Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.213
      1 /*	$NetBSD: kern_synch.c,v 1.213 2007/12/27 22:13:19 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.213 2007/12/27 22:13:19 ad Exp $");
     79 
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #if defined(PERFCTRS)
     92 #include <sys/pmc.h>
     93 #endif
     94 #include <sys/cpu.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/syscall_stats.h>
     98 #include <sys/sleepq.h>
     99 #include <sys/lockdebug.h>
    100 #include <sys/evcnt.h>
    101 #include <sys/intr.h>
    102 #include <sys/lwpctl.h>
    103 #include <sys/atomic.h>
    104 
    105 #include <uvm/uvm_extern.h>
    106 
    107 callout_t sched_pstats_ch;
    108 unsigned int sched_pstats_ticks;
    109 
    110 kcondvar_t	lbolt;			/* once a second sleep address */
    111 
    112 static void	sched_unsleep(struct lwp *);
    113 static void	sched_changepri(struct lwp *, pri_t);
    114 static void	sched_lendpri(struct lwp *, pri_t);
    115 
    116 syncobj_t sleep_syncobj = {
    117 	SOBJ_SLEEPQ_SORTED,
    118 	sleepq_unsleep,
    119 	sleepq_changepri,
    120 	sleepq_lendpri,
    121 	syncobj_noowner,
    122 };
    123 
    124 syncobj_t sched_syncobj = {
    125 	SOBJ_SLEEPQ_SORTED,
    126 	sched_unsleep,
    127 	sched_changepri,
    128 	sched_lendpri,
    129 	syncobj_noowner,
    130 };
    131 
    132 /*
    133  * During autoconfiguration or after a panic, a sleep will simply lower the
    134  * priority briefly to allow interrupts, then return.  The priority to be
    135  * used (safepri) is machine-dependent, thus this value is initialized and
    136  * maintained in the machine-dependent layers.  This priority will typically
    137  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    138  * it can be made higher to block network software interrupts after panics.
    139  */
    140 int	safepri;
    141 
    142 /*
    143  * OBSOLETE INTERFACE
    144  *
    145  * General sleep call.  Suspends the current process until a wakeup is
    146  * performed on the specified identifier.  The process will then be made
    147  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    148  * means no timeout).  If pri includes PCATCH flag, signals are checked
    149  * before and after sleeping, else signals are not checked.  Returns 0 if
    150  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    151  * signal needs to be delivered, ERESTART is returned if the current system
    152  * call should be restarted if possible, and EINTR is returned if the system
    153  * call should be interrupted by the signal (return EINTR).
    154  *
    155  * The interlock is held until we are on a sleep queue. The interlock will
    156  * be locked before returning back to the caller unless the PNORELOCK flag
    157  * is specified, in which case the interlock will always be unlocked upon
    158  * return.
    159  */
    160 int
    161 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    162 	volatile struct simplelock *interlock)
    163 {
    164 	struct lwp *l = curlwp;
    165 	sleepq_t *sq;
    166 	int error;
    167 
    168 	KASSERT((l->l_pflag & LP_INTR) == 0);
    169 
    170 	if (sleepq_dontsleep(l)) {
    171 		(void)sleepq_abort(NULL, 0);
    172 		if ((priority & PNORELOCK) != 0)
    173 			simple_unlock(interlock);
    174 		return 0;
    175 	}
    176 
    177 	l->l_kpriority = true;
    178 	sq = sleeptab_lookup(&sleeptab, ident);
    179 	sleepq_enter(sq, l);
    180 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    181 
    182 	if (interlock != NULL) {
    183 		KASSERT(simple_lock_held(interlock));
    184 		simple_unlock(interlock);
    185 	}
    186 
    187 	error = sleepq_block(timo, priority & PCATCH);
    188 
    189 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    190 		simple_lock(interlock);
    191 
    192 	return error;
    193 }
    194 
    195 int
    196 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    197 	kmutex_t *mtx)
    198 {
    199 	struct lwp *l = curlwp;
    200 	sleepq_t *sq;
    201 	int error;
    202 
    203 	KASSERT((l->l_pflag & LP_INTR) == 0);
    204 
    205 	if (sleepq_dontsleep(l)) {
    206 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    207 		return 0;
    208 	}
    209 
    210 	l->l_kpriority = true;
    211 	sq = sleeptab_lookup(&sleeptab, ident);
    212 	sleepq_enter(sq, l);
    213 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    214 	mutex_exit(mtx);
    215 	error = sleepq_block(timo, priority & PCATCH);
    216 
    217 	if ((priority & PNORELOCK) == 0)
    218 		mutex_enter(mtx);
    219 
    220 	return error;
    221 }
    222 
    223 /*
    224  * General sleep call for situations where a wake-up is not expected.
    225  */
    226 int
    227 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    228 {
    229 	struct lwp *l = curlwp;
    230 	sleepq_t *sq;
    231 	int error;
    232 
    233 	if (sleepq_dontsleep(l))
    234 		return sleepq_abort(NULL, 0);
    235 
    236 	if (mtx != NULL)
    237 		mutex_exit(mtx);
    238 	l->l_kpriority = true;
    239 	sq = sleeptab_lookup(&sleeptab, l);
    240 	sleepq_enter(sq, l);
    241 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    242 	error = sleepq_block(timo, intr);
    243 	if (mtx != NULL)
    244 		mutex_enter(mtx);
    245 
    246 	return error;
    247 }
    248 
    249 /*
    250  * OBSOLETE INTERFACE
    251  *
    252  * Make all processes sleeping on the specified identifier runnable.
    253  */
    254 void
    255 wakeup(wchan_t ident)
    256 {
    257 	sleepq_t *sq;
    258 
    259 	if (cold)
    260 		return;
    261 
    262 	sq = sleeptab_lookup(&sleeptab, ident);
    263 	sleepq_wake(sq, ident, (u_int)-1);
    264 }
    265 
    266 /*
    267  * OBSOLETE INTERFACE
    268  *
    269  * Make the highest priority process first in line on the specified
    270  * identifier runnable.
    271  */
    272 void
    273 wakeup_one(wchan_t ident)
    274 {
    275 	sleepq_t *sq;
    276 
    277 	if (cold)
    278 		return;
    279 
    280 	sq = sleeptab_lookup(&sleeptab, ident);
    281 	sleepq_wake(sq, ident, 1);
    282 }
    283 
    284 
    285 /*
    286  * General yield call.  Puts the current process back on its run queue and
    287  * performs a voluntary context switch.  Should only be called when the
    288  * current process explicitly requests it (eg sched_yield(2)).
    289  */
    290 void
    291 yield(void)
    292 {
    293 	struct lwp *l = curlwp;
    294 
    295 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    296 	lwp_lock(l);
    297 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    298 	KASSERT(l->l_stat == LSONPROC);
    299 	l->l_kpriority = false;
    300 	if (l->l_class == SCHED_OTHER) {
    301 		/*
    302 		 * Only for timeshared threads.  It will be reset
    303 		 * by the scheduler in due course.
    304 		 */
    305 		l->l_priority = 0;
    306 	}
    307 	(void)mi_switch(l);
    308 	KERNEL_LOCK(l->l_biglocks, l);
    309 }
    310 
    311 /*
    312  * General preemption call.  Puts the current process back on its run queue
    313  * and performs an involuntary context switch.
    314  */
    315 void
    316 preempt(void)
    317 {
    318 	struct lwp *l = curlwp;
    319 
    320 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    321 	lwp_lock(l);
    322 	KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
    323 	KASSERT(l->l_stat == LSONPROC);
    324 	l->l_kpriority = false;
    325 	l->l_nivcsw++;
    326 	(void)mi_switch(l);
    327 	KERNEL_LOCK(l->l_biglocks, l);
    328 }
    329 
    330 /*
    331  * Compute the amount of time during which the current lwp was running.
    332  *
    333  * - update l_rtime unless it's an idle lwp.
    334  */
    335 
    336 void
    337 updatertime(lwp_t *l, const struct bintime *now)
    338 {
    339 
    340 	if ((l->l_flag & LW_IDLE) != 0)
    341 		return;
    342 
    343 	/* rtime += now - stime */
    344 	bintime_add(&l->l_rtime, now);
    345 	bintime_sub(&l->l_rtime, &l->l_stime);
    346 }
    347 
    348 /*
    349  * The machine independent parts of context switch.
    350  *
    351  * Returns 1 if another LWP was actually run.
    352  */
    353 int
    354 mi_switch(lwp_t *l)
    355 {
    356 	struct schedstate_percpu *spc;
    357 	struct lwp *newl;
    358 	int retval, oldspl;
    359 	struct cpu_info *ci;
    360 	struct bintime bt;
    361 	bool returning;
    362 
    363 	KASSERT(lwp_locked(l, NULL));
    364 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    365 
    366 #ifdef KSTACK_CHECK_MAGIC
    367 	kstack_check_magic(l);
    368 #endif
    369 
    370 	binuptime(&bt);
    371 
    372 	KDASSERT(l->l_cpu == curcpu());
    373 	ci = l->l_cpu;
    374 	spc = &ci->ci_schedstate;
    375 	returning = false;
    376 	newl = NULL;
    377 
    378 	/*
    379 	 * If we have been asked to switch to a specific LWP, then there
    380 	 * is no need to inspect the run queues.  If a soft interrupt is
    381 	 * blocking, then return to the interrupted thread without adjusting
    382 	 * VM context or its start time: neither have been changed in order
    383 	 * to take the interrupt.
    384 	 */
    385 	if (l->l_switchto != NULL) {
    386 		if ((l->l_pflag & LP_INTR) != 0) {
    387 			returning = true;
    388 			softint_block(l);
    389 			if ((l->l_flag & LW_TIMEINTR) != 0)
    390 				updatertime(l, &bt);
    391 		}
    392 		newl = l->l_switchto;
    393 		l->l_switchto = NULL;
    394 	}
    395 #ifndef __HAVE_FAST_SOFTINTS
    396 	else if (ci->ci_data.cpu_softints != 0) {
    397 		/* There are pending soft interrupts, so pick one. */
    398 		newl = softint_picklwp();
    399 		newl->l_stat = LSONPROC;
    400 		newl->l_flag |= LW_RUNNING;
    401 	}
    402 #endif	/* !__HAVE_FAST_SOFTINTS */
    403 
    404 	/* Count time spent in current system call */
    405 	if (!returning) {
    406 		SYSCALL_TIME_SLEEP(l);
    407 
    408 		/*
    409 		 * XXXSMP If we are using h/w performance counters,
    410 		 * save context.
    411 		 */
    412 #if PERFCTRS
    413 		if (PMC_ENABLED(l->l_proc)) {
    414 			pmc_save_context(l->l_proc);
    415 		}
    416 #endif
    417 		updatertime(l, &bt);
    418 	}
    419 
    420 	/*
    421 	 * If on the CPU and we have gotten this far, then we must yield.
    422 	 */
    423 	mutex_spin_enter(spc->spc_mutex);
    424 	KASSERT(l->l_stat != LSRUN);
    425 	if (l->l_stat == LSONPROC && l != newl) {
    426 		KASSERT(lwp_locked(l, &spc->spc_lwplock));
    427 		if ((l->l_flag & LW_IDLE) == 0) {
    428 			l->l_stat = LSRUN;
    429 			lwp_setlock(l, spc->spc_mutex);
    430 			sched_enqueue(l, true);
    431 		} else
    432 			l->l_stat = LSIDL;
    433 	}
    434 
    435 	/*
    436 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    437 	 * If no LWP is runnable, select the idle LWP.
    438 	 *
    439 	 * Note that spc_lwplock might not necessary be held, and
    440 	 * new thread would be unlocked after setting the LWP-lock.
    441 	 */
    442 	if (newl == NULL) {
    443 		newl = sched_nextlwp();
    444 		if (newl != NULL) {
    445 			sched_dequeue(newl);
    446 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    447 			newl->l_stat = LSONPROC;
    448 			newl->l_cpu = ci;
    449 			newl->l_flag |= LW_RUNNING;
    450 			lwp_setlock(newl, &spc->spc_lwplock);
    451 		} else {
    452 			newl = ci->ci_data.cpu_idlelwp;
    453 			newl->l_stat = LSONPROC;
    454 			newl->l_flag |= LW_RUNNING;
    455 		}
    456 		/*
    457 		 * Only clear want_resched if there are no
    458 		 * pending (slow) software interrupts.
    459 		 */
    460 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    461 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    462 		spc->spc_curpriority = lwp_eprio(newl);
    463 	}
    464 
    465 	/* Items that must be updated with the CPU locked. */
    466 	if (!returning) {
    467 		/* Update the new LWP's start time. */
    468 		newl->l_stime = bt;
    469 
    470 		/*
    471 		 * ci_curlwp changes when a fast soft interrupt occurs.
    472 		 * We use cpu_onproc to keep track of which kernel or
    473 		 * user thread is running 'underneath' the software
    474 		 * interrupt.  This is important for time accounting,
    475 		 * itimers and forcing user threads to preempt (aston).
    476 		 */
    477 		ci->ci_data.cpu_onproc = newl;
    478 	}
    479 
    480 	if (l != newl) {
    481 		struct lwp *prevlwp;
    482 
    483 		/* Release all locks, but leave the current LWP locked */
    484 		if (l->l_mutex == spc->spc_mutex) {
    485 			/*
    486 			 * Drop spc_lwplock, if the current LWP has been moved
    487 			 * to the run queue (it is now locked by spc_mutex).
    488 			 */
    489 			mutex_spin_exit(&spc->spc_lwplock);
    490 		} else {
    491 			/*
    492 			 * Otherwise, drop the spc_mutex, we are done with the
    493 			 * run queues.
    494 			 */
    495 			mutex_spin_exit(spc->spc_mutex);
    496 		}
    497 
    498 		/*
    499 		 * Mark that context switch is going to be perfomed
    500 		 * for this LWP, to protect it from being switched
    501 		 * to on another CPU.
    502 		 */
    503 		KASSERT(l->l_ctxswtch == 0);
    504 		l->l_ctxswtch = 1;
    505 		l->l_ncsw++;
    506 		l->l_flag &= ~LW_RUNNING;
    507 
    508 		/*
    509 		 * Increase the count of spin-mutexes before the release
    510 		 * of the last lock - we must remain at IPL_SCHED during
    511 		 * the context switch.
    512 		 */
    513 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    514 		ci->ci_mtx_count--;
    515 		lwp_unlock(l);
    516 
    517 		/* Unlocked, but for statistics only. */
    518 		uvmexp.swtch++;
    519 
    520 		/* Update status for lwpctl, if present. */
    521 		if (l->l_lwpctl != NULL)
    522 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    523 
    524 		/*
    525 		 * Save old VM context, unless a soft interrupt
    526 		 * handler is blocking.
    527 		 */
    528 		if (!returning)
    529 			pmap_deactivate(l);
    530 
    531 		/*
    532 		 * We may need to spin-wait for if 'newl' is still
    533 		 * context switching on another CPU.
    534 		 */
    535 		if (newl->l_ctxswtch != 0) {
    536 			u_int count;
    537 			count = SPINLOCK_BACKOFF_MIN;
    538 			while (newl->l_ctxswtch)
    539 				SPINLOCK_BACKOFF(count);
    540 		}
    541 
    542 		/* Switch to the new LWP.. */
    543 		prevlwp = cpu_switchto(l, newl, returning);
    544 		ci = curcpu();
    545 
    546 		/*
    547 		 * Switched away - we have new curlwp.
    548 		 * Restore VM context and IPL.
    549 		 */
    550 		pmap_activate(l);
    551 		if (prevlwp != NULL) {
    552 			/* Normalize the count of the spin-mutexes */
    553 			ci->ci_mtx_count++;
    554 			/* Unmark the state of context switch */
    555 			membar_exit();
    556 			prevlwp->l_ctxswtch = 0;
    557 		}
    558 		splx(oldspl);
    559 
    560 		/* Update status for lwpctl, if present. */
    561 		if (l->l_lwpctl != NULL)
    562 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    563 
    564 		retval = 1;
    565 	} else {
    566 		/* Nothing to do - just unlock and return. */
    567 		mutex_spin_exit(spc->spc_mutex);
    568 		lwp_unlock(l);
    569 		retval = 0;
    570 	}
    571 
    572 	KASSERT(l == curlwp);
    573 	KASSERT(l->l_stat == LSONPROC);
    574 	KASSERT(l->l_cpu == ci);
    575 
    576 	/*
    577 	 * XXXSMP If we are using h/w performance counters, restore context.
    578 	 */
    579 #if PERFCTRS
    580 	if (PMC_ENABLED(l->l_proc)) {
    581 		pmc_restore_context(l->l_proc);
    582 	}
    583 #endif
    584 	SYSCALL_TIME_WAKEUP(l);
    585 	LOCKDEBUG_BARRIER(NULL, 1);
    586 
    587 	return retval;
    588 }
    589 
    590 /*
    591  * Change process state to be runnable, placing it on the run queue if it is
    592  * in memory, and awakening the swapper if it isn't in memory.
    593  *
    594  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    595  */
    596 void
    597 setrunnable(struct lwp *l)
    598 {
    599 	struct proc *p = l->l_proc;
    600 	struct cpu_info *ci;
    601 	sigset_t *ss;
    602 
    603 	KASSERT((l->l_flag & LW_IDLE) == 0);
    604 	KASSERT(mutex_owned(&p->p_smutex));
    605 	KASSERT(lwp_locked(l, NULL));
    606 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    607 
    608 	switch (l->l_stat) {
    609 	case LSSTOP:
    610 		/*
    611 		 * If we're being traced (possibly because someone attached us
    612 		 * while we were stopped), check for a signal from the debugger.
    613 		 */
    614 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    615 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    616 				ss = &l->l_sigpend.sp_set;
    617 			else
    618 				ss = &p->p_sigpend.sp_set;
    619 			sigaddset(ss, p->p_xstat);
    620 			signotify(l);
    621 		}
    622 		p->p_nrlwps++;
    623 		break;
    624 	case LSSUSPENDED:
    625 		l->l_flag &= ~LW_WSUSPEND;
    626 		p->p_nrlwps++;
    627 		cv_broadcast(&p->p_lwpcv);
    628 		break;
    629 	case LSSLEEP:
    630 		KASSERT(l->l_wchan != NULL);
    631 		break;
    632 	default:
    633 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    634 	}
    635 
    636 	/*
    637 	 * If the LWP was sleeping interruptably, then it's OK to start it
    638 	 * again.  If not, mark it as still sleeping.
    639 	 */
    640 	if (l->l_wchan != NULL) {
    641 		l->l_stat = LSSLEEP;
    642 		/* lwp_unsleep() will release the lock. */
    643 		lwp_unsleep(l);
    644 		return;
    645 	}
    646 
    647 	/*
    648 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    649 	 * about to call mi_switch(), in which case it will yield.
    650 	 */
    651 	if ((l->l_flag & LW_RUNNING) != 0) {
    652 		l->l_stat = LSONPROC;
    653 		l->l_slptime = 0;
    654 		lwp_unlock(l);
    655 		return;
    656 	}
    657 
    658 	/*
    659 	 * Look for a CPU to run.
    660 	 * Set the LWP runnable.
    661 	 */
    662 	ci = sched_takecpu(l);
    663 	l->l_cpu = ci;
    664 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    665 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    666 		lwp_lock(l);
    667 	}
    668 	sched_setrunnable(l);
    669 	l->l_stat = LSRUN;
    670 	l->l_slptime = 0;
    671 
    672 	/*
    673 	 * If thread is swapped out - wake the swapper to bring it back in.
    674 	 * Otherwise, enter it into a run queue.
    675 	 */
    676 	if (l->l_flag & LW_INMEM) {
    677 		sched_enqueue(l, false);
    678 		resched_cpu(l);
    679 		lwp_unlock(l);
    680 	} else {
    681 		lwp_unlock(l);
    682 		uvm_kick_scheduler();
    683 	}
    684 }
    685 
    686 /*
    687  * suspendsched:
    688  *
    689  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    690  */
    691 void
    692 suspendsched(void)
    693 {
    694 	CPU_INFO_ITERATOR cii;
    695 	struct cpu_info *ci;
    696 	struct lwp *l;
    697 	struct proc *p;
    698 
    699 	/*
    700 	 * We do this by process in order not to violate the locking rules.
    701 	 */
    702 	mutex_enter(&proclist_lock);
    703 	PROCLIST_FOREACH(p, &allproc) {
    704 		mutex_enter(&p->p_smutex);
    705 
    706 		if ((p->p_flag & PK_SYSTEM) != 0) {
    707 			mutex_exit(&p->p_smutex);
    708 			continue;
    709 		}
    710 
    711 		p->p_stat = SSTOP;
    712 
    713 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    714 			if (l == curlwp)
    715 				continue;
    716 
    717 			lwp_lock(l);
    718 
    719 			/*
    720 			 * Set L_WREBOOT so that the LWP will suspend itself
    721 			 * when it tries to return to user mode.  We want to
    722 			 * try and get to get as many LWPs as possible to
    723 			 * the user / kernel boundary, so that they will
    724 			 * release any locks that they hold.
    725 			 */
    726 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    727 
    728 			if (l->l_stat == LSSLEEP &&
    729 			    (l->l_flag & LW_SINTR) != 0) {
    730 				/* setrunnable() will release the lock. */
    731 				setrunnable(l);
    732 				continue;
    733 			}
    734 
    735 			lwp_unlock(l);
    736 		}
    737 
    738 		mutex_exit(&p->p_smutex);
    739 	}
    740 	mutex_exit(&proclist_lock);
    741 
    742 	/*
    743 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    744 	 * They'll trap into the kernel and suspend themselves in userret().
    745 	 */
    746 	for (CPU_INFO_FOREACH(cii, ci)) {
    747 		spc_lock(ci);
    748 		cpu_need_resched(ci, RESCHED_IMMED);
    749 		spc_unlock(ci);
    750 	}
    751 }
    752 
    753 /*
    754  * sched_unsleep:
    755  *
    756  *	The is called when the LWP has not been awoken normally but instead
    757  *	interrupted: for example, if the sleep timed out.  Because of this,
    758  *	it's not a valid action for running or idle LWPs.
    759  */
    760 static void
    761 sched_unsleep(struct lwp *l)
    762 {
    763 
    764 	lwp_unlock(l);
    765 	panic("sched_unsleep");
    766 }
    767 
    768 void
    769 resched_cpu(struct lwp *l)
    770 {
    771 	struct cpu_info *ci;
    772 
    773 	/*
    774 	 * XXXSMP
    775 	 * Since l->l_cpu persists across a context switch,
    776 	 * this gives us *very weak* processor affinity, in
    777 	 * that we notify the CPU on which the process last
    778 	 * ran that it should try to switch.
    779 	 *
    780 	 * This does not guarantee that the process will run on
    781 	 * that processor next, because another processor might
    782 	 * grab it the next time it performs a context switch.
    783 	 *
    784 	 * This also does not handle the case where its last
    785 	 * CPU is running a higher-priority process, but every
    786 	 * other CPU is running a lower-priority process.  There
    787 	 * are ways to handle this situation, but they're not
    788 	 * currently very pretty, and we also need to weigh the
    789 	 * cost of moving a process from one CPU to another.
    790 	 */
    791 	ci = l->l_cpu;
    792 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
    793 		cpu_need_resched(ci, 0);
    794 }
    795 
    796 static void
    797 sched_changepri(struct lwp *l, pri_t pri)
    798 {
    799 
    800 	KASSERT(lwp_locked(l, NULL));
    801 
    802 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    803 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    804 		sched_dequeue(l);
    805 		l->l_priority = pri;
    806 		sched_enqueue(l, false);
    807 	} else {
    808 		l->l_priority = pri;
    809 	}
    810 	resched_cpu(l);
    811 }
    812 
    813 static void
    814 sched_lendpri(struct lwp *l, pri_t pri)
    815 {
    816 
    817 	KASSERT(lwp_locked(l, NULL));
    818 
    819 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    820 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    821 		sched_dequeue(l);
    822 		l->l_inheritedprio = pri;
    823 		sched_enqueue(l, false);
    824 	} else {
    825 		l->l_inheritedprio = pri;
    826 	}
    827 	resched_cpu(l);
    828 }
    829 
    830 struct lwp *
    831 syncobj_noowner(wchan_t wchan)
    832 {
    833 
    834 	return NULL;
    835 }
    836 
    837 
    838 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    839 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    840 
    841 /*
    842  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    843  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    844  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    845  *
    846  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    847  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    848  *
    849  * If you dont want to bother with the faster/more-accurate formula, you
    850  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    851  * (more general) method of calculating the %age of CPU used by a process.
    852  */
    853 #define	CCPU_SHIFT	(FSHIFT + 1)
    854 
    855 /*
    856  * sched_pstats:
    857  *
    858  * Update process statistics and check CPU resource allocation.
    859  * Call scheduler-specific hook to eventually adjust process/LWP
    860  * priorities.
    861  */
    862 /* ARGSUSED */
    863 void
    864 sched_pstats(void *arg)
    865 {
    866 	struct rlimit *rlim;
    867 	struct lwp *l;
    868 	struct proc *p;
    869 	int sig, clkhz;
    870 	long runtm;
    871 
    872 	sched_pstats_ticks++;
    873 
    874 	mutex_enter(&proclist_lock);
    875 	PROCLIST_FOREACH(p, &allproc) {
    876 		/*
    877 		 * Increment time in/out of memory and sleep time (if
    878 		 * sleeping).  We ignore overflow; with 16-bit int's
    879 		 * (remember them?) overflow takes 45 days.
    880 		 */
    881 		mutex_enter(&p->p_smutex);
    882 		mutex_spin_enter(&p->p_stmutex);
    883 		runtm = p->p_rtime.sec;
    884 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    885 			if ((l->l_flag & LW_IDLE) != 0)
    886 				continue;
    887 			lwp_lock(l);
    888 			runtm += l->l_rtime.sec;
    889 			l->l_swtime++;
    890 			sched_pstats_hook(l);
    891 			lwp_unlock(l);
    892 
    893 			/*
    894 			 * p_pctcpu is only for ps.
    895 			 */
    896 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    897 			if (l->l_slptime < 1) {
    898 				clkhz = stathz != 0 ? stathz : hz;
    899 #if	(FSHIFT >= CCPU_SHIFT)
    900 				l->l_pctcpu += (clkhz == 100) ?
    901 				    ((fixpt_t)l->l_cpticks) <<
    902 				        (FSHIFT - CCPU_SHIFT) :
    903 				    100 * (((fixpt_t) p->p_cpticks)
    904 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    905 #else
    906 				l->l_pctcpu += ((FSCALE - ccpu) *
    907 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    908 #endif
    909 				l->l_cpticks = 0;
    910 			}
    911 		}
    912 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    913 		mutex_spin_exit(&p->p_stmutex);
    914 
    915 		/*
    916 		 * Check if the process exceeds its CPU resource allocation.
    917 		 * If over max, kill it.
    918 		 */
    919 		rlim = &p->p_rlimit[RLIMIT_CPU];
    920 		sig = 0;
    921 		if (runtm >= rlim->rlim_cur) {
    922 			if (runtm >= rlim->rlim_max)
    923 				sig = SIGKILL;
    924 			else {
    925 				sig = SIGXCPU;
    926 				if (rlim->rlim_cur < rlim->rlim_max)
    927 					rlim->rlim_cur += 5;
    928 			}
    929 		}
    930 		mutex_exit(&p->p_smutex);
    931 		if (sig) {
    932 			mutex_enter(&proclist_mutex);
    933 			psignal(p, sig);
    934 			mutex_exit(&proclist_mutex);
    935 		}
    936 	}
    937 	mutex_exit(&proclist_lock);
    938 	uvm_meter();
    939 	cv_wakeup(&lbolt);
    940 	callout_schedule(&sched_pstats_ch, hz);
    941 }
    942 
    943 void
    944 sched_init(void)
    945 {
    946 
    947 	cv_init(&lbolt, "lbolt");
    948 	callout_init(&sched_pstats_ch, 0);
    949 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    950 	sched_setup();
    951 	sched_pstats(NULL);
    952 }
    953