Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.217
      1 /*	$NetBSD: kern_synch.c,v 1.217 2008/02/14 14:26:57 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.217 2008/02/14 14:26:57 ad Exp $");
     79 
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #if defined(PERFCTRS)
     92 #include <sys/pmc.h>
     93 #endif
     94 #include <sys/cpu.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/syscall_stats.h>
     98 #include <sys/sleepq.h>
     99 #include <sys/lockdebug.h>
    100 #include <sys/evcnt.h>
    101 #include <sys/intr.h>
    102 #include <sys/lwpctl.h>
    103 #include <sys/atomic.h>
    104 #include <sys/simplelock.h>
    105 
    106 #include <uvm/uvm_extern.h>
    107 
    108 callout_t sched_pstats_ch;
    109 unsigned int sched_pstats_ticks;
    110 
    111 kcondvar_t	lbolt;			/* once a second sleep address */
    112 
    113 static void	sched_unsleep(struct lwp *);
    114 static void	sched_changepri(struct lwp *, pri_t);
    115 static void	sched_lendpri(struct lwp *, pri_t);
    116 
    117 syncobj_t sleep_syncobj = {
    118 	SOBJ_SLEEPQ_SORTED,
    119 	sleepq_unsleep,
    120 	sleepq_changepri,
    121 	sleepq_lendpri,
    122 	syncobj_noowner,
    123 };
    124 
    125 syncobj_t sched_syncobj = {
    126 	SOBJ_SLEEPQ_SORTED,
    127 	sched_unsleep,
    128 	sched_changepri,
    129 	sched_lendpri,
    130 	syncobj_noowner,
    131 };
    132 
    133 /*
    134  * During autoconfiguration or after a panic, a sleep will simply lower the
    135  * priority briefly to allow interrupts, then return.  The priority to be
    136  * used (safepri) is machine-dependent, thus this value is initialized and
    137  * maintained in the machine-dependent layers.  This priority will typically
    138  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    139  * it can be made higher to block network software interrupts after panics.
    140  */
    141 int	safepri;
    142 
    143 /*
    144  * OBSOLETE INTERFACE
    145  *
    146  * General sleep call.  Suspends the current process until a wakeup is
    147  * performed on the specified identifier.  The process will then be made
    148  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    149  * means no timeout).  If pri includes PCATCH flag, signals are checked
    150  * before and after sleeping, else signals are not checked.  Returns 0 if
    151  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    152  * signal needs to be delivered, ERESTART is returned if the current system
    153  * call should be restarted if possible, and EINTR is returned if the system
    154  * call should be interrupted by the signal (return EINTR).
    155  *
    156  * The interlock is held until we are on a sleep queue. The interlock will
    157  * be locked before returning back to the caller unless the PNORELOCK flag
    158  * is specified, in which case the interlock will always be unlocked upon
    159  * return.
    160  */
    161 int
    162 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    163 	volatile struct simplelock *interlock)
    164 {
    165 	struct lwp *l = curlwp;
    166 	sleepq_t *sq;
    167 	int error;
    168 
    169 	KASSERT((l->l_pflag & LP_INTR) == 0);
    170 
    171 	if (sleepq_dontsleep(l)) {
    172 		(void)sleepq_abort(NULL, 0);
    173 		if ((priority & PNORELOCK) != 0)
    174 			simple_unlock(interlock);
    175 		return 0;
    176 	}
    177 
    178 	l->l_kpriority = true;
    179 	sq = sleeptab_lookup(&sleeptab, ident);
    180 	sleepq_enter(sq, l);
    181 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    182 
    183 	if (interlock != NULL) {
    184 		KASSERT(simple_lock_held(interlock));
    185 		simple_unlock(interlock);
    186 	}
    187 
    188 	error = sleepq_block(timo, priority & PCATCH);
    189 
    190 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    191 		simple_lock(interlock);
    192 
    193 	return error;
    194 }
    195 
    196 int
    197 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    198 	kmutex_t *mtx)
    199 {
    200 	struct lwp *l = curlwp;
    201 	sleepq_t *sq;
    202 	int error;
    203 
    204 	KASSERT((l->l_pflag & LP_INTR) == 0);
    205 
    206 	if (sleepq_dontsleep(l)) {
    207 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    208 		return 0;
    209 	}
    210 
    211 	l->l_kpriority = true;
    212 	sq = sleeptab_lookup(&sleeptab, ident);
    213 	sleepq_enter(sq, l);
    214 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    215 	mutex_exit(mtx);
    216 	error = sleepq_block(timo, priority & PCATCH);
    217 
    218 	if ((priority & PNORELOCK) == 0)
    219 		mutex_enter(mtx);
    220 
    221 	return error;
    222 }
    223 
    224 /*
    225  * General sleep call for situations where a wake-up is not expected.
    226  */
    227 int
    228 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    229 {
    230 	struct lwp *l = curlwp;
    231 	sleepq_t *sq;
    232 	int error;
    233 
    234 	if (sleepq_dontsleep(l))
    235 		return sleepq_abort(NULL, 0);
    236 
    237 	if (mtx != NULL)
    238 		mutex_exit(mtx);
    239 	l->l_kpriority = true;
    240 	sq = sleeptab_lookup(&sleeptab, l);
    241 	sleepq_enter(sq, l);
    242 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    243 	error = sleepq_block(timo, intr);
    244 	if (mtx != NULL)
    245 		mutex_enter(mtx);
    246 
    247 	return error;
    248 }
    249 
    250 /*
    251  * OBSOLETE INTERFACE
    252  *
    253  * Make all processes sleeping on the specified identifier runnable.
    254  */
    255 void
    256 wakeup(wchan_t ident)
    257 {
    258 	sleepq_t *sq;
    259 
    260 	if (cold)
    261 		return;
    262 
    263 	sq = sleeptab_lookup(&sleeptab, ident);
    264 	sleepq_wake(sq, ident, (u_int)-1);
    265 }
    266 
    267 /*
    268  * OBSOLETE INTERFACE
    269  *
    270  * Make the highest priority process first in line on the specified
    271  * identifier runnable.
    272  */
    273 void
    274 wakeup_one(wchan_t ident)
    275 {
    276 	sleepq_t *sq;
    277 
    278 	if (cold)
    279 		return;
    280 
    281 	sq = sleeptab_lookup(&sleeptab, ident);
    282 	sleepq_wake(sq, ident, 1);
    283 }
    284 
    285 
    286 /*
    287  * General yield call.  Puts the current process back on its run queue and
    288  * performs a voluntary context switch.  Should only be called when the
    289  * current process explicitly requests it (eg sched_yield(2)).
    290  */
    291 void
    292 yield(void)
    293 {
    294 	struct lwp *l = curlwp;
    295 
    296 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    297 	lwp_lock(l);
    298 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    299 	KASSERT(l->l_stat == LSONPROC);
    300 	l->l_kpriority = false;
    301 	if (l->l_class == SCHED_OTHER) {
    302 		/*
    303 		 * Only for timeshared threads.  It will be reset
    304 		 * by the scheduler in due course.
    305 		 */
    306 		l->l_priority = 0;
    307 	}
    308 	(void)mi_switch(l);
    309 	KERNEL_LOCK(l->l_biglocks, l);
    310 }
    311 
    312 /*
    313  * General preemption call.  Puts the current process back on its run queue
    314  * and performs an involuntary context switch.
    315  */
    316 void
    317 preempt(void)
    318 {
    319 	struct lwp *l = curlwp;
    320 
    321 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    322 	lwp_lock(l);
    323 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    324 	KASSERT(l->l_stat == LSONPROC);
    325 	l->l_kpriority = false;
    326 	l->l_nivcsw++;
    327 	(void)mi_switch(l);
    328 	KERNEL_LOCK(l->l_biglocks, l);
    329 }
    330 
    331 /*
    332  * Compute the amount of time during which the current lwp was running.
    333  *
    334  * - update l_rtime unless it's an idle lwp.
    335  */
    336 
    337 void
    338 updatertime(lwp_t *l, const struct bintime *now)
    339 {
    340 
    341 	if ((l->l_flag & LW_IDLE) != 0)
    342 		return;
    343 
    344 	/* rtime += now - stime */
    345 	bintime_add(&l->l_rtime, now);
    346 	bintime_sub(&l->l_rtime, &l->l_stime);
    347 }
    348 
    349 /*
    350  * The machine independent parts of context switch.
    351  *
    352  * Returns 1 if another LWP was actually run.
    353  */
    354 int
    355 mi_switch(lwp_t *l)
    356 {
    357 	struct cpu_info *ci, *tci = NULL;
    358 	struct schedstate_percpu *spc;
    359 	struct lwp *newl;
    360 	int retval, oldspl;
    361 	struct bintime bt;
    362 	bool returning;
    363 
    364 	KASSERT(lwp_locked(l, NULL));
    365 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    366 
    367 #ifdef KSTACK_CHECK_MAGIC
    368 	kstack_check_magic(l);
    369 #endif
    370 
    371 	binuptime(&bt);
    372 
    373 	KDASSERT(l->l_cpu == curcpu());
    374 	ci = l->l_cpu;
    375 	spc = &ci->ci_schedstate;
    376 	returning = false;
    377 	newl = NULL;
    378 
    379 	/*
    380 	 * If we have been asked to switch to a specific LWP, then there
    381 	 * is no need to inspect the run queues.  If a soft interrupt is
    382 	 * blocking, then return to the interrupted thread without adjusting
    383 	 * VM context or its start time: neither have been changed in order
    384 	 * to take the interrupt.
    385 	 */
    386 	if (l->l_switchto != NULL) {
    387 		if ((l->l_pflag & LP_INTR) != 0) {
    388 			returning = true;
    389 			softint_block(l);
    390 			if ((l->l_flag & LW_TIMEINTR) != 0)
    391 				updatertime(l, &bt);
    392 		}
    393 		newl = l->l_switchto;
    394 		l->l_switchto = NULL;
    395 	}
    396 #ifndef __HAVE_FAST_SOFTINTS
    397 	else if (ci->ci_data.cpu_softints != 0) {
    398 		/* There are pending soft interrupts, so pick one. */
    399 		newl = softint_picklwp();
    400 		newl->l_stat = LSONPROC;
    401 		newl->l_flag |= LW_RUNNING;
    402 	}
    403 #endif	/* !__HAVE_FAST_SOFTINTS */
    404 
    405 	/* Count time spent in current system call */
    406 	if (!returning) {
    407 		SYSCALL_TIME_SLEEP(l);
    408 
    409 		/*
    410 		 * XXXSMP If we are using h/w performance counters,
    411 		 * save context.
    412 		 */
    413 #if PERFCTRS
    414 		if (PMC_ENABLED(l->l_proc)) {
    415 			pmc_save_context(l->l_proc);
    416 		}
    417 #endif
    418 		updatertime(l, &bt);
    419 	}
    420 
    421 	/*
    422 	 * If on the CPU and we have gotten this far, then we must yield.
    423 	 */
    424 	KASSERT(l->l_stat != LSRUN);
    425 	if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
    426 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    427 
    428 		tci = l->l_target_cpu;
    429 		if (__predict_false(tci != NULL)) {
    430 			/* Double-lock the runqueues */
    431 			spc_dlock(ci, tci);
    432 		} else {
    433 			/* Lock the runqueue */
    434 			spc_lock(ci);
    435 		}
    436 
    437 		if ((l->l_flag & LW_IDLE) == 0) {
    438 			l->l_stat = LSRUN;
    439 			if (__predict_false(tci != NULL)) {
    440 				/*
    441 				 * Set the new CPU, lock and unset the
    442 				 * l_target_cpu - thread will be enqueued
    443 				 * to the runqueue of target CPU.
    444 				 */
    445 				l->l_cpu = tci;
    446 				lwp_setlock(l, tci->ci_schedstate.spc_mutex);
    447 				l->l_target_cpu = NULL;
    448 			} else {
    449 				lwp_setlock(l, spc->spc_mutex);
    450 			}
    451 			sched_enqueue(l, true);
    452 		} else {
    453 			KASSERT(tci == NULL);
    454 			l->l_stat = LSIDL;
    455 		}
    456 	} else {
    457 		/* Lock the runqueue */
    458 		spc_lock(ci);
    459 	}
    460 
    461 	/*
    462 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    463 	 * If no LWP is runnable, select the idle LWP.
    464 	 *
    465 	 * Note that spc_lwplock might not necessary be held, and
    466 	 * new thread would be unlocked after setting the LWP-lock.
    467 	 */
    468 	if (newl == NULL) {
    469 		newl = sched_nextlwp();
    470 		if (newl != NULL) {
    471 			sched_dequeue(newl);
    472 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    473 			newl->l_stat = LSONPROC;
    474 			newl->l_cpu = ci;
    475 			newl->l_flag |= LW_RUNNING;
    476 			lwp_setlock(newl, spc->spc_lwplock);
    477 		} else {
    478 			newl = ci->ci_data.cpu_idlelwp;
    479 			newl->l_stat = LSONPROC;
    480 			newl->l_flag |= LW_RUNNING;
    481 		}
    482 		/*
    483 		 * Only clear want_resched if there are no
    484 		 * pending (slow) software interrupts.
    485 		 */
    486 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    487 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    488 		spc->spc_curpriority = lwp_eprio(newl);
    489 	}
    490 
    491 	/* Items that must be updated with the CPU locked. */
    492 	if (!returning) {
    493 		/* Update the new LWP's start time. */
    494 		newl->l_stime = bt;
    495 
    496 		/*
    497 		 * ci_curlwp changes when a fast soft interrupt occurs.
    498 		 * We use cpu_onproc to keep track of which kernel or
    499 		 * user thread is running 'underneath' the software
    500 		 * interrupt.  This is important for time accounting,
    501 		 * itimers and forcing user threads to preempt (aston).
    502 		 */
    503 		ci->ci_data.cpu_onproc = newl;
    504 	}
    505 
    506 	if (l != newl) {
    507 		struct lwp *prevlwp;
    508 
    509 		/* Release all locks, but leave the current LWP locked */
    510 		if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
    511 			/*
    512 			 * In case of migration, drop the local runqueue
    513 			 * lock, thread is on other runqueue now.
    514 			 */
    515 			if (__predict_false(tci != NULL))
    516 				spc_unlock(ci);
    517 			/*
    518 			 * Drop spc_lwplock, if the current LWP has been moved
    519 			 * to the run queue (it is now locked by spc_mutex).
    520 			 */
    521 			mutex_spin_exit(spc->spc_lwplock);
    522 		} else {
    523 			/*
    524 			 * Otherwise, drop the spc_mutex, we are done with the
    525 			 * run queues.
    526 			 */
    527 			mutex_spin_exit(spc->spc_mutex);
    528 			KASSERT(tci == NULL);
    529 		}
    530 
    531 		/*
    532 		 * Mark that context switch is going to be perfomed
    533 		 * for this LWP, to protect it from being switched
    534 		 * to on another CPU.
    535 		 */
    536 		KASSERT(l->l_ctxswtch == 0);
    537 		l->l_ctxswtch = 1;
    538 		l->l_ncsw++;
    539 		l->l_flag &= ~LW_RUNNING;
    540 
    541 		/*
    542 		 * Increase the count of spin-mutexes before the release
    543 		 * of the last lock - we must remain at IPL_SCHED during
    544 		 * the context switch.
    545 		 */
    546 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    547 		ci->ci_mtx_count--;
    548 		lwp_unlock(l);
    549 
    550 		/* Unlocked, but for statistics only. */
    551 		uvmexp.swtch++;
    552 
    553 		/* Update status for lwpctl, if present. */
    554 		if (l->l_lwpctl != NULL)
    555 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    556 
    557 		/*
    558 		 * Save old VM context, unless a soft interrupt
    559 		 * handler is blocking.
    560 		 */
    561 		if (!returning)
    562 			pmap_deactivate(l);
    563 
    564 		/*
    565 		 * We may need to spin-wait for if 'newl' is still
    566 		 * context switching on another CPU.
    567 		 */
    568 		if (newl->l_ctxswtch != 0) {
    569 			u_int count;
    570 			count = SPINLOCK_BACKOFF_MIN;
    571 			while (newl->l_ctxswtch)
    572 				SPINLOCK_BACKOFF(count);
    573 		}
    574 
    575 		/* Switch to the new LWP.. */
    576 		prevlwp = cpu_switchto(l, newl, returning);
    577 		ci = curcpu();
    578 
    579 		/*
    580 		 * Switched away - we have new curlwp.
    581 		 * Restore VM context and IPL.
    582 		 */
    583 		pmap_activate(l);
    584 		if (prevlwp != NULL) {
    585 			/* Normalize the count of the spin-mutexes */
    586 			ci->ci_mtx_count++;
    587 			/* Unmark the state of context switch */
    588 			membar_exit();
    589 			prevlwp->l_ctxswtch = 0;
    590 		}
    591 		splx(oldspl);
    592 
    593 		/* Update status for lwpctl, if present. */
    594 		if (l->l_lwpctl != NULL)
    595 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    596 
    597 		retval = 1;
    598 	} else {
    599 		/* Nothing to do - just unlock and return. */
    600 		KASSERT(tci == NULL);
    601 		spc_unlock(ci);
    602 		lwp_unlock(l);
    603 		retval = 0;
    604 	}
    605 
    606 	KASSERT(l == curlwp);
    607 	KASSERT(l->l_stat == LSONPROC);
    608 	KASSERT(l->l_cpu == ci);
    609 
    610 	/*
    611 	 * XXXSMP If we are using h/w performance counters, restore context.
    612 	 */
    613 #if PERFCTRS
    614 	if (PMC_ENABLED(l->l_proc)) {
    615 		pmc_restore_context(l->l_proc);
    616 	}
    617 #endif
    618 	SYSCALL_TIME_WAKEUP(l);
    619 	LOCKDEBUG_BARRIER(NULL, 1);
    620 
    621 	return retval;
    622 }
    623 
    624 /*
    625  * Change process state to be runnable, placing it on the run queue if it is
    626  * in memory, and awakening the swapper if it isn't in memory.
    627  *
    628  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    629  */
    630 void
    631 setrunnable(struct lwp *l)
    632 {
    633 	struct proc *p = l->l_proc;
    634 	struct cpu_info *ci;
    635 	sigset_t *ss;
    636 
    637 	KASSERT((l->l_flag & LW_IDLE) == 0);
    638 	KASSERT(mutex_owned(&p->p_smutex));
    639 	KASSERT(lwp_locked(l, NULL));
    640 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    641 
    642 	switch (l->l_stat) {
    643 	case LSSTOP:
    644 		/*
    645 		 * If we're being traced (possibly because someone attached us
    646 		 * while we were stopped), check for a signal from the debugger.
    647 		 */
    648 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    649 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    650 				ss = &l->l_sigpend.sp_set;
    651 			else
    652 				ss = &p->p_sigpend.sp_set;
    653 			sigaddset(ss, p->p_xstat);
    654 			signotify(l);
    655 		}
    656 		p->p_nrlwps++;
    657 		break;
    658 	case LSSUSPENDED:
    659 		l->l_flag &= ~LW_WSUSPEND;
    660 		p->p_nrlwps++;
    661 		cv_broadcast(&p->p_lwpcv);
    662 		break;
    663 	case LSSLEEP:
    664 		KASSERT(l->l_wchan != NULL);
    665 		break;
    666 	default:
    667 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    668 	}
    669 
    670 	/*
    671 	 * If the LWP was sleeping interruptably, then it's OK to start it
    672 	 * again.  If not, mark it as still sleeping.
    673 	 */
    674 	if (l->l_wchan != NULL) {
    675 		l->l_stat = LSSLEEP;
    676 		/* lwp_unsleep() will release the lock. */
    677 		lwp_unsleep(l);
    678 		return;
    679 	}
    680 
    681 	/*
    682 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    683 	 * about to call mi_switch(), in which case it will yield.
    684 	 */
    685 	if ((l->l_flag & LW_RUNNING) != 0) {
    686 		l->l_stat = LSONPROC;
    687 		l->l_slptime = 0;
    688 		lwp_unlock(l);
    689 		return;
    690 	}
    691 
    692 	/*
    693 	 * Look for a CPU to run.
    694 	 * Set the LWP runnable.
    695 	 */
    696 	ci = sched_takecpu(l);
    697 	l->l_cpu = ci;
    698 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    699 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    700 		lwp_lock(l);
    701 	}
    702 	sched_setrunnable(l);
    703 	l->l_stat = LSRUN;
    704 	l->l_slptime = 0;
    705 
    706 	/*
    707 	 * If thread is swapped out - wake the swapper to bring it back in.
    708 	 * Otherwise, enter it into a run queue.
    709 	 */
    710 	if (l->l_flag & LW_INMEM) {
    711 		sched_enqueue(l, false);
    712 		resched_cpu(l);
    713 		lwp_unlock(l);
    714 	} else {
    715 		lwp_unlock(l);
    716 		uvm_kick_scheduler();
    717 	}
    718 }
    719 
    720 /*
    721  * suspendsched:
    722  *
    723  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    724  */
    725 void
    726 suspendsched(void)
    727 {
    728 	CPU_INFO_ITERATOR cii;
    729 	struct cpu_info *ci;
    730 	struct lwp *l;
    731 	struct proc *p;
    732 
    733 	/*
    734 	 * We do this by process in order not to violate the locking rules.
    735 	 */
    736 	mutex_enter(&proclist_lock);
    737 	PROCLIST_FOREACH(p, &allproc) {
    738 		mutex_enter(&p->p_smutex);
    739 
    740 		if ((p->p_flag & PK_SYSTEM) != 0) {
    741 			mutex_exit(&p->p_smutex);
    742 			continue;
    743 		}
    744 
    745 		p->p_stat = SSTOP;
    746 
    747 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    748 			if (l == curlwp)
    749 				continue;
    750 
    751 			lwp_lock(l);
    752 
    753 			/*
    754 			 * Set L_WREBOOT so that the LWP will suspend itself
    755 			 * when it tries to return to user mode.  We want to
    756 			 * try and get to get as many LWPs as possible to
    757 			 * the user / kernel boundary, so that they will
    758 			 * release any locks that they hold.
    759 			 */
    760 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    761 
    762 			if (l->l_stat == LSSLEEP &&
    763 			    (l->l_flag & LW_SINTR) != 0) {
    764 				/* setrunnable() will release the lock. */
    765 				setrunnable(l);
    766 				continue;
    767 			}
    768 
    769 			lwp_unlock(l);
    770 		}
    771 
    772 		mutex_exit(&p->p_smutex);
    773 	}
    774 	mutex_exit(&proclist_lock);
    775 
    776 	/*
    777 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    778 	 * They'll trap into the kernel and suspend themselves in userret().
    779 	 */
    780 	for (CPU_INFO_FOREACH(cii, ci)) {
    781 		spc_lock(ci);
    782 		cpu_need_resched(ci, RESCHED_IMMED);
    783 		spc_unlock(ci);
    784 	}
    785 }
    786 
    787 /*
    788  * sched_unsleep:
    789  *
    790  *	The is called when the LWP has not been awoken normally but instead
    791  *	interrupted: for example, if the sleep timed out.  Because of this,
    792  *	it's not a valid action for running or idle LWPs.
    793  */
    794 static void
    795 sched_unsleep(struct lwp *l)
    796 {
    797 
    798 	lwp_unlock(l);
    799 	panic("sched_unsleep");
    800 }
    801 
    802 void
    803 resched_cpu(struct lwp *l)
    804 {
    805 	struct cpu_info *ci;
    806 
    807 	/*
    808 	 * XXXSMP
    809 	 * Since l->l_cpu persists across a context switch,
    810 	 * this gives us *very weak* processor affinity, in
    811 	 * that we notify the CPU on which the process last
    812 	 * ran that it should try to switch.
    813 	 *
    814 	 * This does not guarantee that the process will run on
    815 	 * that processor next, because another processor might
    816 	 * grab it the next time it performs a context switch.
    817 	 *
    818 	 * This also does not handle the case where its last
    819 	 * CPU is running a higher-priority process, but every
    820 	 * other CPU is running a lower-priority process.  There
    821 	 * are ways to handle this situation, but they're not
    822 	 * currently very pretty, and we also need to weigh the
    823 	 * cost of moving a process from one CPU to another.
    824 	 */
    825 	ci = l->l_cpu;
    826 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
    827 		cpu_need_resched(ci, 0);
    828 }
    829 
    830 static void
    831 sched_changepri(struct lwp *l, pri_t pri)
    832 {
    833 
    834 	KASSERT(lwp_locked(l, NULL));
    835 
    836 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    837 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    838 		sched_dequeue(l);
    839 		l->l_priority = pri;
    840 		sched_enqueue(l, false);
    841 	} else {
    842 		l->l_priority = pri;
    843 	}
    844 	resched_cpu(l);
    845 }
    846 
    847 static void
    848 sched_lendpri(struct lwp *l, pri_t pri)
    849 {
    850 
    851 	KASSERT(lwp_locked(l, NULL));
    852 
    853 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    854 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    855 		sched_dequeue(l);
    856 		l->l_inheritedprio = pri;
    857 		sched_enqueue(l, false);
    858 	} else {
    859 		l->l_inheritedprio = pri;
    860 	}
    861 	resched_cpu(l);
    862 }
    863 
    864 struct lwp *
    865 syncobj_noowner(wchan_t wchan)
    866 {
    867 
    868 	return NULL;
    869 }
    870 
    871 
    872 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    873 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    874 
    875 /*
    876  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    877  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    878  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    879  *
    880  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    881  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    882  *
    883  * If you dont want to bother with the faster/more-accurate formula, you
    884  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    885  * (more general) method of calculating the %age of CPU used by a process.
    886  */
    887 #define	CCPU_SHIFT	(FSHIFT + 1)
    888 
    889 /*
    890  * sched_pstats:
    891  *
    892  * Update process statistics and check CPU resource allocation.
    893  * Call scheduler-specific hook to eventually adjust process/LWP
    894  * priorities.
    895  */
    896 /* ARGSUSED */
    897 void
    898 sched_pstats(void *arg)
    899 {
    900 	struct rlimit *rlim;
    901 	struct lwp *l;
    902 	struct proc *p;
    903 	int sig, clkhz;
    904 	long runtm;
    905 
    906 	sched_pstats_ticks++;
    907 
    908 	mutex_enter(&proclist_lock);
    909 	PROCLIST_FOREACH(p, &allproc) {
    910 		/*
    911 		 * Increment time in/out of memory and sleep time (if
    912 		 * sleeping).  We ignore overflow; with 16-bit int's
    913 		 * (remember them?) overflow takes 45 days.
    914 		 */
    915 		mutex_enter(&p->p_smutex);
    916 		mutex_spin_enter(&p->p_stmutex);
    917 		runtm = p->p_rtime.sec;
    918 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    919 			if ((l->l_flag & LW_IDLE) != 0)
    920 				continue;
    921 			lwp_lock(l);
    922 			runtm += l->l_rtime.sec;
    923 			l->l_swtime++;
    924 			sched_pstats_hook(l);
    925 			lwp_unlock(l);
    926 
    927 			/*
    928 			 * p_pctcpu is only for ps.
    929 			 */
    930 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    931 			if (l->l_slptime < 1) {
    932 				clkhz = stathz != 0 ? stathz : hz;
    933 #if	(FSHIFT >= CCPU_SHIFT)
    934 				l->l_pctcpu += (clkhz == 100) ?
    935 				    ((fixpt_t)l->l_cpticks) <<
    936 				        (FSHIFT - CCPU_SHIFT) :
    937 				    100 * (((fixpt_t) p->p_cpticks)
    938 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    939 #else
    940 				l->l_pctcpu += ((FSCALE - ccpu) *
    941 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    942 #endif
    943 				l->l_cpticks = 0;
    944 			}
    945 		}
    946 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    947 		mutex_spin_exit(&p->p_stmutex);
    948 
    949 		/*
    950 		 * Check if the process exceeds its CPU resource allocation.
    951 		 * If over max, kill it.
    952 		 */
    953 		rlim = &p->p_rlimit[RLIMIT_CPU];
    954 		sig = 0;
    955 		if (runtm >= rlim->rlim_cur) {
    956 			if (runtm >= rlim->rlim_max)
    957 				sig = SIGKILL;
    958 			else {
    959 				sig = SIGXCPU;
    960 				if (rlim->rlim_cur < rlim->rlim_max)
    961 					rlim->rlim_cur += 5;
    962 			}
    963 		}
    964 		mutex_exit(&p->p_smutex);
    965 		if (sig) {
    966 			mutex_enter(&proclist_mutex);
    967 			psignal(p, sig);
    968 			mutex_exit(&proclist_mutex);
    969 		}
    970 	}
    971 	mutex_exit(&proclist_lock);
    972 	uvm_meter();
    973 	cv_wakeup(&lbolt);
    974 	callout_schedule(&sched_pstats_ch, hz);
    975 }
    976 
    977 void
    978 sched_init(void)
    979 {
    980 
    981 	cv_init(&lbolt, "lbolt");
    982 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    983 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    984 	sched_setup();
    985 	sched_pstats(NULL);
    986 }
    987