kern_synch.c revision 1.208 1 /* $NetBSD: kern_synch.c,v 1.208 2007/11/29 15:41:07 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.208 2007/11/29 15:41:07 ad Exp $");
79
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100 #include <sys/evcnt.h>
101 #include <sys/intr.h>
102 #include <sys/lwpctl.h>
103
104 #include <uvm/uvm_extern.h>
105
106 callout_t sched_pstats_ch;
107 unsigned int sched_pstats_ticks;
108
109 kcondvar_t lbolt; /* once a second sleep address */
110
111 static void sched_unsleep(struct lwp *);
112 static void sched_changepri(struct lwp *, pri_t);
113 static void sched_lendpri(struct lwp *, pri_t);
114
115 syncobj_t sleep_syncobj = {
116 SOBJ_SLEEPQ_SORTED,
117 sleepq_unsleep,
118 sleepq_changepri,
119 sleepq_lendpri,
120 syncobj_noowner,
121 };
122
123 syncobj_t sched_syncobj = {
124 SOBJ_SLEEPQ_SORTED,
125 sched_unsleep,
126 sched_changepri,
127 sched_lendpri,
128 syncobj_noowner,
129 };
130
131 /*
132 * During autoconfiguration or after a panic, a sleep will simply lower the
133 * priority briefly to allow interrupts, then return. The priority to be
134 * used (safepri) is machine-dependent, thus this value is initialized and
135 * maintained in the machine-dependent layers. This priority will typically
136 * be 0, or the lowest priority that is safe for use on the interrupt stack;
137 * it can be made higher to block network software interrupts after panics.
138 */
139 int safepri;
140
141 /*
142 * OBSOLETE INTERFACE
143 *
144 * General sleep call. Suspends the current process until a wakeup is
145 * performed on the specified identifier. The process will then be made
146 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
147 * means no timeout). If pri includes PCATCH flag, signals are checked
148 * before and after sleeping, else signals are not checked. Returns 0 if
149 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
150 * signal needs to be delivered, ERESTART is returned if the current system
151 * call should be restarted if possible, and EINTR is returned if the system
152 * call should be interrupted by the signal (return EINTR).
153 *
154 * The interlock is held until we are on a sleep queue. The interlock will
155 * be locked before returning back to the caller unless the PNORELOCK flag
156 * is specified, in which case the interlock will always be unlocked upon
157 * return.
158 */
159 int
160 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
161 volatile struct simplelock *interlock)
162 {
163 struct lwp *l = curlwp;
164 sleepq_t *sq;
165 int error;
166
167 KASSERT((l->l_pflag & LP_INTR) == 0);
168
169 if (sleepq_dontsleep(l)) {
170 (void)sleepq_abort(NULL, 0);
171 if ((priority & PNORELOCK) != 0)
172 simple_unlock(interlock);
173 return 0;
174 }
175
176 l->l_kpriority = true;
177 sq = sleeptab_lookup(&sleeptab, ident);
178 sleepq_enter(sq, l);
179 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
180
181 if (interlock != NULL) {
182 KASSERT(simple_lock_held(interlock));
183 simple_unlock(interlock);
184 }
185
186 error = sleepq_block(timo, priority & PCATCH);
187
188 if (interlock != NULL && (priority & PNORELOCK) == 0)
189 simple_lock(interlock);
190
191 return error;
192 }
193
194 int
195 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
196 kmutex_t *mtx)
197 {
198 struct lwp *l = curlwp;
199 sleepq_t *sq;
200 int error;
201
202 KASSERT((l->l_pflag & LP_INTR) == 0);
203
204 if (sleepq_dontsleep(l)) {
205 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
206 return 0;
207 }
208
209 l->l_kpriority = true;
210 sq = sleeptab_lookup(&sleeptab, ident);
211 sleepq_enter(sq, l);
212 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
213 mutex_exit(mtx);
214 error = sleepq_block(timo, priority & PCATCH);
215
216 if ((priority & PNORELOCK) == 0)
217 mutex_enter(mtx);
218
219 return error;
220 }
221
222 /*
223 * General sleep call for situations where a wake-up is not expected.
224 */
225 int
226 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
227 {
228 struct lwp *l = curlwp;
229 sleepq_t *sq;
230 int error;
231
232 if (sleepq_dontsleep(l))
233 return sleepq_abort(NULL, 0);
234
235 if (mtx != NULL)
236 mutex_exit(mtx);
237 l->l_kpriority = true;
238 sq = sleeptab_lookup(&sleeptab, l);
239 sleepq_enter(sq, l);
240 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
241 error = sleepq_block(timo, intr);
242 if (mtx != NULL)
243 mutex_enter(mtx);
244
245 return error;
246 }
247
248 /*
249 * OBSOLETE INTERFACE
250 *
251 * Make all processes sleeping on the specified identifier runnable.
252 */
253 void
254 wakeup(wchan_t ident)
255 {
256 sleepq_t *sq;
257
258 if (cold)
259 return;
260
261 sq = sleeptab_lookup(&sleeptab, ident);
262 sleepq_wake(sq, ident, (u_int)-1);
263 }
264
265 /*
266 * OBSOLETE INTERFACE
267 *
268 * Make the highest priority process first in line on the specified
269 * identifier runnable.
270 */
271 void
272 wakeup_one(wchan_t ident)
273 {
274 sleepq_t *sq;
275
276 if (cold)
277 return;
278
279 sq = sleeptab_lookup(&sleeptab, ident);
280 sleepq_wake(sq, ident, 1);
281 }
282
283
284 /*
285 * General yield call. Puts the current process back on its run queue and
286 * performs a voluntary context switch. Should only be called when the
287 * current process explicitly requests it (eg sched_yield(2)).
288 */
289 void
290 yield(void)
291 {
292 struct lwp *l = curlwp;
293
294 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
295 lwp_lock(l);
296 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
297 KASSERT(l->l_stat == LSONPROC);
298 l->l_kpriority = false;
299 if (l->l_class == SCHED_OTHER) {
300 /*
301 * Only for timeshared threads. It will be reset
302 * by the scheduler in due course.
303 */
304 l->l_priority = 0;
305 }
306 (void)mi_switch(l);
307 KERNEL_LOCK(l->l_biglocks, l);
308 }
309
310 /*
311 * General preemption call. Puts the current process back on its run queue
312 * and performs an involuntary context switch.
313 */
314 void
315 preempt(void)
316 {
317 struct lwp *l = curlwp;
318
319 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
320 lwp_lock(l);
321 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
322 KASSERT(l->l_stat == LSONPROC);
323 l->l_kpriority = false;
324 l->l_nivcsw++;
325 (void)mi_switch(l);
326 KERNEL_LOCK(l->l_biglocks, l);
327 }
328
329 /*
330 * Compute the amount of time during which the current lwp was running.
331 *
332 * - update l_rtime unless it's an idle lwp.
333 */
334
335 void
336 updatertime(lwp_t *l, const struct timeval *tv)
337 {
338 long s, u;
339
340 if ((l->l_flag & LW_IDLE) != 0)
341 return;
342
343 u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
344 s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
345 if (u < 0) {
346 u += 1000000;
347 s--;
348 } else if (u >= 1000000) {
349 u -= 1000000;
350 s++;
351 }
352 l->l_rtime.tv_usec = u;
353 l->l_rtime.tv_sec = s;
354 }
355
356 /*
357 * The machine independent parts of context switch.
358 *
359 * Returns 1 if another LWP was actually run.
360 */
361 int
362 mi_switch(lwp_t *l)
363 {
364 struct schedstate_percpu *spc;
365 struct lwp *newl;
366 int retval, oldspl;
367 struct cpu_info *ci;
368 struct timeval tv;
369 bool returning;
370
371 KASSERT(lwp_locked(l, NULL));
372 LOCKDEBUG_BARRIER(l->l_mutex, 1);
373
374 #ifdef KSTACK_CHECK_MAGIC
375 kstack_check_magic(l);
376 #endif
377
378 microtime(&tv);
379
380 /*
381 * It's safe to read the per CPU schedstate unlocked here, as all we
382 * are after is the run time and that's guarenteed to have been last
383 * updated by this CPU.
384 */
385 ci = l->l_cpu;
386 KDASSERT(ci == curcpu());
387
388 /*
389 * Process is about to yield the CPU; clear the appropriate
390 * scheduling flags.
391 */
392 spc = &ci->ci_schedstate;
393 returning = false;
394 newl = NULL;
395
396 /*
397 * If we have been asked to switch to a specific LWP, then there
398 * is no need to inspect the run queues. If a soft interrupt is
399 * blocking, then return to the interrupted thread without adjusting
400 * VM context or its start time: neither have been changed in order
401 * to take the interrupt.
402 */
403 if (l->l_switchto != NULL) {
404 if ((l->l_pflag & LP_INTR) != 0) {
405 returning = true;
406 softint_block(l);
407 if ((l->l_flag & LW_TIMEINTR) != 0)
408 updatertime(l, &tv);
409 }
410 newl = l->l_switchto;
411 l->l_switchto = NULL;
412 }
413 #ifndef __HAVE_FAST_SOFTINTS
414 else if (ci->ci_data.cpu_softints != 0) {
415 /* There are pending soft interrupts, so pick one. */
416 newl = softint_picklwp();
417 newl->l_stat = LSONPROC;
418 newl->l_flag |= LW_RUNNING;
419 }
420 #endif /* !__HAVE_FAST_SOFTINTS */
421
422 /* Count time spent in current system call */
423 if (!returning) {
424 SYSCALL_TIME_SLEEP(l);
425
426 /*
427 * XXXSMP If we are using h/w performance counters,
428 * save context.
429 */
430 #if PERFCTRS
431 if (PMC_ENABLED(l->l_proc)) {
432 pmc_save_context(l->l_proc);
433 }
434 #endif
435 updatertime(l, &tv);
436 }
437
438 /*
439 * If on the CPU and we have gotten this far, then we must yield.
440 */
441 mutex_spin_enter(spc->spc_mutex);
442 KASSERT(l->l_stat != LSRUN);
443 if (l->l_stat == LSONPROC && l != newl) {
444 KASSERT(lwp_locked(l, &spc->spc_lwplock));
445 if ((l->l_flag & LW_IDLE) == 0) {
446 l->l_stat = LSRUN;
447 lwp_setlock(l, spc->spc_mutex);
448 sched_enqueue(l, true);
449 } else
450 l->l_stat = LSIDL;
451 }
452
453 /*
454 * Let sched_nextlwp() select the LWP to run the CPU next.
455 * If no LWP is runnable, switch to the idle LWP.
456 * Note that spc_lwplock might not necessary be held.
457 */
458 if (newl == NULL) {
459 newl = sched_nextlwp();
460 if (newl != NULL) {
461 sched_dequeue(newl);
462 KASSERT(lwp_locked(newl, spc->spc_mutex));
463 newl->l_stat = LSONPROC;
464 newl->l_cpu = ci;
465 newl->l_flag |= LW_RUNNING;
466 lwp_setlock(newl, &spc->spc_lwplock);
467 } else {
468 newl = ci->ci_data.cpu_idlelwp;
469 newl->l_stat = LSONPROC;
470 newl->l_flag |= LW_RUNNING;
471 }
472 /*
473 * Only clear want_resched if there are no
474 * pending (slow) software interrupts.
475 */
476 ci->ci_want_resched = ci->ci_data.cpu_softints;
477 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
478 spc->spc_curpriority = lwp_eprio(newl);
479 }
480
481 /* Items that must be updated with the CPU locked. */
482 if (!returning) {
483 /* Update the new LWP's start time. */
484 newl->l_stime = tv;
485
486 /*
487 * ci_curlwp changes when a fast soft interrupt occurs.
488 * We use cpu_onproc to keep track of which kernel or
489 * user thread is running 'underneath' the software
490 * interrupt. This is important for time accounting,
491 * itimers and forcing user threads to preempt (aston).
492 */
493 ci->ci_data.cpu_onproc = newl;
494 }
495
496 if (l != newl) {
497 struct lwp *prevlwp;
498
499 /*
500 * If the old LWP has been moved to a run queue above,
501 * drop the general purpose LWP lock: it's now locked
502 * by the scheduler lock.
503 *
504 * Otherwise, drop the scheduler lock. We're done with
505 * the run queues for now.
506 */
507 if (l->l_mutex == spc->spc_mutex) {
508 mutex_spin_exit(&spc->spc_lwplock);
509 } else {
510 mutex_spin_exit(spc->spc_mutex);
511 }
512
513 /* Unlocked, but for statistics only. */
514 uvmexp.swtch++;
515
516 /*
517 * Save old VM context, unless a soft interrupt
518 * handler is blocking.
519 */
520 if (!returning)
521 pmap_deactivate(l);
522
523 /* Update status for lwpctl, if present. */
524 if (l->l_lwpctl != NULL)
525 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
526
527 /* Switch to the new LWP.. */
528 l->l_ncsw++;
529 l->l_flag &= ~LW_RUNNING;
530 oldspl = MUTEX_SPIN_OLDSPL(ci);
531 prevlwp = cpu_switchto(l, newl, returning);
532 ci = curcpu();
533
534 /*
535 * .. we have switched away and are now back so we must
536 * be the new curlwp. prevlwp is who we replaced.
537 */
538 if (prevlwp != NULL) {
539 ci->ci_mtx_oldspl = oldspl;
540 lwp_unlock(prevlwp);
541 } else {
542 splx(oldspl);
543 }
544
545 /* Restore VM context. */
546 pmap_activate(l);
547 retval = 1;
548
549 /* Update status for lwpctl, if present. */
550 if (l->l_lwpctl != NULL)
551 l->l_lwpctl->lc_curcpu = (short)ci->ci_data.cpu_index;
552 } else {
553 /* Nothing to do - just unlock and return. */
554 mutex_spin_exit(spc->spc_mutex);
555 lwp_unlock(l);
556 retval = 0;
557 }
558
559 KASSERT(l == curlwp);
560 KASSERT(l->l_stat == LSONPROC);
561 KASSERT(l->l_cpu == ci);
562
563 /*
564 * XXXSMP If we are using h/w performance counters, restore context.
565 */
566 #if PERFCTRS
567 if (PMC_ENABLED(l->l_proc)) {
568 pmc_restore_context(l->l_proc);
569 }
570 #endif
571
572 /*
573 * We're running again; record our new start time. We might
574 * be running on a new CPU now, so don't use the cached
575 * schedstate_percpu pointer.
576 */
577 SYSCALL_TIME_WAKEUP(l);
578 KASSERT(curlwp == l);
579 KDASSERT(l->l_cpu == ci);
580 LOCKDEBUG_BARRIER(NULL, 1);
581
582 return retval;
583 }
584
585 /*
586 * Change process state to be runnable, placing it on the run queue if it is
587 * in memory, and awakening the swapper if it isn't in memory.
588 *
589 * Call with the process and LWP locked. Will return with the LWP unlocked.
590 */
591 void
592 setrunnable(struct lwp *l)
593 {
594 struct proc *p = l->l_proc;
595 struct cpu_info *ci;
596 sigset_t *ss;
597
598 KASSERT((l->l_flag & LW_IDLE) == 0);
599 KASSERT(mutex_owned(&p->p_smutex));
600 KASSERT(lwp_locked(l, NULL));
601 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
602
603 switch (l->l_stat) {
604 case LSSTOP:
605 /*
606 * If we're being traced (possibly because someone attached us
607 * while we were stopped), check for a signal from the debugger.
608 */
609 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
610 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
611 ss = &l->l_sigpend.sp_set;
612 else
613 ss = &p->p_sigpend.sp_set;
614 sigaddset(ss, p->p_xstat);
615 signotify(l);
616 }
617 p->p_nrlwps++;
618 break;
619 case LSSUSPENDED:
620 l->l_flag &= ~LW_WSUSPEND;
621 p->p_nrlwps++;
622 cv_broadcast(&p->p_lwpcv);
623 break;
624 case LSSLEEP:
625 KASSERT(l->l_wchan != NULL);
626 break;
627 default:
628 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
629 }
630
631 /*
632 * If the LWP was sleeping interruptably, then it's OK to start it
633 * again. If not, mark it as still sleeping.
634 */
635 if (l->l_wchan != NULL) {
636 l->l_stat = LSSLEEP;
637 /* lwp_unsleep() will release the lock. */
638 lwp_unsleep(l);
639 return;
640 }
641
642 /*
643 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
644 * about to call mi_switch(), in which case it will yield.
645 */
646 if ((l->l_flag & LW_RUNNING) != 0) {
647 l->l_stat = LSONPROC;
648 l->l_slptime = 0;
649 lwp_unlock(l);
650 return;
651 }
652
653 /*
654 * Look for a CPU to run.
655 * Set the LWP runnable.
656 */
657 ci = sched_takecpu(l);
658 l->l_cpu = ci;
659 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
660 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
661 lwp_lock(l);
662 }
663 sched_setrunnable(l);
664 l->l_stat = LSRUN;
665 l->l_slptime = 0;
666
667 /*
668 * If thread is swapped out - wake the swapper to bring it back in.
669 * Otherwise, enter it into a run queue.
670 */
671 if (l->l_flag & LW_INMEM) {
672 sched_enqueue(l, false);
673 resched_cpu(l);
674 lwp_unlock(l);
675 } else {
676 lwp_unlock(l);
677 uvm_kick_scheduler();
678 }
679 }
680
681 /*
682 * suspendsched:
683 *
684 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
685 */
686 void
687 suspendsched(void)
688 {
689 CPU_INFO_ITERATOR cii;
690 struct cpu_info *ci;
691 struct lwp *l;
692 struct proc *p;
693
694 /*
695 * We do this by process in order not to violate the locking rules.
696 */
697 mutex_enter(&proclist_lock);
698 PROCLIST_FOREACH(p, &allproc) {
699 mutex_enter(&p->p_smutex);
700
701 if ((p->p_flag & PK_SYSTEM) != 0) {
702 mutex_exit(&p->p_smutex);
703 continue;
704 }
705
706 p->p_stat = SSTOP;
707
708 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
709 if (l == curlwp)
710 continue;
711
712 lwp_lock(l);
713
714 /*
715 * Set L_WREBOOT so that the LWP will suspend itself
716 * when it tries to return to user mode. We want to
717 * try and get to get as many LWPs as possible to
718 * the user / kernel boundary, so that they will
719 * release any locks that they hold.
720 */
721 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
722
723 if (l->l_stat == LSSLEEP &&
724 (l->l_flag & LW_SINTR) != 0) {
725 /* setrunnable() will release the lock. */
726 setrunnable(l);
727 continue;
728 }
729
730 lwp_unlock(l);
731 }
732
733 mutex_exit(&p->p_smutex);
734 }
735 mutex_exit(&proclist_lock);
736
737 /*
738 * Kick all CPUs to make them preempt any LWPs running in user mode.
739 * They'll trap into the kernel and suspend themselves in userret().
740 */
741 for (CPU_INFO_FOREACH(cii, ci)) {
742 spc_lock(ci);
743 cpu_need_resched(ci, RESCHED_IMMED);
744 spc_unlock(ci);
745 }
746 }
747
748 /*
749 * sched_kpri:
750 *
751 * Scale a priority level to a kernel priority level, usually
752 * for an LWP that is about to sleep.
753 */
754 pri_t
755 sched_kpri(struct lwp *l)
756 {
757 pri_t pri;
758
759 #ifndef __HAVE_FAST_SOFTINTS
760 /*
761 * Hack: if a user thread is being used to run a soft
762 * interrupt, we need to boost the priority here.
763 */
764 if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
765 return softint_kpri(l);
766 #endif
767
768 /*
769 * Scale user priorities (0 -> 63) up to kernel priorities
770 * in the range (64 -> 95). This makes assumptions about
771 * the priority space and so should be kept in sync with
772 * param.h.
773 */
774 if ((pri = l->l_priority) >= PRI_KERNEL)
775 return pri;
776 return (pri >> 1) + PRI_KERNEL;
777 }
778
779 /*
780 * sched_unsleep:
781 *
782 * The is called when the LWP has not been awoken normally but instead
783 * interrupted: for example, if the sleep timed out. Because of this,
784 * it's not a valid action for running or idle LWPs.
785 */
786 static void
787 sched_unsleep(struct lwp *l)
788 {
789
790 lwp_unlock(l);
791 panic("sched_unsleep");
792 }
793
794 void
795 resched_cpu(struct lwp *l)
796 {
797 struct cpu_info *ci;
798
799 /*
800 * XXXSMP
801 * Since l->l_cpu persists across a context switch,
802 * this gives us *very weak* processor affinity, in
803 * that we notify the CPU on which the process last
804 * ran that it should try to switch.
805 *
806 * This does not guarantee that the process will run on
807 * that processor next, because another processor might
808 * grab it the next time it performs a context switch.
809 *
810 * This also does not handle the case where its last
811 * CPU is running a higher-priority process, but every
812 * other CPU is running a lower-priority process. There
813 * are ways to handle this situation, but they're not
814 * currently very pretty, and we also need to weigh the
815 * cost of moving a process from one CPU to another.
816 */
817 ci = l->l_cpu;
818 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
819 cpu_need_resched(ci, 0);
820 }
821
822 static void
823 sched_changepri(struct lwp *l, pri_t pri)
824 {
825
826 KASSERT(lwp_locked(l, NULL));
827
828 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
829 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
830 sched_dequeue(l);
831 l->l_priority = pri;
832 sched_enqueue(l, false);
833 } else {
834 l->l_priority = pri;
835 }
836 resched_cpu(l);
837 }
838
839 static void
840 sched_lendpri(struct lwp *l, pri_t pri)
841 {
842
843 KASSERT(lwp_locked(l, NULL));
844
845 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
846 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
847 sched_dequeue(l);
848 l->l_inheritedprio = pri;
849 sched_enqueue(l, false);
850 } else {
851 l->l_inheritedprio = pri;
852 }
853 resched_cpu(l);
854 }
855
856 struct lwp *
857 syncobj_noowner(wchan_t wchan)
858 {
859
860 return NULL;
861 }
862
863
864 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
865 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
866
867 /*
868 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
869 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
870 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
871 *
872 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
873 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
874 *
875 * If you dont want to bother with the faster/more-accurate formula, you
876 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
877 * (more general) method of calculating the %age of CPU used by a process.
878 */
879 #define CCPU_SHIFT (FSHIFT + 1)
880
881 /*
882 * sched_pstats:
883 *
884 * Update process statistics and check CPU resource allocation.
885 * Call scheduler-specific hook to eventually adjust process/LWP
886 * priorities.
887 */
888 /* ARGSUSED */
889 void
890 sched_pstats(void *arg)
891 {
892 struct rlimit *rlim;
893 struct lwp *l;
894 struct proc *p;
895 int sig, clkhz;
896 long runtm;
897
898 sched_pstats_ticks++;
899
900 mutex_enter(&proclist_mutex);
901 PROCLIST_FOREACH(p, &allproc) {
902 /*
903 * Increment time in/out of memory and sleep time (if
904 * sleeping). We ignore overflow; with 16-bit int's
905 * (remember them?) overflow takes 45 days.
906 */
907 mutex_enter(&p->p_smutex);
908 mutex_spin_enter(&p->p_stmutex);
909 runtm = p->p_rtime.tv_sec;
910 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
911 if ((l->l_flag & LW_IDLE) != 0)
912 continue;
913 lwp_lock(l);
914 runtm += l->l_rtime.tv_sec;
915 l->l_swtime++;
916 sched_pstats_hook(l);
917 lwp_unlock(l);
918
919 /*
920 * p_pctcpu is only for ps.
921 */
922 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
923 if (l->l_slptime < 1) {
924 clkhz = stathz != 0 ? stathz : hz;
925 #if (FSHIFT >= CCPU_SHIFT)
926 l->l_pctcpu += (clkhz == 100) ?
927 ((fixpt_t)l->l_cpticks) <<
928 (FSHIFT - CCPU_SHIFT) :
929 100 * (((fixpt_t) p->p_cpticks)
930 << (FSHIFT - CCPU_SHIFT)) / clkhz;
931 #else
932 l->l_pctcpu += ((FSCALE - ccpu) *
933 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
934 #endif
935 l->l_cpticks = 0;
936 }
937 }
938 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
939 mutex_spin_exit(&p->p_stmutex);
940
941 /*
942 * Check if the process exceeds its CPU resource allocation.
943 * If over max, kill it.
944 */
945 rlim = &p->p_rlimit[RLIMIT_CPU];
946 sig = 0;
947 if (runtm >= rlim->rlim_cur) {
948 if (runtm >= rlim->rlim_max)
949 sig = SIGKILL;
950 else {
951 sig = SIGXCPU;
952 if (rlim->rlim_cur < rlim->rlim_max)
953 rlim->rlim_cur += 5;
954 }
955 }
956 mutex_exit(&p->p_smutex);
957 if (sig) {
958 psignal(p, sig);
959 }
960 }
961 mutex_exit(&proclist_mutex);
962 uvm_meter();
963 cv_wakeup(&lbolt);
964 callout_schedule(&sched_pstats_ch, hz);
965 }
966
967 void
968 sched_init(void)
969 {
970
971 cv_init(&lbolt, "lbolt");
972 callout_init(&sched_pstats_ch, 0);
973 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
974 sched_setup();
975 sched_pstats(NULL);
976 }
977