_noowner,
128 };
129
130 /*
131 * During autoconfiguration or after a panic, a sleep will simply lower the
132 * priority briefly to allow interrupts, then return. The priority to be
133 * used (safepri) is machine-dependent, thus this value is initialized and
134 * maintained in the machine-dependent layers. This priority will typically
135 * be 0, or the lowest priority that is safe for use on the interrupt stack;
136 * it can be made higher to block network software interrupts after panics.
137 */
138 int safepri;
139
140 /*
141 * OBSOLETE INTERFACE
142 *
143 * General sleep call. Suspends the current process until a wakeup is
144 * performed on the specified identifier. The process will then be made
145 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
146 * means no timeout). If pri includes PCATCH flag, signals are checked
147 * before and after sleeping, else signals are not checked. Returns 0 if
148 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
149 * signal needs to be delivered, ERESTART is returned if the current system
150 * call should be restarted if possible, and EINTR is returned if the system
151 * call should be interrupted by the signal (return EINTR).
152 *
153 * The interlock is held until we are on a sleep queue. The interlock will
154 * be locked before returning back to the caller unless the PNORELOCK flag
155 * is specified, in which case the interlock will always be unlocked upon
156 * return.
157 */
158 int
159 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
160 volatile struct simplelock *interlock)
161 {
162 struct lwp *l = curlwp;
163 sleepq_t *sq;
164 int error;
165
166 KASSERT((l->l_pflag & LP_INTR) == 0);
167
168 if (sleepq_dontsleep(l)) {
169 (void)sleepq_abort(NULL, 0);
170 if ((priority & PNORELOCK) != 0)
171 simple_unlock(interlock);
172 return 0;
173 }
174
175 l->l_kpriority = true;
176 sq = sleeptab_lookup(&sleeptab, ident);
177 sleepq_enter(sq, l);
178 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
179
180 if (interlock != NULL) {
181 KASSERT(simple_lock_held(interlock));
182 simple_unlock(interlock);
183 }
184
185 error = sleepq_block(timo, priority & PCATCH);
186
187 if (interlock != NULL && (priority & PNORELOCK) == 0)
188 simple_lock(interlock);
189
190 return error;
191 }
192
193 int
194 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
195 kmutex_t *mtx)
196 {
197 struct lwp *l = curlwp;
198 sleepq_t *sq;
199 int error;
200
201 KASSERT((l->l_pflag & LP_INTR) == 0);
202
203 if (sleepq_dontsleep(l)) {
204 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
205 return 0;
206 }
207
208 l->l_kpriority = true;
209 sq = sleeptab_lookup(&sleeptab, ident);
210 sleepq_enter(sq, l);
211 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
212 mutex_exit(mtx);
213 error = sleepq_block(timo, priority & PCATCH);
214
215 if ((priority & PNORELOCK) == 0)
216 mutex_enter(mtx);
217
218 return error;
219 }
220
221 /*
222 * General sleep call for situations where a wake-up is not expected.
223 */
224 int
225 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
226 {
227 struct lwp *l = curlwp;
228 sleepq_t *sq;
229 int error;
230
231 if (sleepq_dontsleep(l))
232 return sleepq_abort(NULL, 0);
233
234 if (mtx != NULL)
235 mutex_exit(mtx);
236 l->l_kpriority = true;
237 sq = sleeptab_lookup(&sleeptab, l);
238 sleepq_enter(sq, l);
239 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
240 error = sleepq_block(timo, intr);
241 if (mtx != NULL)
242 mutex_enter(mtx);
243
244 return error;
245 }
246
247 /*
248 * OBSOLETE INTERFACE
249 *
250 * Make all processes sleeping on the specified identifier runnable.
251 */
252 void
253 wakeup(wchan_t ident)
254 {
255 sleepq_t *sq;
256
257 if (cold)
258 return;
259
260 sq = sleeptab_lookup(&sleeptab, ident);
261 sleepq_wake(sq, ident, (u_int)-1);
262 }
263
264 /*
265 * OBSOLETE INTERFACE
266 *
267 * Make the highest priority process first in line on the specified
268 * identifier runnable.
269 */
270 void
271 wakeup_one(wchan_t ident)
272 {
273 sleepq_t *sq;
274
275 if (cold)
276 return;
277
278 sq = sleeptab_lookup(&sleeptab, ident);
279 sleepq_wake(sq, ident, 1);
280 }
281
282
283 /*
284 * General yield call. Puts the current process back on its run queue and
285 * performs a voluntary context switch. Should only be called when the
286 * current process explicitly requests it (eg sched_yield(2)).
287 */
288 void
289 yield(void)
290 {
291 struct lwp *l = curlwp;
292
293 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
294 lwp_lock(l);
295 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
296 KASSERT(l->l_stat == LSONPROC);
297 l->l_kpriority = false;
298 if (l->l_class == SCHED_OTHER) {
299 /*
300 * Only for timeshared threads. It will be reset
301 * by the scheduler in due course.
302 */
303 l->l_priority = 0;
304 }
305 (void)mi_switch(l);
306 KERNEL_LOCK(l->l_biglocks, l);
307 }
308
309 /*
310 * General preemption call. Puts the current process back on its run queue
311 * and performs an involuntary context switch.
312 */
313 void
314 preempt(void)
315 {
316 struct lwp *l = curlwp;
317
318 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
319 lwp_lock(l);
320 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
321 KASSERT(l->l_stat == LSONPROC);
322 l->l_kpriority = false;
323 l->l_nivcsw++;
324 (void)mi_switch(l);
325 KERNEL_LOCK(l->l_biglocks, l);
326 }
327
328 /*
329 * Compute the amount of time during which the current lwp was running.
330 *
331 * - update l_rtime unless it's an idle lwp.
332 */
333
334 void
335 updatertime(lwp_t *l, const struct timeval *tv)
336 {
337 long s, u;
338
339 if ((l->l_flag & LW_IDLE) != 0)
340 return;
341
342 u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
343 s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
344 if (u < 0) {
345 u += 1000000;
346 s--;
347 } else if (u >= 1000000) {
348 u -= 1000000;
349 s++;
350 }
351 l->l_rtime.tv_usec = u;
352 l->l_rtime.tv_sec = s;
353 }
354
355 /*
356 * The machine independent parts of context switch.
357 *
358 * Returns 1 if another LWP was actually run.
359 */
360 int
361 mi_switch(lwp_t *l)
362 {
363 struct schedstate_percpu *spc;
364 struct lwp *newl;
365 int retval, oldspl;
366 struct cpu_info *ci;
367 struct timeval tv;
368 bool returning;
369
370 KASSERT(lwp_locked(l, NULL));
371 LOCKDEBUG_BARRIER(l->l_mutex, 1);
372
373 #ifdef KSTACK_CHECK_MAGIC
374 kstack_check_magic(l);
375 #endif
376
377 microtime(&tv);
378
379 /*
380 * It's safe to read the per CPU schedstate unlocked here, as all we
381 * are after is the run time and that's guarenteed to have been last
382 * updated by this CPU.
383 */
384 ci = l->l_cpu;
385 KDASSERT(ci == curcpu());
386
387 /*
388 * Process is about to yield the CPU; clear the appropriate
389 * scheduling flags.
390 */
391 spc = &ci->ci_schedstate;
392 returning = false;
393 newl = NULL;
394
395 /*
396 * If we have been asked to switch to a specific LWP, then there
397 * is no need to inspect the run queues. If a soft interrupt is
398 * blocking, then return to the interrupted thread without adjusting
399 * VM context or its start time: neither have been changed in order
400 * to take the interrupt.
401 */
402 if (l->l_switchto != NULL) {
403 if ((l->l_pflag & LP_INTR) != 0) {
404 returning = true;
405 softint_block(l);
406 if ((l->l_flag & LW_TIMEINTR) != 0)
407 updatertime(l, &tv);
408 }
409 newl = l->l_switchto;
410 l->l_switchto = NULL;
411 }
412 #ifndef __HAVE_FAST_SOFTINTS
413 else if (ci->ci_data.cpu_softints != 0) {
414 /* There are pending soft interrupts, so pick one. */
415 newl = softint_picklwp();
416 newl->l_stat = LSONPROC;
417 newl->l_flag |= LW_RUNNING;
418 }
419 #endif /* !__HAVE_FAST_SOFTINTS */
420
421 /* Count time spent in current system call */
422 if (!returning) {
423 SYSCALL_TIME_SLEEP(l);
424
425 /*
426 * XXXSMP If we are using h/w performance counters,
427 * save context.
428 */
429 #if PERFCTRS
430 if (PMC_ENABLED(l->l_proc)) {
431 pmc_save_context(l->l_proc);
432 }
433 #endif
434 updatertime(l, &tv);
435 }
436
437 /*
438 * If on the CPU and we have gotten this far, then we must yield.
439 */
440 mutex_spin_enter(spc->spc_mutex);
441 KASSERT(l->l_stat != LSRUN);
442 if (l->l_stat == LSONPROC && l != newl) {
443 KASSERT(lwp_locked(l, &spc->spc_lwplock));
444 if ((l->l_flag & LW_IDLE) == 0) {
445 l->l_stat = LSRUN;
446 lwp_setlock(l, spc->spc_mutex);
447 sched_enqueue(l, true);
448 } else
449 l->l_stat = LSIDL;
450 }
451
452 /*
453 * Let sched_nextlwp() select the LWP to run the CPU next.
454 * If no LWP is runnable, switch to the idle LWP.
455 * Note that spc_lwplock might not necessary be held.
456 */
457 if (newl == NULL) {
458 newl = sched_nextlwp();
459 if (newl != NULL) {
460 sched_dequeue(newl);
461 KASSERT(lwp_locked(newl, spc->spc_mutex));
462 newl->l_stat = LSONPROC;
463 newl->l_cpu = ci;
464 newl->l_flag |= LW_RUNNING;
465 lwp_setlock(newl, &spc->spc_lwplock);
466 } else {
467 newl = ci->ci_data.cpu_idlelwp;
468 newl->l_stat = LSONPROC;
469 newl->l_flag |= LW_RUNNING;
470 }
471 /*
472 * Only clear want_resched if there are no
473 * pending (slow) software interrupts.
474 */
475 ci->ci_want_resched = ci->ci_data.cpu_softints;
476 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
477 spc->spc_curpriority = lwp_eprio(newl);
478 }
479
480 /* Items that must be updated with the CPU locked. */
481 if (!returning) {
482 /* Update the new LWP's start time. */
483 newl->l_stime = tv;
484
485 /*
486 * ci_curlwp changes when a fast soft interrupt occurs.
487 * We use cpu_onproc to keep track of which kernel or
488 * user thread is running 'underneath' the software
489 * interrupt. This is important for time accounting,
490 * itimers and forcing user threads to preempt (aston).
491 */
492 ci->ci_data.cpu_onproc = newl;
493 }
494
495 if (l != newl) {
496 struct lwp *prevlwp;
497
498 /*
499 * If the old LWP has been moved to a run queue above,
500 * drop the general purpose LWP lock: it's now locked
501 * by the scheduler lock.
502 *
503 * Otherwise, drop the scheduler lock. We're done with
504 * the run queues for now.
505 */
506 if (l->l_mutex == spc->spc_mutex) {
507 mutex_spin_exit(&spc->spc_lwplock);
508 } else {
509 mutex_spin_exit(spc->spc_mutex);
510 }
511
512 /* Unlocked, but for statistics only. */
513 uvmexp.swtch++;
514
515 /*
516 * Save old VM context, unless a soft interrupt
517 * handler is blocking.
518 */
519 if (!returning)
520 pmap_deactivate(l);
521
522 /* Switch to the new LWP.. */
523 l->l_ncsw++;
524 l->l_flag &= ~LW_RUNNING;
525 oldspl = MUTEX_SPIN_OLDSPL(ci);
526 prevlwp = cpu_switchto(l, newl, returning);
527 /*
528 * .. we have switched away and are now back so we must
529 * be the new curlwp. prevlwp is who we replaced.
530 */
531 if (prevlwp != NULL) {
532 curcpu()->ci_mtx_oldspl = oldspl;
533 lwp_unlock(prevlwp);
534 } else {
535 splx(oldspl);
536 }
537
538 /* Restore VM context. */
539 pmap_activate(l);
540 retval = 1;
541 } else {
542 /* Nothing to do - just unlock and return. */
543 mutex_spin_exit(spc->spc_mutex);
544 lwp_unlock(l);
545 retval = 0;
546 }
547
548 KASSERT(l == curlwp);
549 KASSERT(l->l_stat == LSONPROC);
550 KASSERT(l->l_cpu == curcpu());
551
552 /*
553 * XXXSMP If we are using h/w performance counters, restore context.
554 */
555 #if PERFCTRS
556 if (PMC_ENABLED(l->l_proc)) {
557 pmc_restore_context(l->l_proc);
558 }
559 #endif
560
561 /*
562 * We're running again; record our new start time. We might
563 * be running on a new CPU now, so don't use the cached
564 * schedstate_percpu pointer.
565 */
566 SYSCALL_TIME_WAKEUP(l);
567 KASSERT(curlwp == l);
568 KDASSERT(l->l_cpu == curcpu());
569 LOCKDEBUG_BARRIER(NULL, 1);
570
571 return retval;
572 }
573
574 /*
575 * Change process state to be runnable, placing it on the run queue if it is
576 * in memory, and awakening the swapper if it isn't in memory.
577 *
578 * Call with the process and LWP locked. Will return with the LWP unlocked.
579 */
580 void
581 setrunnable(struct lwp *l)
582 {
583 struct proc *p = l->l_proc;
584 struct cpu_info *ci;
585 sigset_t *ss;
586
587 KASSERT((l->l_flag & LW_IDLE) == 0);
588 KASSERT(mutex_owned(&p->p_smutex));
589 KASSERT(lwp_locked(l, NULL));
590 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
591
592 switch (l->l_stat) {
593 case LSSTOP:
594 /*
595 * If we're being traced (possibly because someone attached us
596 * while we were stopped), check for a signal from the debugger.
597 */
598 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
599 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
600 ss = &l->l_sigpend.sp_set;
601 else
602 ss = &p->p_sigpend.sp_set;
603 sigaddset(ss, p->p_xstat);
604 signotify(l);
605 }
606 p->p_nrlwps++;
607 break;
608 case LSSUSPENDED:
609 l->l_flag &= ~LW_WSUSPEND;
610 p->p_nrlwps++;
611 cv_broadcast(&p->p_lwpcv);
612 break;
613 case LSSLEEP:
614 KASSERT(l->l_wchan != NULL);
615 break;
616 default:
617 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
618 }
619
620 /*
621 * If the LWP was sleeping interruptably, then it's OK to start it
622 * again. If not, mark it as still sleeping.
623 */
624 if (l->l_wchan != NULL) {
625 l->l_stat = LSSLEEP;
626 /* lwp_unsleep() will release the lock. */
627 lwp_unsleep(l);
628 return;
629 }
630
631 /*
632 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
633 * about to call mi_switch(), in which case it will yield.
634 */
635 if ((l->l_flag & LW_RUNNING) != 0) {
636 l->l_stat = LSONPROC;
637 l->l_slptime = 0;
638 lwp_unlock(l);
639 return;
640 }
641
642 /*
643 * Look for a CPU to run.
644 * Set the LWP runnable.
645 */
646 ci = sched_takecpu(l);
647 ci = l->l_cpu;
648 spc_lock(ci);
649 l->l_cpu = ci;
650 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
651
652 sched_setrunnable(l);
653 l->l_stat = LSRUN;
654 l->l_slptime = 0;
655
656 /*
657 * If thread is swapped out - wake the swapper to bring it back in.
658 * Otherwise, enter it into a run queue.
659 */
660 if (l->l_flag & LW_INMEM) {
661 sched_enqueue(l, false);
662 resched_cpu(l);
663 lwp_unlock(l);
664 } else {
665 lwp_unlock(l);
666 uvm_kick_scheduler();
667 }
668 }
669
670 /*
671 * suspendsched:
672 *
673 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
674 */
675 void
676 suspendsched(void)
677 {
678 CPU_INFO_ITERATOR cii;
679 struct cpu_info *ci;
680 struct lwp *l;
681 struct proc *p;
682
683 /*
684 * We do this by process in order not to violate the locking rules.
685 */
686 mutex_enter(&proclist_lock);
687 PROCLIST_FOREACH(p, &allproc) {
688 mutex_enter(&p->p_smutex);
689
690 if ((p->p_flag & PK_SYSTEM) != 0) {
691 mutex_exit(&p->p_smutex);
692 continue;
693 }
694
695 p->p_stat = SSTOP;
696
697 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
698 if (l == curlwp)
699 continue;
700
701 lwp_lock(l);
702
703 /*
704 * Set L_WREBOOT so that the LWP will suspend itself
705 * when it tries to return to user mode. We want to
706 * try and get to get as many LWPs as possible to
707 * the user / kernel boundary, so that they will
708 * release any locks that they hold.
709 */
710 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
711
712 if (l->l_stat == LSSLEEP &&
713 (l->l_flag & LW_SINTR) != 0) {
714 /* setrunnable() will release the lock. */
715 setrunnable(l);
716 continue;
717 }
718
719 lwp_unlock(l);
720 }
721
722 mutex_exit(&p->p_smutex);
723 }
724 mutex_exit(&proclist_lock);
725
726 /*
727 * Kick all CPUs to make them preempt any LWPs running in user mode.
728 * They'll trap into the kernel and suspend themselves in userret().
729 */
730 for (CPU_INFO_FOREACH(cii, ci)) {
731 spc_lock(ci);
732 cpu_need_resched(ci, RESCHED_IMMED);
733 spc_unlock(ci);
734 }
735 }
736
737 /*
738 * sched_kpri:
739 *
740 * Scale a priority level to a kernel priority level, usually
741 * for an LWP that is about to sleep.
742 */
743 pri_t
744 sched_kpri(struct lwp *l)
745 {
746 pri_t pri;
747
748 #ifndef __HAVE_FAST_SOFTINTS
749 /*
750 * Hack: if a user thread is being used to run a soft
751 * interrupt, we need to boost the priority here.
752 */
753 if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
754 return softint_kpri(l);
755 #endif
756
757 /*
758 * Scale user priorities (0 -> 63) up to kernel priorities
759 * in the range (64 -> 95). This makes assumptions about
760 * the priority space and so should be kept in sync with
761 * param.h.
762 */
763 if ((pri = l->l_priority) >= PRI_KERNEL)
764 return pri;
765 return (pri >> 1) + PRI_KERNEL;
766 }
767
768 /*
769 * sched_unsleep:
770 *
771 * The is called when the LWP has not been awoken normally but instead
772 * interrupted: for example, if the sleep timed out. Because of this,
773 * it's not a valid action for running or idle LWPs.
774 */
775 static void
776 sched_unsleep(struct lwp *l)
777 {
778
779 lwp_unlock(l);
780 panic("sched_unsleep");
781 }
782
783 void
784 resched_cpu(struct lwp *l)
785 {
786 struct cpu_info *ci;
787
788 /*
789 * XXXSMP
790 * Since l->l_cpu persists across a context switch,
791 * this gives us *very weak* processor affinity, in
792 * that we notify the CPU on which the process last
793 * ran that it should try to switch.
794 *
795 * This does not guarantee that the process will run on
796 * that processor next, because another processor might
797 * grab it the next time it performs a context switch.
798 *
799 * This also does not handle the case where its last
800 * CPU is running a higher-priority process, but every
801 * other CPU is running a lower-priority process. There
802 * are ways to handle this situation, but they're not
803 * currently very pretty, and we also need to weigh the
804 * cost of moving a process from one CPU to another.
805 */
806 ci = l->l_cpu;
807 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
808 cpu_need_resched(ci, 0);
809 }
810
811 static void
812 sched_changepri(struct lwp *l, pri_t pri)
813 {
814
815 KASSERT(lwp_locked(l, NULL));
816
817 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
818 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
819 sched_dequeue(l);
820 l->l_priority = pri;
821 sched_enqueue(l, false);
822 } else {
823 l->l_priority = pri;
824 }
825 resched_cpu(l);
826 }
827
828 static void
829 sched_lendpri(struct lwp *l, pri_t pri)
830 {
831
832 KASSERT(lwp_locked(l, NULL));
833
834 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
835 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
836 sched_dequeue(l);
837 l->l_inheritedprio = pri;
838 sched_enqueue(l, false);
839 } else {
840 l->l_inheritedprio = pri;
841 }
842 resched_cpu(l);
843 }
844
845 struct lwp *
846 syncobj_noowner(wchan_t wchan)
847 {
848
849 return NULL;
850 }
851
852
853 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
854 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
855
856 /*
857 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
858 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
859 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
860 *
861 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
862 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
863 *
864 * If you dont want to bother with the faster/more-accurate formula, you
865 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
866 * (more general) method of calculating the %age of CPU used by a process.
867 */
868 #define CCPU_SHIFT (FSHIFT + 1)
869
870 /*
871 * sched_pstats:
872 *
873 * Update process statistics and check CPU resource allocation.
874 * Call scheduler-specific hook to eventually adjust process/LWP
875 * priorities.
876 */
877 /* ARGSUSED */
878 void
879 sched_pstats(void *arg)
880 {
881 struct rlimit *rlim;
882 struct lwp *l;
883 struct proc *p;
884 int sig, clkhz;
885 long runtm;
886
887 sched_pstats_ticks++;
888
889 mutex_enter(&proclist_mutex);
890 PROCLIST_FOREACH(p, &allproc) {
891 /*
892 * Increment time in/out of memory and sleep time (if
893 * sleeping). We ignore overflow; with 16-bit int's
894 * (remember them?) overflow takes 45 days.
895 */
896 mutex_enter(&p->p_smutex);
897 mutex_spin_enter(&p->p_stmutex);
898 runtm = p->p_rtime.tv_sec;
899 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
900 if ((l->l_flag & LW_IDLE) != 0)
901 continue;
902 lwp_lock(l);
903 runtm += l->l_rtime.tv_sec;
904 l->l_swtime++;
905 sched_pstats_hook(l);
906 lwp_unlock(l);
907
908 /*
909 * p_pctcpu is only for ps.
910 */
911 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
912 if (l->l_slptime < 1) {
913 clkhz = stathz != 0 ? stathz : hz;
914 #if (FSHIFT >= CCPU_SHIFT)
915 l->l_pctcpu += (clkhz == 100) ?
916 ((fixpt_t)l->l_cpticks) <<
917 (FSHIFT - CCPU_SHIFT) :
918 100 * (((fixpt_t) p->p_cpticks)
919 << (FSHIFT - CCPU_SHIFT)) / clkhz;
920 #else
921 l->l_pctcpu += ((FSCALE - ccpu) *
922 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
923 #endif
924 l->l_cpticks = 0;
925 }
926 }
927 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
928 mutex_spin_exit(&p->p_stmutex);
929
930 /*
931 * Check if the process exceeds its CPU resource allocation.
932 * If over max, kill it.
933 */
934 rlim = &p->p_rlimit[RLIMIT_CPU];
935 sig = 0;
936 if (runtm >= rlim->rlim_cur) {
937 if (runtm >= rlim->rlim_max)
938 sig = SIGKILL;
939 else {
940 sig = SIGXCPU;
941 if (rlim->rlim_cur < rlim->rlim_max)
942 rlim->rlim_cur += 5;
943 }
944 }
945 mutex_exit(&p->p_smutex);
946 if (sig) {
947 psignal(p, sig);
948 }
949 }
950 mutex_exit(&proclist_mutex);
951 uvm_meter();
952 cv_wakeup(&lbolt);
953 callout_schedule(&sched_pstats_ch, hz);
954 }
955
956 void
957 sched_init(void)
958 {
959
960 callout_init(&sched_pstats_ch, 0);
961 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
962 sched_setup();
963 sched_pstats(NULL);
964 }
965