Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.209
      1 /*	$NetBSD: kern_synch.c,v 1.209 2007/12/02 14:55:32 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.209 2007/12/02 14:55:32 ad Exp $");
     79 
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #if defined(PERFCTRS)
     92 #include <sys/pmc.h>
     93 #endif
     94 #include <sys/cpu.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/syscall_stats.h>
     98 #include <sys/sleepq.h>
     99 #include <sys/lockdebug.h>
    100 #include <sys/evcnt.h>
    101 #include <sys/intr.h>
    102 #include <sys/lwpctl.h>
    103 #include <sys/atomic.h>
    104 
    105 #include <uvm/uvm_extern.h>
    106 
    107 callout_t sched_pstats_ch;
    108 unsigned int sched_pstats_ticks;
    109 
    110 kcondvar_t	lbolt;			/* once a second sleep address */
    111 
    112 static void	sched_unsleep(struct lwp *);
    113 static void	sched_changepri(struct lwp *, pri_t);
    114 static void	sched_lendpri(struct lwp *, pri_t);
    115 
    116 syncobj_t sleep_syncobj = {
    117 	SOBJ_SLEEPQ_SORTED,
    118 	sleepq_unsleep,
    119 	sleepq_changepri,
    120 	sleepq_lendpri,
    121 	syncobj_noowner,
    122 };
    123 
    124 syncobj_t sched_syncobj = {
    125 	SOBJ_SLEEPQ_SORTED,
    126 	sched_unsleep,
    127 	sched_changepri,
    128 	sched_lendpri,
    129 	syncobj_noowner,
    130 };
    131 
    132 /*
    133  * During autoconfiguration or after a panic, a sleep will simply lower the
    134  * priority briefly to allow interrupts, then return.  The priority to be
    135  * used (safepri) is machine-dependent, thus this value is initialized and
    136  * maintained in the machine-dependent layers.  This priority will typically
    137  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    138  * it can be made higher to block network software interrupts after panics.
    139  */
    140 int	safepri;
    141 
    142 /*
    143  * OBSOLETE INTERFACE
    144  *
    145  * General sleep call.  Suspends the current process until a wakeup is
    146  * performed on the specified identifier.  The process will then be made
    147  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    148  * means no timeout).  If pri includes PCATCH flag, signals are checked
    149  * before and after sleeping, else signals are not checked.  Returns 0 if
    150  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    151  * signal needs to be delivered, ERESTART is returned if the current system
    152  * call should be restarted if possible, and EINTR is returned if the system
    153  * call should be interrupted by the signal (return EINTR).
    154  *
    155  * The interlock is held until we are on a sleep queue. The interlock will
    156  * be locked before returning back to the caller unless the PNORELOCK flag
    157  * is specified, in which case the interlock will always be unlocked upon
    158  * return.
    159  */
    160 int
    161 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    162 	volatile struct simplelock *interlock)
    163 {
    164 	struct lwp *l = curlwp;
    165 	sleepq_t *sq;
    166 	int error;
    167 
    168 	KASSERT((l->l_pflag & LP_INTR) == 0);
    169 
    170 	if (sleepq_dontsleep(l)) {
    171 		(void)sleepq_abort(NULL, 0);
    172 		if ((priority & PNORELOCK) != 0)
    173 			simple_unlock(interlock);
    174 		return 0;
    175 	}
    176 
    177 	l->l_kpriority = true;
    178 	sq = sleeptab_lookup(&sleeptab, ident);
    179 	sleepq_enter(sq, l);
    180 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    181 
    182 	if (interlock != NULL) {
    183 		KASSERT(simple_lock_held(interlock));
    184 		simple_unlock(interlock);
    185 	}
    186 
    187 	error = sleepq_block(timo, priority & PCATCH);
    188 
    189 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    190 		simple_lock(interlock);
    191 
    192 	return error;
    193 }
    194 
    195 int
    196 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    197 	kmutex_t *mtx)
    198 {
    199 	struct lwp *l = curlwp;
    200 	sleepq_t *sq;
    201 	int error;
    202 
    203 	KASSERT((l->l_pflag & LP_INTR) == 0);
    204 
    205 	if (sleepq_dontsleep(l)) {
    206 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    207 		return 0;
    208 	}
    209 
    210 	l->l_kpriority = true;
    211 	sq = sleeptab_lookup(&sleeptab, ident);
    212 	sleepq_enter(sq, l);
    213 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    214 	mutex_exit(mtx);
    215 	error = sleepq_block(timo, priority & PCATCH);
    216 
    217 	if ((priority & PNORELOCK) == 0)
    218 		mutex_enter(mtx);
    219 
    220 	return error;
    221 }
    222 
    223 /*
    224  * General sleep call for situations where a wake-up is not expected.
    225  */
    226 int
    227 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    228 {
    229 	struct lwp *l = curlwp;
    230 	sleepq_t *sq;
    231 	int error;
    232 
    233 	if (sleepq_dontsleep(l))
    234 		return sleepq_abort(NULL, 0);
    235 
    236 	if (mtx != NULL)
    237 		mutex_exit(mtx);
    238 	l->l_kpriority = true;
    239 	sq = sleeptab_lookup(&sleeptab, l);
    240 	sleepq_enter(sq, l);
    241 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    242 	error = sleepq_block(timo, intr);
    243 	if (mtx != NULL)
    244 		mutex_enter(mtx);
    245 
    246 	return error;
    247 }
    248 
    249 /*
    250  * OBSOLETE INTERFACE
    251  *
    252  * Make all processes sleeping on the specified identifier runnable.
    253  */
    254 void
    255 wakeup(wchan_t ident)
    256 {
    257 	sleepq_t *sq;
    258 
    259 	if (cold)
    260 		return;
    261 
    262 	sq = sleeptab_lookup(&sleeptab, ident);
    263 	sleepq_wake(sq, ident, (u_int)-1);
    264 }
    265 
    266 /*
    267  * OBSOLETE INTERFACE
    268  *
    269  * Make the highest priority process first in line on the specified
    270  * identifier runnable.
    271  */
    272 void
    273 wakeup_one(wchan_t ident)
    274 {
    275 	sleepq_t *sq;
    276 
    277 	if (cold)
    278 		return;
    279 
    280 	sq = sleeptab_lookup(&sleeptab, ident);
    281 	sleepq_wake(sq, ident, 1);
    282 }
    283 
    284 
    285 /*
    286  * General yield call.  Puts the current process back on its run queue and
    287  * performs a voluntary context switch.  Should only be called when the
    288  * current process explicitly requests it (eg sched_yield(2)).
    289  */
    290 void
    291 yield(void)
    292 {
    293 	struct lwp *l = curlwp;
    294 
    295 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    296 	lwp_lock(l);
    297 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    298 	KASSERT(l->l_stat == LSONPROC);
    299 	l->l_kpriority = false;
    300 	if (l->l_class == SCHED_OTHER) {
    301 		/*
    302 		 * Only for timeshared threads.  It will be reset
    303 		 * by the scheduler in due course.
    304 		 */
    305 		l->l_priority = 0;
    306 	}
    307 	(void)mi_switch(l);
    308 	KERNEL_LOCK(l->l_biglocks, l);
    309 }
    310 
    311 /*
    312  * General preemption call.  Puts the current process back on its run queue
    313  * and performs an involuntary context switch.
    314  */
    315 void
    316 preempt(void)
    317 {
    318 	struct lwp *l = curlwp;
    319 
    320 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    321 	lwp_lock(l);
    322 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    323 	KASSERT(l->l_stat == LSONPROC);
    324 	l->l_kpriority = false;
    325 	l->l_nivcsw++;
    326 	(void)mi_switch(l);
    327 	KERNEL_LOCK(l->l_biglocks, l);
    328 }
    329 
    330 /*
    331  * Compute the amount of time during which the current lwp was running.
    332  *
    333  * - update l_rtime unless it's an idle lwp.
    334  */
    335 
    336 void
    337 updatertime(lwp_t *l, const struct timeval *tv)
    338 {
    339 	long s, u;
    340 
    341 	if ((l->l_flag & LW_IDLE) != 0)
    342 		return;
    343 
    344 	u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
    345 	s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
    346 	if (u < 0) {
    347 		u += 1000000;
    348 		s--;
    349 	} else if (u >= 1000000) {
    350 		u -= 1000000;
    351 		s++;
    352 	}
    353 	l->l_rtime.tv_usec = u;
    354 	l->l_rtime.tv_sec = s;
    355 }
    356 
    357 /*
    358  * The machine independent parts of context switch.
    359  *
    360  * Returns 1 if another LWP was actually run.
    361  */
    362 int
    363 mi_switch(lwp_t *l)
    364 {
    365 	struct schedstate_percpu *spc;
    366 	struct lwp *newl;
    367 	int retval, oldspl;
    368 	struct cpu_info *ci;
    369 	struct timeval tv;
    370 	bool returning;
    371 
    372 	KASSERT(lwp_locked(l, NULL));
    373 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    374 
    375 #ifdef KSTACK_CHECK_MAGIC
    376 	kstack_check_magic(l);
    377 #endif
    378 
    379 	microtime(&tv);
    380 
    381 	KDASSERT(l->l_cpu == curcpu());
    382 	ci = l->l_cpu;
    383 	spc = &ci->ci_schedstate;
    384 	returning = false;
    385 	newl = NULL;
    386 
    387 	/*
    388 	 * If we have been asked to switch to a specific LWP, then there
    389 	 * is no need to inspect the run queues.  If a soft interrupt is
    390 	 * blocking, then return to the interrupted thread without adjusting
    391 	 * VM context or its start time: neither have been changed in order
    392 	 * to take the interrupt.
    393 	 */
    394 	if (l->l_switchto != NULL) {
    395 		if ((l->l_pflag & LP_INTR) != 0) {
    396 			returning = true;
    397 			softint_block(l);
    398 			if ((l->l_flag & LW_TIMEINTR) != 0)
    399 				updatertime(l, &tv);
    400 		}
    401 		newl = l->l_switchto;
    402 		l->l_switchto = NULL;
    403 	}
    404 #ifndef __HAVE_FAST_SOFTINTS
    405 	else if (ci->ci_data.cpu_softints != 0) {
    406 		/* There are pending soft interrupts, so pick one. */
    407 		newl = softint_picklwp();
    408 		newl->l_stat = LSONPROC;
    409 		newl->l_flag |= LW_RUNNING;
    410 	}
    411 #endif	/* !__HAVE_FAST_SOFTINTS */
    412 
    413 	/* Count time spent in current system call */
    414 	if (!returning) {
    415 		SYSCALL_TIME_SLEEP(l);
    416 
    417 		/*
    418 		 * XXXSMP If we are using h/w performance counters,
    419 		 * save context.
    420 		 */
    421 #if PERFCTRS
    422 		if (PMC_ENABLED(l->l_proc)) {
    423 			pmc_save_context(l->l_proc);
    424 		}
    425 #endif
    426 		updatertime(l, &tv);
    427 	}
    428 
    429 	/*
    430 	 * If on the CPU and we have gotten this far, then we must yield.
    431 	 */
    432 	mutex_spin_enter(spc->spc_mutex);
    433 	KASSERT(l->l_stat != LSRUN);
    434 	if (l->l_stat == LSONPROC && l != newl) {
    435 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    436 		if ((l->l_flag & LW_IDLE) == 0) {
    437 			l->l_stat = LSRUN;
    438 			lwp_setlock(l, spc->spc_mutex);
    439 			sched_enqueue(l, true);
    440 		} else
    441 			l->l_stat = LSIDL;
    442 	}
    443 
    444 	/*
    445 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    446 	 * If no LWP is runnable, select the idle LWP.
    447 	 *
    448 	 * Note that spc_lwplock might not necessary be held, and
    449 	 * new thread would be unlocked after setting the LWP-lock.
    450 	 */
    451 	if (newl == NULL) {
    452 		newl = sched_nextlwp();
    453 		if (newl != NULL) {
    454 			sched_dequeue(newl);
    455 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    456 			newl->l_stat = LSONPROC;
    457 			newl->l_cpu = ci;
    458 			newl->l_flag |= LW_RUNNING;
    459 			lwp_setlock(newl, &spc->spc_lwplock);
    460 		} else {
    461 			newl = ci->ci_data.cpu_idlelwp;
    462 			newl->l_stat = LSONPROC;
    463 			newl->l_flag |= LW_RUNNING;
    464 		}
    465 		/*
    466 		 * Only clear want_resched if there are no
    467 		 * pending (slow) software interrupts.
    468 		 */
    469 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    470 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    471 		spc->spc_curpriority = lwp_eprio(newl);
    472 	}
    473 
    474 	/* Items that must be updated with the CPU locked. */
    475 	if (!returning) {
    476 		/* Update the new LWP's start time. */
    477 		newl->l_stime = tv;
    478 
    479 		/*
    480 		 * ci_curlwp changes when a fast soft interrupt occurs.
    481 		 * We use cpu_onproc to keep track of which kernel or
    482 		 * user thread is running 'underneath' the software
    483 		 * interrupt.  This is important for time accounting,
    484 		 * itimers and forcing user threads to preempt (aston).
    485 		 */
    486 		ci->ci_data.cpu_onproc = newl;
    487 	}
    488 
    489 	if (l != newl) {
    490 		struct lwp *prevlwp;
    491 
    492 		/* Release all locks, but leave the current LWP locked */
    493 		if (l->l_mutex == spc->spc_mutex) {
    494 			/*
    495 			 * Drop spc_lwplock, if the current LWP has been moved
    496 			 * to the run queue (it is now locked by spc_mutex).
    497 			 */
    498 			mutex_spin_exit(&spc->spc_lwplock);
    499 		} else {
    500 			/*
    501 			 * Otherwise, drop the spc_mutex, we are done with the
    502 			 * run queues.
    503 			 */
    504 			mutex_spin_exit(spc->spc_mutex);
    505 		}
    506 
    507 		/*
    508 		 * Mark that context switch is going to be perfomed
    509 		 * for this LWP, to protect it from being switched
    510 		 * to on another CPU.
    511 		 */
    512 		KASSERT(l->l_ctxswtch == 0);
    513 		l->l_ctxswtch = 1;
    514 		l->l_ncsw++;
    515 		l->l_flag &= ~LW_RUNNING;
    516 
    517 		/*
    518 		 * Increase the count of spin-mutexes before the release
    519 		 * of the last lock - we must remain at IPL_SCHED during
    520 		 * the context switch.
    521 		 */
    522 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    523 		ci->ci_mtx_count--;
    524 		lwp_unlock(l);
    525 
    526 		/* Unlocked, but for statistics only. */
    527 		uvmexp.swtch++;
    528 
    529 		/* Update status for lwpctl, if present. */
    530 		if (l->l_lwpctl != NULL)
    531 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    532 
    533 		/*
    534 		 * Save old VM context, unless a soft interrupt
    535 		 * handler is blocking.
    536 		 */
    537 		if (!returning)
    538 			pmap_deactivate(l);
    539 
    540 		/*
    541 		 * We may need to spin-wait for if 'newl' is still
    542 		 * context switching on another CPU.
    543 		 */
    544 		if (newl->l_ctxswtch != 0) {
    545 			u_int count;
    546 			count = SPINLOCK_BACKOFF_MIN;
    547 			while (newl->l_ctxswtch)
    548 				SPINLOCK_BACKOFF(count);
    549 		}
    550 
    551 		/* Switch to the new LWP.. */
    552 		prevlwp = cpu_switchto(l, newl, returning);
    553 		ci = curcpu();
    554 
    555 		/*
    556 		 * Switched away - we have new curlwp.
    557 		 * Restore VM context and IPL.
    558 		 */
    559 		pmap_activate(l);
    560 		if (prevlwp != NULL) {
    561 			/* Normalize the count of the spin-mutexes */
    562 			ci->ci_mtx_count++;
    563 			/* Unmark the state of context switch */
    564 			membar_exit();
    565 			prevlwp->l_ctxswtch = 0;
    566 		}
    567 		splx(oldspl);
    568 
    569 		/* Update status for lwpctl, if present. */
    570 		if (l->l_lwpctl != NULL)
    571 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    572 
    573 		retval = 1;
    574 	} else {
    575 		/* Nothing to do - just unlock and return. */
    576 		mutex_spin_exit(spc->spc_mutex);
    577 		lwp_unlock(l);
    578 		retval = 0;
    579 	}
    580 
    581 	KASSERT(l == curlwp);
    582 	KASSERT(l->l_stat == LSONPROC);
    583 	KASSERT(l->l_cpu == ci);
    584 
    585 	/*
    586 	 * XXXSMP If we are using h/w performance counters, restore context.
    587 	 */
    588 #if PERFCTRS
    589 	if (PMC_ENABLED(l->l_proc)) {
    590 		pmc_restore_context(l->l_proc);
    591 	}
    592 #endif
    593 	SYSCALL_TIME_WAKEUP(l);
    594 	LOCKDEBUG_BARRIER(NULL, 1);
    595 
    596 	return retval;
    597 }
    598 
    599 /*
    600  * Change process state to be runnable, placing it on the run queue if it is
    601  * in memory, and awakening the swapper if it isn't in memory.
    602  *
    603  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    604  */
    605 void
    606 setrunnable(struct lwp *l)
    607 {
    608 	struct proc *p = l->l_proc;
    609 	struct cpu_info *ci;
    610 	sigset_t *ss;
    611 
    612 	KASSERT((l->l_flag & LW_IDLE) == 0);
    613 	KASSERT(mutex_owned(&p->p_smutex));
    614 	KASSERT(lwp_locked(l, NULL));
    615 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    616 
    617 	switch (l->l_stat) {
    618 	case LSSTOP:
    619 		/*
    620 		 * If we're being traced (possibly because someone attached us
    621 		 * while we were stopped), check for a signal from the debugger.
    622 		 */
    623 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    624 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    625 				ss = &l->l_sigpend.sp_set;
    626 			else
    627 				ss = &p->p_sigpend.sp_set;
    628 			sigaddset(ss, p->p_xstat);
    629 			signotify(l);
    630 		}
    631 		p->p_nrlwps++;
    632 		break;
    633 	case LSSUSPENDED:
    634 		l->l_flag &= ~LW_WSUSPEND;
    635 		p->p_nrlwps++;
    636 		cv_broadcast(&p->p_lwpcv);
    637 		break;
    638 	case LSSLEEP:
    639 		KASSERT(l->l_wchan != NULL);
    640 		break;
    641 	default:
    642 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    643 	}
    644 
    645 	/*
    646 	 * If the LWP was sleeping interruptably, then it's OK to start it
    647 	 * again.  If not, mark it as still sleeping.
    648 	 */
    649 	if (l->l_wchan != NULL) {
    650 		l->l_stat = LSSLEEP;
    651 		/* lwp_unsleep() will release the lock. */
    652 		lwp_unsleep(l);
    653 		return;
    654 	}
    655 
    656 	/*
    657 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    658 	 * about to call mi_switch(), in which case it will yield.
    659 	 */
    660 	if ((l->l_flag & LW_RUNNING) != 0) {
    661 		l->l_stat = LSONPROC;
    662 		l->l_slptime = 0;
    663 		lwp_unlock(l);
    664 		return;
    665 	}
    666 
    667 	/*
    668 	 * Look for a CPU to run.
    669 	 * Set the LWP runnable.
    670 	 */
    671 	ci = sched_takecpu(l);
    672 	l->l_cpu = ci;
    673 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    674 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    675 		lwp_lock(l);
    676 	}
    677 	sched_setrunnable(l);
    678 	l->l_stat = LSRUN;
    679 	l->l_slptime = 0;
    680 
    681 	/*
    682 	 * If thread is swapped out - wake the swapper to bring it back in.
    683 	 * Otherwise, enter it into a run queue.
    684 	 */
    685 	if (l->l_flag & LW_INMEM) {
    686 		sched_enqueue(l, false);
    687 		resched_cpu(l);
    688 		lwp_unlock(l);
    689 	} else {
    690 		lwp_unlock(l);
    691 		uvm_kick_scheduler();
    692 	}
    693 }
    694 
    695 /*
    696  * suspendsched:
    697  *
    698  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    699  */
    700 void
    701 suspendsched(void)
    702 {
    703 	CPU_INFO_ITERATOR cii;
    704 	struct cpu_info *ci;
    705 	struct lwp *l;
    706 	struct proc *p;
    707 
    708 	/*
    709 	 * We do this by process in order not to violate the locking rules.
    710 	 */
    711 	mutex_enter(&proclist_lock);
    712 	PROCLIST_FOREACH(p, &allproc) {
    713 		mutex_enter(&p->p_smutex);
    714 
    715 		if ((p->p_flag & PK_SYSTEM) != 0) {
    716 			mutex_exit(&p->p_smutex);
    717 			continue;
    718 		}
    719 
    720 		p->p_stat = SSTOP;
    721 
    722 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    723 			if (l == curlwp)
    724 				continue;
    725 
    726 			lwp_lock(l);
    727 
    728 			/*
    729 			 * Set L_WREBOOT so that the LWP will suspend itself
    730 			 * when it tries to return to user mode.  We want to
    731 			 * try and get to get as many LWPs as possible to
    732 			 * the user / kernel boundary, so that they will
    733 			 * release any locks that they hold.
    734 			 */
    735 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    736 
    737 			if (l->l_stat == LSSLEEP &&
    738 			    (l->l_flag & LW_SINTR) != 0) {
    739 				/* setrunnable() will release the lock. */
    740 				setrunnable(l);
    741 				continue;
    742 			}
    743 
    744 			lwp_unlock(l);
    745 		}
    746 
    747 		mutex_exit(&p->p_smutex);
    748 	}
    749 	mutex_exit(&proclist_lock);
    750 
    751 	/*
    752 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    753 	 * They'll trap into the kernel and suspend themselves in userret().
    754 	 */
    755 	for (CPU_INFO_FOREACH(cii, ci)) {
    756 		spc_lock(ci);
    757 		cpu_need_resched(ci, RESCHED_IMMED);
    758 		spc_unlock(ci);
    759 	}
    760 }
    761 
    762 /*
    763  * sched_kpri:
    764  *
    765  *	Scale a priority level to a kernel priority level, usually
    766  *	for an LWP that is about to sleep.
    767  */
    768 pri_t
    769 sched_kpri(struct lwp *l)
    770 {
    771 	pri_t pri;
    772 
    773 #ifndef __HAVE_FAST_SOFTINTS
    774 	/*
    775 	 * Hack: if a user thread is being used to run a soft
    776 	 * interrupt, we need to boost the priority here.
    777 	 */
    778 	if ((l->l_pflag & LP_INTR) != 0 && l->l_priority < PRI_KERNEL_RT)
    779 		return softint_kpri(l);
    780 #endif
    781 
    782 	/*
    783 	 * Scale user priorities (0 -> 63) up to kernel priorities
    784 	 * in the range (64 -> 95).  This makes assumptions about
    785 	 * the priority space and so should be kept in sync with
    786 	 * param.h.
    787 	 */
    788 	if ((pri = l->l_priority) >= PRI_KERNEL)
    789 		return pri;
    790 	return (pri >> 1) + PRI_KERNEL;
    791 }
    792 
    793 /*
    794  * sched_unsleep:
    795  *
    796  *	The is called when the LWP has not been awoken normally but instead
    797  *	interrupted: for example, if the sleep timed out.  Because of this,
    798  *	it's not a valid action for running or idle LWPs.
    799  */
    800 static void
    801 sched_unsleep(struct lwp *l)
    802 {
    803 
    804 	lwp_unlock(l);
    805 	panic("sched_unsleep");
    806 }
    807 
    808 void
    809 resched_cpu(struct lwp *l)
    810 {
    811 	struct cpu_info *ci;
    812 
    813 	/*
    814 	 * XXXSMP
    815 	 * Since l->l_cpu persists across a context switch,
    816 	 * this gives us *very weak* processor affinity, in
    817 	 * that we notify the CPU on which the process last
    818 	 * ran that it should try to switch.
    819 	 *
    820 	 * This does not guarantee that the process will run on
    821 	 * that processor next, because another processor might
    822 	 * grab it the next time it performs a context switch.
    823 	 *
    824 	 * This also does not handle the case where its last
    825 	 * CPU is running a higher-priority process, but every
    826 	 * other CPU is running a lower-priority process.  There
    827 	 * are ways to handle this situation, but they're not
    828 	 * currently very pretty, and we also need to weigh the
    829 	 * cost of moving a process from one CPU to another.
    830 	 */
    831 	ci = l->l_cpu;
    832 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
    833 		cpu_need_resched(ci, 0);
    834 }
    835 
    836 static void
    837 sched_changepri(struct lwp *l, pri_t pri)
    838 {
    839 
    840 	KASSERT(lwp_locked(l, NULL));
    841 
    842 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    843 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    844 		sched_dequeue(l);
    845 		l->l_priority = pri;
    846 		sched_enqueue(l, false);
    847 	} else {
    848 		l->l_priority = pri;
    849 	}
    850 	resched_cpu(l);
    851 }
    852 
    853 static void
    854 sched_lendpri(struct lwp *l, pri_t pri)
    855 {
    856 
    857 	KASSERT(lwp_locked(l, NULL));
    858 
    859 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    860 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    861 		sched_dequeue(l);
    862 		l->l_inheritedprio = pri;
    863 		sched_enqueue(l, false);
    864 	} else {
    865 		l->l_inheritedprio = pri;
    866 	}
    867 	resched_cpu(l);
    868 }
    869 
    870 struct lwp *
    871 syncobj_noowner(wchan_t wchan)
    872 {
    873 
    874 	return NULL;
    875 }
    876 
    877 
    878 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    879 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    880 
    881 /*
    882  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    883  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    884  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    885  *
    886  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    887  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    888  *
    889  * If you dont want to bother with the faster/more-accurate formula, you
    890  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    891  * (more general) method of calculating the %age of CPU used by a process.
    892  */
    893 #define	CCPU_SHIFT	(FSHIFT + 1)
    894 
    895 /*
    896  * sched_pstats:
    897  *
    898  * Update process statistics and check CPU resource allocation.
    899  * Call scheduler-specific hook to eventually adjust process/LWP
    900  * priorities.
    901  */
    902 /* ARGSUSED */
    903 void
    904 sched_pstats(void *arg)
    905 {
    906 	struct rlimit *rlim;
    907 	struct lwp *l;
    908 	struct proc *p;
    909 	int sig, clkhz;
    910 	long runtm;
    911 
    912 	sched_pstats_ticks++;
    913 
    914 	mutex_enter(&proclist_mutex);
    915 	PROCLIST_FOREACH(p, &allproc) {
    916 		/*
    917 		 * Increment time in/out of memory and sleep time (if
    918 		 * sleeping).  We ignore overflow; with 16-bit int's
    919 		 * (remember them?) overflow takes 45 days.
    920 		 */
    921 		mutex_enter(&p->p_smutex);
    922 		mutex_spin_enter(&p->p_stmutex);
    923 		runtm = p->p_rtime.tv_sec;
    924 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    925 			if ((l->l_flag & LW_IDLE) != 0)
    926 				continue;
    927 			lwp_lock(l);
    928 			runtm += l->l_rtime.tv_sec;
    929 			l->l_swtime++;
    930 			sched_pstats_hook(l);
    931 			lwp_unlock(l);
    932 
    933 			/*
    934 			 * p_pctcpu is only for ps.
    935 			 */
    936 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    937 			if (l->l_slptime < 1) {
    938 				clkhz = stathz != 0 ? stathz : hz;
    939 #if	(FSHIFT >= CCPU_SHIFT)
    940 				l->l_pctcpu += (clkhz == 100) ?
    941 				    ((fixpt_t)l->l_cpticks) <<
    942 				        (FSHIFT - CCPU_SHIFT) :
    943 				    100 * (((fixpt_t) p->p_cpticks)
    944 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    945 #else
    946 				l->l_pctcpu += ((FSCALE - ccpu) *
    947 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    948 #endif
    949 				l->l_cpticks = 0;
    950 			}
    951 		}
    952 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    953 		mutex_spin_exit(&p->p_stmutex);
    954 
    955 		/*
    956 		 * Check if the process exceeds its CPU resource allocation.
    957 		 * If over max, kill it.
    958 		 */
    959 		rlim = &p->p_rlimit[RLIMIT_CPU];
    960 		sig = 0;
    961 		if (runtm >= rlim->rlim_cur) {
    962 			if (runtm >= rlim->rlim_max)
    963 				sig = SIGKILL;
    964 			else {
    965 				sig = SIGXCPU;
    966 				if (rlim->rlim_cur < rlim->rlim_max)
    967 					rlim->rlim_cur += 5;
    968 			}
    969 		}
    970 		mutex_exit(&p->p_smutex);
    971 		if (sig) {
    972 			psignal(p, sig);
    973 		}
    974 	}
    975 	mutex_exit(&proclist_mutex);
    976 	uvm_meter();
    977 	cv_wakeup(&lbolt);
    978 	callout_schedule(&sched_pstats_ch, hz);
    979 }
    980 
    981 void
    982 sched_init(void)
    983 {
    984 
    985 	cv_init(&lbolt, "lbolt");
    986 	callout_init(&sched_pstats_ch, 0);
    987 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    988 	sched_setup();
    989 	sched_pstats(NULL);
    990 }
    991