kern_synch.c revision 1.215 1 /* $NetBSD: kern_synch.c,v 1.215 2008/01/04 21:18:10 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*-
42 * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 * The Regents of the University of California. All rights reserved.
44 * (c) UNIX System Laboratories, Inc.
45 * All or some portions of this file are derived from material licensed
46 * to the University of California by American Telephone and Telegraph
47 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 * the permission of UNIX System Laboratories, Inc.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 */
76
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.215 2008/01/04 21:18:10 ad Exp $");
79
80 #include "opt_kstack.h"
81 #include "opt_lockdebug.h"
82 #include "opt_multiprocessor.h"
83 #include "opt_perfctrs.h"
84
85 #define __MUTEX_PRIVATE
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/proc.h>
90 #include <sys/kernel.h>
91 #if defined(PERFCTRS)
92 #include <sys/pmc.h>
93 #endif
94 #include <sys/cpu.h>
95 #include <sys/resourcevar.h>
96 #include <sys/sched.h>
97 #include <sys/syscall_stats.h>
98 #include <sys/sleepq.h>
99 #include <sys/lockdebug.h>
100 #include <sys/evcnt.h>
101 #include <sys/intr.h>
102 #include <sys/lwpctl.h>
103 #include <sys/atomic.h>
104 #include <sys/simplelock.h>
105
106 #include <uvm/uvm_extern.h>
107
108 callout_t sched_pstats_ch;
109 unsigned int sched_pstats_ticks;
110
111 kcondvar_t lbolt; /* once a second sleep address */
112
113 static void sched_unsleep(struct lwp *);
114 static void sched_changepri(struct lwp *, pri_t);
115 static void sched_lendpri(struct lwp *, pri_t);
116
117 syncobj_t sleep_syncobj = {
118 SOBJ_SLEEPQ_SORTED,
119 sleepq_unsleep,
120 sleepq_changepri,
121 sleepq_lendpri,
122 syncobj_noowner,
123 };
124
125 syncobj_t sched_syncobj = {
126 SOBJ_SLEEPQ_SORTED,
127 sched_unsleep,
128 sched_changepri,
129 sched_lendpri,
130 syncobj_noowner,
131 };
132
133 /*
134 * During autoconfiguration or after a panic, a sleep will simply lower the
135 * priority briefly to allow interrupts, then return. The priority to be
136 * used (safepri) is machine-dependent, thus this value is initialized and
137 * maintained in the machine-dependent layers. This priority will typically
138 * be 0, or the lowest priority that is safe for use on the interrupt stack;
139 * it can be made higher to block network software interrupts after panics.
140 */
141 int safepri;
142
143 /*
144 * OBSOLETE INTERFACE
145 *
146 * General sleep call. Suspends the current process until a wakeup is
147 * performed on the specified identifier. The process will then be made
148 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
149 * means no timeout). If pri includes PCATCH flag, signals are checked
150 * before and after sleeping, else signals are not checked. Returns 0 if
151 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
152 * signal needs to be delivered, ERESTART is returned if the current system
153 * call should be restarted if possible, and EINTR is returned if the system
154 * call should be interrupted by the signal (return EINTR).
155 *
156 * The interlock is held until we are on a sleep queue. The interlock will
157 * be locked before returning back to the caller unless the PNORELOCK flag
158 * is specified, in which case the interlock will always be unlocked upon
159 * return.
160 */
161 int
162 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
163 volatile struct simplelock *interlock)
164 {
165 struct lwp *l = curlwp;
166 sleepq_t *sq;
167 int error;
168
169 KASSERT((l->l_pflag & LP_INTR) == 0);
170
171 if (sleepq_dontsleep(l)) {
172 (void)sleepq_abort(NULL, 0);
173 if ((priority & PNORELOCK) != 0)
174 simple_unlock(interlock);
175 return 0;
176 }
177
178 l->l_kpriority = true;
179 sq = sleeptab_lookup(&sleeptab, ident);
180 sleepq_enter(sq, l);
181 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
182
183 if (interlock != NULL) {
184 KASSERT(simple_lock_held(interlock));
185 simple_unlock(interlock);
186 }
187
188 error = sleepq_block(timo, priority & PCATCH);
189
190 if (interlock != NULL && (priority & PNORELOCK) == 0)
191 simple_lock(interlock);
192
193 return error;
194 }
195
196 int
197 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
198 kmutex_t *mtx)
199 {
200 struct lwp *l = curlwp;
201 sleepq_t *sq;
202 int error;
203
204 KASSERT((l->l_pflag & LP_INTR) == 0);
205
206 if (sleepq_dontsleep(l)) {
207 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
208 return 0;
209 }
210
211 l->l_kpriority = true;
212 sq = sleeptab_lookup(&sleeptab, ident);
213 sleepq_enter(sq, l);
214 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
215 mutex_exit(mtx);
216 error = sleepq_block(timo, priority & PCATCH);
217
218 if ((priority & PNORELOCK) == 0)
219 mutex_enter(mtx);
220
221 return error;
222 }
223
224 /*
225 * General sleep call for situations where a wake-up is not expected.
226 */
227 int
228 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
229 {
230 struct lwp *l = curlwp;
231 sleepq_t *sq;
232 int error;
233
234 if (sleepq_dontsleep(l))
235 return sleepq_abort(NULL, 0);
236
237 if (mtx != NULL)
238 mutex_exit(mtx);
239 l->l_kpriority = true;
240 sq = sleeptab_lookup(&sleeptab, l);
241 sleepq_enter(sq, l);
242 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
243 error = sleepq_block(timo, intr);
244 if (mtx != NULL)
245 mutex_enter(mtx);
246
247 return error;
248 }
249
250 /*
251 * OBSOLETE INTERFACE
252 *
253 * Make all processes sleeping on the specified identifier runnable.
254 */
255 void
256 wakeup(wchan_t ident)
257 {
258 sleepq_t *sq;
259
260 if (cold)
261 return;
262
263 sq = sleeptab_lookup(&sleeptab, ident);
264 sleepq_wake(sq, ident, (u_int)-1);
265 }
266
267 /*
268 * OBSOLETE INTERFACE
269 *
270 * Make the highest priority process first in line on the specified
271 * identifier runnable.
272 */
273 void
274 wakeup_one(wchan_t ident)
275 {
276 sleepq_t *sq;
277
278 if (cold)
279 return;
280
281 sq = sleeptab_lookup(&sleeptab, ident);
282 sleepq_wake(sq, ident, 1);
283 }
284
285
286 /*
287 * General yield call. Puts the current process back on its run queue and
288 * performs a voluntary context switch. Should only be called when the
289 * current process explicitly requests it (eg sched_yield(2)).
290 */
291 void
292 yield(void)
293 {
294 struct lwp *l = curlwp;
295
296 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
297 lwp_lock(l);
298 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
299 KASSERT(l->l_stat == LSONPROC);
300 l->l_kpriority = false;
301 if (l->l_class == SCHED_OTHER) {
302 /*
303 * Only for timeshared threads. It will be reset
304 * by the scheduler in due course.
305 */
306 l->l_priority = 0;
307 }
308 (void)mi_switch(l);
309 KERNEL_LOCK(l->l_biglocks, l);
310 }
311
312 /*
313 * General preemption call. Puts the current process back on its run queue
314 * and performs an involuntary context switch.
315 */
316 void
317 preempt(void)
318 {
319 struct lwp *l = curlwp;
320
321 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
322 lwp_lock(l);
323 KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
324 KASSERT(l->l_stat == LSONPROC);
325 l->l_kpriority = false;
326 l->l_nivcsw++;
327 (void)mi_switch(l);
328 KERNEL_LOCK(l->l_biglocks, l);
329 }
330
331 /*
332 * Compute the amount of time during which the current lwp was running.
333 *
334 * - update l_rtime unless it's an idle lwp.
335 */
336
337 void
338 updatertime(lwp_t *l, const struct bintime *now)
339 {
340
341 if ((l->l_flag & LW_IDLE) != 0)
342 return;
343
344 /* rtime += now - stime */
345 bintime_add(&l->l_rtime, now);
346 bintime_sub(&l->l_rtime, &l->l_stime);
347 }
348
349 /*
350 * The machine independent parts of context switch.
351 *
352 * Returns 1 if another LWP was actually run.
353 */
354 int
355 mi_switch(lwp_t *l)
356 {
357 struct schedstate_percpu *spc;
358 struct lwp *newl;
359 int retval, oldspl;
360 struct cpu_info *ci;
361 struct bintime bt;
362 bool returning;
363
364 KASSERT(lwp_locked(l, NULL));
365 LOCKDEBUG_BARRIER(l->l_mutex, 1);
366
367 #ifdef KSTACK_CHECK_MAGIC
368 kstack_check_magic(l);
369 #endif
370
371 binuptime(&bt);
372
373 KDASSERT(l->l_cpu == curcpu());
374 ci = l->l_cpu;
375 spc = &ci->ci_schedstate;
376 returning = false;
377 newl = NULL;
378
379 /*
380 * If we have been asked to switch to a specific LWP, then there
381 * is no need to inspect the run queues. If a soft interrupt is
382 * blocking, then return to the interrupted thread without adjusting
383 * VM context or its start time: neither have been changed in order
384 * to take the interrupt.
385 */
386 if (l->l_switchto != NULL) {
387 if ((l->l_pflag & LP_INTR) != 0) {
388 returning = true;
389 softint_block(l);
390 if ((l->l_flag & LW_TIMEINTR) != 0)
391 updatertime(l, &bt);
392 }
393 newl = l->l_switchto;
394 l->l_switchto = NULL;
395 }
396 #ifndef __HAVE_FAST_SOFTINTS
397 else if (ci->ci_data.cpu_softints != 0) {
398 /* There are pending soft interrupts, so pick one. */
399 newl = softint_picklwp();
400 newl->l_stat = LSONPROC;
401 newl->l_flag |= LW_RUNNING;
402 }
403 #endif /* !__HAVE_FAST_SOFTINTS */
404
405 /* Count time spent in current system call */
406 if (!returning) {
407 SYSCALL_TIME_SLEEP(l);
408
409 /*
410 * XXXSMP If we are using h/w performance counters,
411 * save context.
412 */
413 #if PERFCTRS
414 if (PMC_ENABLED(l->l_proc)) {
415 pmc_save_context(l->l_proc);
416 }
417 #endif
418 updatertime(l, &bt);
419 }
420
421 /*
422 * If on the CPU and we have gotten this far, then we must yield.
423 */
424 mutex_spin_enter(spc->spc_mutex);
425 KASSERT(l->l_stat != LSRUN);
426 if (l->l_stat == LSONPROC && l != newl) {
427 KASSERT(lwp_locked(l, &spc->spc_lwplock));
428 if ((l->l_flag & LW_IDLE) == 0) {
429 l->l_stat = LSRUN;
430 lwp_setlock(l, spc->spc_mutex);
431 sched_enqueue(l, true);
432 } else
433 l->l_stat = LSIDL;
434 }
435
436 /*
437 * Let sched_nextlwp() select the LWP to run the CPU next.
438 * If no LWP is runnable, select the idle LWP.
439 *
440 * Note that spc_lwplock might not necessary be held, and
441 * new thread would be unlocked after setting the LWP-lock.
442 */
443 if (newl == NULL) {
444 newl = sched_nextlwp();
445 if (newl != NULL) {
446 sched_dequeue(newl);
447 KASSERT(lwp_locked(newl, spc->spc_mutex));
448 newl->l_stat = LSONPROC;
449 newl->l_cpu = ci;
450 newl->l_flag |= LW_RUNNING;
451 lwp_setlock(newl, &spc->spc_lwplock);
452 } else {
453 newl = ci->ci_data.cpu_idlelwp;
454 newl->l_stat = LSONPROC;
455 newl->l_flag |= LW_RUNNING;
456 }
457 /*
458 * Only clear want_resched if there are no
459 * pending (slow) software interrupts.
460 */
461 ci->ci_want_resched = ci->ci_data.cpu_softints;
462 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
463 spc->spc_curpriority = lwp_eprio(newl);
464 }
465
466 /* Items that must be updated with the CPU locked. */
467 if (!returning) {
468 /* Update the new LWP's start time. */
469 newl->l_stime = bt;
470
471 /*
472 * ci_curlwp changes when a fast soft interrupt occurs.
473 * We use cpu_onproc to keep track of which kernel or
474 * user thread is running 'underneath' the software
475 * interrupt. This is important for time accounting,
476 * itimers and forcing user threads to preempt (aston).
477 */
478 ci->ci_data.cpu_onproc = newl;
479 }
480
481 if (l != newl) {
482 struct lwp *prevlwp;
483
484 /* Release all locks, but leave the current LWP locked */
485 if (l->l_mutex == spc->spc_mutex) {
486 /*
487 * Drop spc_lwplock, if the current LWP has been moved
488 * to the run queue (it is now locked by spc_mutex).
489 */
490 mutex_spin_exit(&spc->spc_lwplock);
491 } else {
492 /*
493 * Otherwise, drop the spc_mutex, we are done with the
494 * run queues.
495 */
496 mutex_spin_exit(spc->spc_mutex);
497 }
498
499 /*
500 * Mark that context switch is going to be perfomed
501 * for this LWP, to protect it from being switched
502 * to on another CPU.
503 */
504 KASSERT(l->l_ctxswtch == 0);
505 l->l_ctxswtch = 1;
506 l->l_ncsw++;
507 l->l_flag &= ~LW_RUNNING;
508
509 /*
510 * Increase the count of spin-mutexes before the release
511 * of the last lock - we must remain at IPL_SCHED during
512 * the context switch.
513 */
514 oldspl = MUTEX_SPIN_OLDSPL(ci);
515 ci->ci_mtx_count--;
516 lwp_unlock(l);
517
518 /* Unlocked, but for statistics only. */
519 uvmexp.swtch++;
520
521 /* Update status for lwpctl, if present. */
522 if (l->l_lwpctl != NULL)
523 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
524
525 /*
526 * Save old VM context, unless a soft interrupt
527 * handler is blocking.
528 */
529 if (!returning)
530 pmap_deactivate(l);
531
532 /*
533 * We may need to spin-wait for if 'newl' is still
534 * context switching on another CPU.
535 */
536 if (newl->l_ctxswtch != 0) {
537 u_int count;
538 count = SPINLOCK_BACKOFF_MIN;
539 while (newl->l_ctxswtch)
540 SPINLOCK_BACKOFF(count);
541 }
542
543 /* Switch to the new LWP.. */
544 prevlwp = cpu_switchto(l, newl, returning);
545 ci = curcpu();
546
547 /*
548 * Switched away - we have new curlwp.
549 * Restore VM context and IPL.
550 */
551 pmap_activate(l);
552 if (prevlwp != NULL) {
553 /* Normalize the count of the spin-mutexes */
554 ci->ci_mtx_count++;
555 /* Unmark the state of context switch */
556 membar_exit();
557 prevlwp->l_ctxswtch = 0;
558 }
559 splx(oldspl);
560
561 /* Update status for lwpctl, if present. */
562 if (l->l_lwpctl != NULL)
563 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
564
565 retval = 1;
566 } else {
567 /* Nothing to do - just unlock and return. */
568 mutex_spin_exit(spc->spc_mutex);
569 lwp_unlock(l);
570 retval = 0;
571 }
572
573 KASSERT(l == curlwp);
574 KASSERT(l->l_stat == LSONPROC);
575 KASSERT(l->l_cpu == ci);
576
577 /*
578 * XXXSMP If we are using h/w performance counters, restore context.
579 */
580 #if PERFCTRS
581 if (PMC_ENABLED(l->l_proc)) {
582 pmc_restore_context(l->l_proc);
583 }
584 #endif
585 SYSCALL_TIME_WAKEUP(l);
586 LOCKDEBUG_BARRIER(NULL, 1);
587
588 return retval;
589 }
590
591 /*
592 * Change process state to be runnable, placing it on the run queue if it is
593 * in memory, and awakening the swapper if it isn't in memory.
594 *
595 * Call with the process and LWP locked. Will return with the LWP unlocked.
596 */
597 void
598 setrunnable(struct lwp *l)
599 {
600 struct proc *p = l->l_proc;
601 struct cpu_info *ci;
602 sigset_t *ss;
603
604 KASSERT((l->l_flag & LW_IDLE) == 0);
605 KASSERT(mutex_owned(&p->p_smutex));
606 KASSERT(lwp_locked(l, NULL));
607 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
608
609 switch (l->l_stat) {
610 case LSSTOP:
611 /*
612 * If we're being traced (possibly because someone attached us
613 * while we were stopped), check for a signal from the debugger.
614 */
615 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
616 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
617 ss = &l->l_sigpend.sp_set;
618 else
619 ss = &p->p_sigpend.sp_set;
620 sigaddset(ss, p->p_xstat);
621 signotify(l);
622 }
623 p->p_nrlwps++;
624 break;
625 case LSSUSPENDED:
626 l->l_flag &= ~LW_WSUSPEND;
627 p->p_nrlwps++;
628 cv_broadcast(&p->p_lwpcv);
629 break;
630 case LSSLEEP:
631 KASSERT(l->l_wchan != NULL);
632 break;
633 default:
634 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
635 }
636
637 /*
638 * If the LWP was sleeping interruptably, then it's OK to start it
639 * again. If not, mark it as still sleeping.
640 */
641 if (l->l_wchan != NULL) {
642 l->l_stat = LSSLEEP;
643 /* lwp_unsleep() will release the lock. */
644 lwp_unsleep(l);
645 return;
646 }
647
648 /*
649 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
650 * about to call mi_switch(), in which case it will yield.
651 */
652 if ((l->l_flag & LW_RUNNING) != 0) {
653 l->l_stat = LSONPROC;
654 l->l_slptime = 0;
655 lwp_unlock(l);
656 return;
657 }
658
659 /*
660 * Look for a CPU to run.
661 * Set the LWP runnable.
662 */
663 ci = sched_takecpu(l);
664 l->l_cpu = ci;
665 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
666 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
667 lwp_lock(l);
668 }
669 sched_setrunnable(l);
670 l->l_stat = LSRUN;
671 l->l_slptime = 0;
672
673 /*
674 * If thread is swapped out - wake the swapper to bring it back in.
675 * Otherwise, enter it into a run queue.
676 */
677 if (l->l_flag & LW_INMEM) {
678 sched_enqueue(l, false);
679 resched_cpu(l);
680 lwp_unlock(l);
681 } else {
682 lwp_unlock(l);
683 uvm_kick_scheduler();
684 }
685 }
686
687 /*
688 * suspendsched:
689 *
690 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
691 */
692 void
693 suspendsched(void)
694 {
695 CPU_INFO_ITERATOR cii;
696 struct cpu_info *ci;
697 struct lwp *l;
698 struct proc *p;
699
700 /*
701 * We do this by process in order not to violate the locking rules.
702 */
703 mutex_enter(&proclist_lock);
704 PROCLIST_FOREACH(p, &allproc) {
705 mutex_enter(&p->p_smutex);
706
707 if ((p->p_flag & PK_SYSTEM) != 0) {
708 mutex_exit(&p->p_smutex);
709 continue;
710 }
711
712 p->p_stat = SSTOP;
713
714 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
715 if (l == curlwp)
716 continue;
717
718 lwp_lock(l);
719
720 /*
721 * Set L_WREBOOT so that the LWP will suspend itself
722 * when it tries to return to user mode. We want to
723 * try and get to get as many LWPs as possible to
724 * the user / kernel boundary, so that they will
725 * release any locks that they hold.
726 */
727 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
728
729 if (l->l_stat == LSSLEEP &&
730 (l->l_flag & LW_SINTR) != 0) {
731 /* setrunnable() will release the lock. */
732 setrunnable(l);
733 continue;
734 }
735
736 lwp_unlock(l);
737 }
738
739 mutex_exit(&p->p_smutex);
740 }
741 mutex_exit(&proclist_lock);
742
743 /*
744 * Kick all CPUs to make them preempt any LWPs running in user mode.
745 * They'll trap into the kernel and suspend themselves in userret().
746 */
747 for (CPU_INFO_FOREACH(cii, ci)) {
748 spc_lock(ci);
749 cpu_need_resched(ci, RESCHED_IMMED);
750 spc_unlock(ci);
751 }
752 }
753
754 /*
755 * sched_unsleep:
756 *
757 * The is called when the LWP has not been awoken normally but instead
758 * interrupted: for example, if the sleep timed out. Because of this,
759 * it's not a valid action for running or idle LWPs.
760 */
761 static void
762 sched_unsleep(struct lwp *l)
763 {
764
765 lwp_unlock(l);
766 panic("sched_unsleep");
767 }
768
769 void
770 resched_cpu(struct lwp *l)
771 {
772 struct cpu_info *ci;
773
774 /*
775 * XXXSMP
776 * Since l->l_cpu persists across a context switch,
777 * this gives us *very weak* processor affinity, in
778 * that we notify the CPU on which the process last
779 * ran that it should try to switch.
780 *
781 * This does not guarantee that the process will run on
782 * that processor next, because another processor might
783 * grab it the next time it performs a context switch.
784 *
785 * This also does not handle the case where its last
786 * CPU is running a higher-priority process, but every
787 * other CPU is running a lower-priority process. There
788 * are ways to handle this situation, but they're not
789 * currently very pretty, and we also need to weigh the
790 * cost of moving a process from one CPU to another.
791 */
792 ci = l->l_cpu;
793 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
794 cpu_need_resched(ci, 0);
795 }
796
797 static void
798 sched_changepri(struct lwp *l, pri_t pri)
799 {
800
801 KASSERT(lwp_locked(l, NULL));
802
803 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
804 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
805 sched_dequeue(l);
806 l->l_priority = pri;
807 sched_enqueue(l, false);
808 } else {
809 l->l_priority = pri;
810 }
811 resched_cpu(l);
812 }
813
814 static void
815 sched_lendpri(struct lwp *l, pri_t pri)
816 {
817
818 KASSERT(lwp_locked(l, NULL));
819
820 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
821 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
822 sched_dequeue(l);
823 l->l_inheritedprio = pri;
824 sched_enqueue(l, false);
825 } else {
826 l->l_inheritedprio = pri;
827 }
828 resched_cpu(l);
829 }
830
831 struct lwp *
832 syncobj_noowner(wchan_t wchan)
833 {
834
835 return NULL;
836 }
837
838
839 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
840 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
841
842 /*
843 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
844 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
845 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
846 *
847 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
848 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
849 *
850 * If you dont want to bother with the faster/more-accurate formula, you
851 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
852 * (more general) method of calculating the %age of CPU used by a process.
853 */
854 #define CCPU_SHIFT (FSHIFT + 1)
855
856 /*
857 * sched_pstats:
858 *
859 * Update process statistics and check CPU resource allocation.
860 * Call scheduler-specific hook to eventually adjust process/LWP
861 * priorities.
862 */
863 /* ARGSUSED */
864 void
865 sched_pstats(void *arg)
866 {
867 struct rlimit *rlim;
868 struct lwp *l;
869 struct proc *p;
870 int sig, clkhz;
871 long runtm;
872
873 sched_pstats_ticks++;
874
875 mutex_enter(&proclist_lock);
876 PROCLIST_FOREACH(p, &allproc) {
877 /*
878 * Increment time in/out of memory and sleep time (if
879 * sleeping). We ignore overflow; with 16-bit int's
880 * (remember them?) overflow takes 45 days.
881 */
882 mutex_enter(&p->p_smutex);
883 mutex_spin_enter(&p->p_stmutex);
884 runtm = p->p_rtime.sec;
885 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
886 if ((l->l_flag & LW_IDLE) != 0)
887 continue;
888 lwp_lock(l);
889 runtm += l->l_rtime.sec;
890 l->l_swtime++;
891 sched_pstats_hook(l);
892 lwp_unlock(l);
893
894 /*
895 * p_pctcpu is only for ps.
896 */
897 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
898 if (l->l_slptime < 1) {
899 clkhz = stathz != 0 ? stathz : hz;
900 #if (FSHIFT >= CCPU_SHIFT)
901 l->l_pctcpu += (clkhz == 100) ?
902 ((fixpt_t)l->l_cpticks) <<
903 (FSHIFT - CCPU_SHIFT) :
904 100 * (((fixpt_t) p->p_cpticks)
905 << (FSHIFT - CCPU_SHIFT)) / clkhz;
906 #else
907 l->l_pctcpu += ((FSCALE - ccpu) *
908 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
909 #endif
910 l->l_cpticks = 0;
911 }
912 }
913 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
914 mutex_spin_exit(&p->p_stmutex);
915
916 /*
917 * Check if the process exceeds its CPU resource allocation.
918 * If over max, kill it.
919 */
920 rlim = &p->p_rlimit[RLIMIT_CPU];
921 sig = 0;
922 if (runtm >= rlim->rlim_cur) {
923 if (runtm >= rlim->rlim_max)
924 sig = SIGKILL;
925 else {
926 sig = SIGXCPU;
927 if (rlim->rlim_cur < rlim->rlim_max)
928 rlim->rlim_cur += 5;
929 }
930 }
931 mutex_exit(&p->p_smutex);
932 if (sig) {
933 mutex_enter(&proclist_mutex);
934 psignal(p, sig);
935 mutex_exit(&proclist_mutex);
936 }
937 }
938 mutex_exit(&proclist_lock);
939 uvm_meter();
940 cv_wakeup(&lbolt);
941 callout_schedule(&sched_pstats_ch, hz);
942 }
943
944 void
945 sched_init(void)
946 {
947
948 cv_init(&lbolt, "lbolt");
949 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
950 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
951 sched_setup();
952 sched_pstats(NULL);
953 }
954