Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.220
      1 /*	$NetBSD: kern_synch.c,v 1.220 2008/03/16 23:11:30 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by the NetBSD
     23  *	Foundation, Inc. and its contributors.
     24  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  *    contributors may be used to endorse or promote products derived
     26  *    from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGE.
     39  */
     40 
     41 /*-
     42  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  * (c) UNIX System Laboratories, Inc.
     45  * All or some portions of this file are derived from material licensed
     46  * to the University of California by American Telephone and Telegraph
     47  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  * the permission of UNIX System Laboratories, Inc.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  */
     76 
     77 #include <sys/cdefs.h>
     78 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.220 2008/03/16 23:11:30 rmind Exp $");
     79 
     80 #include "opt_kstack.h"
     81 #include "opt_lockdebug.h"
     82 #include "opt_multiprocessor.h"
     83 #include "opt_perfctrs.h"
     84 
     85 #define	__MUTEX_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/proc.h>
     90 #include <sys/kernel.h>
     91 #if defined(PERFCTRS)
     92 #include <sys/pmc.h>
     93 #endif
     94 #include <sys/cpu.h>
     95 #include <sys/resourcevar.h>
     96 #include <sys/sched.h>
     97 #include <sys/syscall_stats.h>
     98 #include <sys/sleepq.h>
     99 #include <sys/lockdebug.h>
    100 #include <sys/evcnt.h>
    101 #include <sys/intr.h>
    102 #include <sys/lwpctl.h>
    103 #include <sys/atomic.h>
    104 #include <sys/simplelock.h>
    105 
    106 #include <uvm/uvm_extern.h>
    107 
    108 callout_t sched_pstats_ch;
    109 unsigned int sched_pstats_ticks;
    110 
    111 kcondvar_t	lbolt;			/* once a second sleep address */
    112 
    113 static void	sched_unsleep(struct lwp *);
    114 static void	sched_changepri(struct lwp *, pri_t);
    115 static void	sched_lendpri(struct lwp *, pri_t);
    116 
    117 syncobj_t sleep_syncobj = {
    118 	SOBJ_SLEEPQ_SORTED,
    119 	sleepq_unsleep,
    120 	sleepq_changepri,
    121 	sleepq_lendpri,
    122 	syncobj_noowner,
    123 };
    124 
    125 syncobj_t sched_syncobj = {
    126 	SOBJ_SLEEPQ_SORTED,
    127 	sched_unsleep,
    128 	sched_changepri,
    129 	sched_lendpri,
    130 	syncobj_noowner,
    131 };
    132 
    133 /*
    134  * During autoconfiguration or after a panic, a sleep will simply lower the
    135  * priority briefly to allow interrupts, then return.  The priority to be
    136  * used (safepri) is machine-dependent, thus this value is initialized and
    137  * maintained in the machine-dependent layers.  This priority will typically
    138  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    139  * it can be made higher to block network software interrupts after panics.
    140  */
    141 int	safepri;
    142 
    143 /*
    144  * OBSOLETE INTERFACE
    145  *
    146  * General sleep call.  Suspends the current process until a wakeup is
    147  * performed on the specified identifier.  The process will then be made
    148  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    149  * means no timeout).  If pri includes PCATCH flag, signals are checked
    150  * before and after sleeping, else signals are not checked.  Returns 0 if
    151  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    152  * signal needs to be delivered, ERESTART is returned if the current system
    153  * call should be restarted if possible, and EINTR is returned if the system
    154  * call should be interrupted by the signal (return EINTR).
    155  *
    156  * The interlock is held until we are on a sleep queue. The interlock will
    157  * be locked before returning back to the caller unless the PNORELOCK flag
    158  * is specified, in which case the interlock will always be unlocked upon
    159  * return.
    160  */
    161 int
    162 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    163 	volatile struct simplelock *interlock)
    164 {
    165 	struct lwp *l = curlwp;
    166 	sleepq_t *sq;
    167 	int error;
    168 
    169 	KASSERT((l->l_pflag & LP_INTR) == 0);
    170 
    171 	if (sleepq_dontsleep(l)) {
    172 		(void)sleepq_abort(NULL, 0);
    173 		if ((priority & PNORELOCK) != 0)
    174 			simple_unlock(interlock);
    175 		return 0;
    176 	}
    177 
    178 	l->l_kpriority = true;
    179 	sq = sleeptab_lookup(&sleeptab, ident);
    180 	sleepq_enter(sq, l);
    181 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    182 
    183 	if (interlock != NULL) {
    184 		KASSERT(simple_lock_held(interlock));
    185 		simple_unlock(interlock);
    186 	}
    187 
    188 	error = sleepq_block(timo, priority & PCATCH);
    189 
    190 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    191 		simple_lock(interlock);
    192 
    193 	return error;
    194 }
    195 
    196 int
    197 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    198 	kmutex_t *mtx)
    199 {
    200 	struct lwp *l = curlwp;
    201 	sleepq_t *sq;
    202 	int error;
    203 
    204 	KASSERT((l->l_pflag & LP_INTR) == 0);
    205 
    206 	if (sleepq_dontsleep(l)) {
    207 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    208 		return 0;
    209 	}
    210 
    211 	l->l_kpriority = true;
    212 	sq = sleeptab_lookup(&sleeptab, ident);
    213 	sleepq_enter(sq, l);
    214 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    215 	mutex_exit(mtx);
    216 	error = sleepq_block(timo, priority & PCATCH);
    217 
    218 	if ((priority & PNORELOCK) == 0)
    219 		mutex_enter(mtx);
    220 
    221 	return error;
    222 }
    223 
    224 /*
    225  * General sleep call for situations where a wake-up is not expected.
    226  */
    227 int
    228 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    229 {
    230 	struct lwp *l = curlwp;
    231 	sleepq_t *sq;
    232 	int error;
    233 
    234 	if (sleepq_dontsleep(l))
    235 		return sleepq_abort(NULL, 0);
    236 
    237 	if (mtx != NULL)
    238 		mutex_exit(mtx);
    239 	l->l_kpriority = true;
    240 	sq = sleeptab_lookup(&sleeptab, l);
    241 	sleepq_enter(sq, l);
    242 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    243 	error = sleepq_block(timo, intr);
    244 	if (mtx != NULL)
    245 		mutex_enter(mtx);
    246 
    247 	return error;
    248 }
    249 
    250 /*
    251  * OBSOLETE INTERFACE
    252  *
    253  * Make all processes sleeping on the specified identifier runnable.
    254  */
    255 void
    256 wakeup(wchan_t ident)
    257 {
    258 	sleepq_t *sq;
    259 
    260 	if (cold)
    261 		return;
    262 
    263 	sq = sleeptab_lookup(&sleeptab, ident);
    264 	sleepq_wake(sq, ident, (u_int)-1);
    265 }
    266 
    267 /*
    268  * OBSOLETE INTERFACE
    269  *
    270  * Make the highest priority process first in line on the specified
    271  * identifier runnable.
    272  */
    273 void
    274 wakeup_one(wchan_t ident)
    275 {
    276 	sleepq_t *sq;
    277 
    278 	if (cold)
    279 		return;
    280 
    281 	sq = sleeptab_lookup(&sleeptab, ident);
    282 	sleepq_wake(sq, ident, 1);
    283 }
    284 
    285 
    286 /*
    287  * General yield call.  Puts the current process back on its run queue and
    288  * performs a voluntary context switch.  Should only be called when the
    289  * current process explicitly requests it (eg sched_yield(2)).
    290  */
    291 void
    292 yield(void)
    293 {
    294 	struct lwp *l = curlwp;
    295 
    296 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    297 	lwp_lock(l);
    298 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    299 	KASSERT(l->l_stat == LSONPROC);
    300 	l->l_kpriority = false;
    301 	if (l->l_class == SCHED_OTHER) {
    302 		/*
    303 		 * Only for timeshared threads.  It will be reset
    304 		 * by the scheduler in due course.
    305 		 */
    306 		l->l_priority = 0;
    307 	}
    308 	(void)mi_switch(l);
    309 	KERNEL_LOCK(l->l_biglocks, l);
    310 }
    311 
    312 /*
    313  * General preemption call.  Puts the current process back on its run queue
    314  * and performs an involuntary context switch.
    315  */
    316 void
    317 preempt(void)
    318 {
    319 	struct lwp *l = curlwp;
    320 
    321 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    322 	lwp_lock(l);
    323 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    324 	KASSERT(l->l_stat == LSONPROC);
    325 	l->l_kpriority = false;
    326 	l->l_nivcsw++;
    327 	(void)mi_switch(l);
    328 	KERNEL_LOCK(l->l_biglocks, l);
    329 }
    330 
    331 /*
    332  * Compute the amount of time during which the current lwp was running.
    333  *
    334  * - update l_rtime unless it's an idle lwp.
    335  */
    336 
    337 void
    338 updatertime(lwp_t *l, const struct bintime *now)
    339 {
    340 
    341 	if ((l->l_flag & LW_IDLE) != 0)
    342 		return;
    343 
    344 	/* rtime += now - stime */
    345 	bintime_add(&l->l_rtime, now);
    346 	bintime_sub(&l->l_rtime, &l->l_stime);
    347 }
    348 
    349 /*
    350  * The machine independent parts of context switch.
    351  *
    352  * Returns 1 if another LWP was actually run.
    353  */
    354 int
    355 mi_switch(lwp_t *l)
    356 {
    357 	struct cpu_info *ci, *tci = NULL;
    358 	struct schedstate_percpu *spc;
    359 	struct lwp *newl;
    360 	int retval, oldspl;
    361 	struct bintime bt;
    362 	bool returning;
    363 
    364 	KASSERT(lwp_locked(l, NULL));
    365 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    366 
    367 #ifdef KSTACK_CHECK_MAGIC
    368 	kstack_check_magic(l);
    369 #endif
    370 
    371 	binuptime(&bt);
    372 
    373 	KDASSERT(l->l_cpu == curcpu());
    374 	ci = l->l_cpu;
    375 	spc = &ci->ci_schedstate;
    376 	returning = false;
    377 	newl = NULL;
    378 
    379 	/*
    380 	 * If we have been asked to switch to a specific LWP, then there
    381 	 * is no need to inspect the run queues.  If a soft interrupt is
    382 	 * blocking, then return to the interrupted thread without adjusting
    383 	 * VM context or its start time: neither have been changed in order
    384 	 * to take the interrupt.
    385 	 */
    386 	if (l->l_switchto != NULL) {
    387 		if ((l->l_pflag & LP_INTR) != 0) {
    388 			returning = true;
    389 			softint_block(l);
    390 			if ((l->l_flag & LW_TIMEINTR) != 0)
    391 				updatertime(l, &bt);
    392 		}
    393 		newl = l->l_switchto;
    394 		l->l_switchto = NULL;
    395 	}
    396 #ifndef __HAVE_FAST_SOFTINTS
    397 	else if (ci->ci_data.cpu_softints != 0) {
    398 		/* There are pending soft interrupts, so pick one. */
    399 		newl = softint_picklwp();
    400 		newl->l_stat = LSONPROC;
    401 		newl->l_flag |= LW_RUNNING;
    402 	}
    403 #endif	/* !__HAVE_FAST_SOFTINTS */
    404 
    405 	/* Count time spent in current system call */
    406 	if (!returning) {
    407 		SYSCALL_TIME_SLEEP(l);
    408 
    409 		/*
    410 		 * XXXSMP If we are using h/w performance counters,
    411 		 * save context.
    412 		 */
    413 #if PERFCTRS
    414 		if (PMC_ENABLED(l->l_proc)) {
    415 			pmc_save_context(l->l_proc);
    416 		}
    417 #endif
    418 		updatertime(l, &bt);
    419 	}
    420 
    421 	/*
    422 	 * If on the CPU and we have gotten this far, then we must yield.
    423 	 */
    424 	KASSERT(l->l_stat != LSRUN);
    425 	if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
    426 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    427 
    428 		if (l->l_target_cpu == l->l_cpu) {
    429 			l->l_target_cpu = NULL;
    430 		} else {
    431 			tci = l->l_target_cpu;
    432 		}
    433 
    434 		if (__predict_false(tci != NULL)) {
    435 			/* Double-lock the runqueues */
    436 			spc_dlock(ci, tci);
    437 		} else {
    438 			/* Lock the runqueue */
    439 			spc_lock(ci);
    440 		}
    441 
    442 		if ((l->l_flag & LW_IDLE) == 0) {
    443 			l->l_stat = LSRUN;
    444 			if (__predict_false(tci != NULL)) {
    445 				/*
    446 				 * Set the new CPU, lock and unset the
    447 				 * l_target_cpu - thread will be enqueued
    448 				 * to the runqueue of target CPU.
    449 				 */
    450 				l->l_cpu = tci;
    451 				lwp_setlock(l, tci->ci_schedstate.spc_mutex);
    452 				l->l_target_cpu = NULL;
    453 			} else {
    454 				lwp_setlock(l, spc->spc_mutex);
    455 			}
    456 			sched_enqueue(l, true);
    457 		} else {
    458 			KASSERT(tci == NULL);
    459 			l->l_stat = LSIDL;
    460 		}
    461 	} else {
    462 		/* Lock the runqueue */
    463 		spc_lock(ci);
    464 	}
    465 
    466 	/*
    467 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    468 	 * If no LWP is runnable, select the idle LWP.
    469 	 *
    470 	 * Note that spc_lwplock might not necessary be held, and
    471 	 * new thread would be unlocked after setting the LWP-lock.
    472 	 */
    473 	if (newl == NULL) {
    474 		newl = sched_nextlwp();
    475 		if (newl != NULL) {
    476 			sched_dequeue(newl);
    477 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    478 			newl->l_stat = LSONPROC;
    479 			newl->l_cpu = ci;
    480 			newl->l_flag |= LW_RUNNING;
    481 			lwp_setlock(newl, spc->spc_lwplock);
    482 		} else {
    483 			newl = ci->ci_data.cpu_idlelwp;
    484 			newl->l_stat = LSONPROC;
    485 			newl->l_flag |= LW_RUNNING;
    486 		}
    487 		/*
    488 		 * Only clear want_resched if there are no
    489 		 * pending (slow) software interrupts.
    490 		 */
    491 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    492 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    493 		spc->spc_curpriority = lwp_eprio(newl);
    494 	}
    495 
    496 	/* Items that must be updated with the CPU locked. */
    497 	if (!returning) {
    498 		/* Update the new LWP's start time. */
    499 		newl->l_stime = bt;
    500 
    501 		/*
    502 		 * ci_curlwp changes when a fast soft interrupt occurs.
    503 		 * We use cpu_onproc to keep track of which kernel or
    504 		 * user thread is running 'underneath' the software
    505 		 * interrupt.  This is important for time accounting,
    506 		 * itimers and forcing user threads to preempt (aston).
    507 		 */
    508 		ci->ci_data.cpu_onproc = newl;
    509 	}
    510 
    511 	if (l != newl) {
    512 		struct lwp *prevlwp;
    513 
    514 		/* Release all locks, but leave the current LWP locked */
    515 		if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
    516 			/*
    517 			 * In case of migration, drop the local runqueue
    518 			 * lock, thread is on other runqueue now.
    519 			 */
    520 			if (__predict_false(tci != NULL))
    521 				spc_unlock(ci);
    522 			/*
    523 			 * Drop spc_lwplock, if the current LWP has been moved
    524 			 * to the run queue (it is now locked by spc_mutex).
    525 			 */
    526 			mutex_spin_exit(spc->spc_lwplock);
    527 		} else {
    528 			/*
    529 			 * Otherwise, drop the spc_mutex, we are done with the
    530 			 * run queues.
    531 			 */
    532 			mutex_spin_exit(spc->spc_mutex);
    533 			KASSERT(tci == NULL);
    534 		}
    535 
    536 		/*
    537 		 * Mark that context switch is going to be perfomed
    538 		 * for this LWP, to protect it from being switched
    539 		 * to on another CPU.
    540 		 */
    541 		KASSERT(l->l_ctxswtch == 0);
    542 		l->l_ctxswtch = 1;
    543 		l->l_ncsw++;
    544 		l->l_flag &= ~LW_RUNNING;
    545 
    546 		/*
    547 		 * Increase the count of spin-mutexes before the release
    548 		 * of the last lock - we must remain at IPL_SCHED during
    549 		 * the context switch.
    550 		 */
    551 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    552 		ci->ci_mtx_count--;
    553 		lwp_unlock(l);
    554 
    555 		/* Count the context switch on this CPU. */
    556 		ci->ci_data.cpu_nswtch++;
    557 
    558 		/* Update status for lwpctl, if present. */
    559 		if (l->l_lwpctl != NULL)
    560 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    561 
    562 		/*
    563 		 * Save old VM context, unless a soft interrupt
    564 		 * handler is blocking.
    565 		 */
    566 		if (!returning)
    567 			pmap_deactivate(l);
    568 
    569 		/*
    570 		 * We may need to spin-wait for if 'newl' is still
    571 		 * context switching on another CPU.
    572 		 */
    573 		if (newl->l_ctxswtch != 0) {
    574 			u_int count;
    575 			count = SPINLOCK_BACKOFF_MIN;
    576 			while (newl->l_ctxswtch)
    577 				SPINLOCK_BACKOFF(count);
    578 		}
    579 
    580 		/* Switch to the new LWP.. */
    581 		prevlwp = cpu_switchto(l, newl, returning);
    582 		ci = curcpu();
    583 
    584 		/*
    585 		 * Switched away - we have new curlwp.
    586 		 * Restore VM context and IPL.
    587 		 */
    588 		pmap_activate(l);
    589 		if (prevlwp != NULL) {
    590 			/* Normalize the count of the spin-mutexes */
    591 			ci->ci_mtx_count++;
    592 			/* Unmark the state of context switch */
    593 			membar_exit();
    594 			prevlwp->l_ctxswtch = 0;
    595 		}
    596 		splx(oldspl);
    597 
    598 		/* Update status for lwpctl, if present. */
    599 		if (l->l_lwpctl != NULL) {
    600 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    601 			l->l_lwpctl->lc_pctr++;
    602 		}
    603 
    604 		retval = 1;
    605 	} else {
    606 		/* Nothing to do - just unlock and return. */
    607 		KASSERT(tci == NULL);
    608 		spc_unlock(ci);
    609 		lwp_unlock(l);
    610 		retval = 0;
    611 	}
    612 
    613 	KASSERT(l == curlwp);
    614 	KASSERT(l->l_stat == LSONPROC);
    615 	KASSERT(l->l_cpu == ci);
    616 
    617 	/*
    618 	 * XXXSMP If we are using h/w performance counters, restore context.
    619 	 */
    620 #if PERFCTRS
    621 	if (PMC_ENABLED(l->l_proc)) {
    622 		pmc_restore_context(l->l_proc);
    623 	}
    624 #endif
    625 	SYSCALL_TIME_WAKEUP(l);
    626 	LOCKDEBUG_BARRIER(NULL, 1);
    627 
    628 	return retval;
    629 }
    630 
    631 /*
    632  * Change process state to be runnable, placing it on the run queue if it is
    633  * in memory, and awakening the swapper if it isn't in memory.
    634  *
    635  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    636  */
    637 void
    638 setrunnable(struct lwp *l)
    639 {
    640 	struct proc *p = l->l_proc;
    641 	struct cpu_info *ci;
    642 	sigset_t *ss;
    643 
    644 	KASSERT((l->l_flag & LW_IDLE) == 0);
    645 	KASSERT(mutex_owned(&p->p_smutex));
    646 	KASSERT(lwp_locked(l, NULL));
    647 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    648 
    649 	switch (l->l_stat) {
    650 	case LSSTOP:
    651 		/*
    652 		 * If we're being traced (possibly because someone attached us
    653 		 * while we were stopped), check for a signal from the debugger.
    654 		 */
    655 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    656 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    657 				ss = &l->l_sigpend.sp_set;
    658 			else
    659 				ss = &p->p_sigpend.sp_set;
    660 			sigaddset(ss, p->p_xstat);
    661 			signotify(l);
    662 		}
    663 		p->p_nrlwps++;
    664 		break;
    665 	case LSSUSPENDED:
    666 		l->l_flag &= ~LW_WSUSPEND;
    667 		p->p_nrlwps++;
    668 		cv_broadcast(&p->p_lwpcv);
    669 		break;
    670 	case LSSLEEP:
    671 		KASSERT(l->l_wchan != NULL);
    672 		break;
    673 	default:
    674 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    675 	}
    676 
    677 	/*
    678 	 * If the LWP was sleeping interruptably, then it's OK to start it
    679 	 * again.  If not, mark it as still sleeping.
    680 	 */
    681 	if (l->l_wchan != NULL) {
    682 		l->l_stat = LSSLEEP;
    683 		/* lwp_unsleep() will release the lock. */
    684 		lwp_unsleep(l);
    685 		return;
    686 	}
    687 
    688 	/*
    689 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    690 	 * about to call mi_switch(), in which case it will yield.
    691 	 */
    692 	if ((l->l_flag & LW_RUNNING) != 0) {
    693 		l->l_stat = LSONPROC;
    694 		l->l_slptime = 0;
    695 		lwp_unlock(l);
    696 		return;
    697 	}
    698 
    699 	/*
    700 	 * Look for a CPU to run.
    701 	 * Set the LWP runnable.
    702 	 */
    703 	ci = sched_takecpu(l);
    704 	l->l_cpu = ci;
    705 	if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
    706 		lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    707 		lwp_lock(l);
    708 	}
    709 	sched_setrunnable(l);
    710 	l->l_stat = LSRUN;
    711 	l->l_slptime = 0;
    712 
    713 	/*
    714 	 * If thread is swapped out - wake the swapper to bring it back in.
    715 	 * Otherwise, enter it into a run queue.
    716 	 */
    717 	if (l->l_flag & LW_INMEM) {
    718 		sched_enqueue(l, false);
    719 		resched_cpu(l);
    720 		lwp_unlock(l);
    721 	} else {
    722 		lwp_unlock(l);
    723 		uvm_kick_scheduler();
    724 	}
    725 }
    726 
    727 /*
    728  * suspendsched:
    729  *
    730  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    731  */
    732 void
    733 suspendsched(void)
    734 {
    735 	CPU_INFO_ITERATOR cii;
    736 	struct cpu_info *ci;
    737 	struct lwp *l;
    738 	struct proc *p;
    739 
    740 	/*
    741 	 * We do this by process in order not to violate the locking rules.
    742 	 */
    743 	mutex_enter(&proclist_lock);
    744 	PROCLIST_FOREACH(p, &allproc) {
    745 		mutex_enter(&p->p_smutex);
    746 
    747 		if ((p->p_flag & PK_SYSTEM) != 0) {
    748 			mutex_exit(&p->p_smutex);
    749 			continue;
    750 		}
    751 
    752 		p->p_stat = SSTOP;
    753 
    754 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    755 			if (l == curlwp)
    756 				continue;
    757 
    758 			lwp_lock(l);
    759 
    760 			/*
    761 			 * Set L_WREBOOT so that the LWP will suspend itself
    762 			 * when it tries to return to user mode.  We want to
    763 			 * try and get to get as many LWPs as possible to
    764 			 * the user / kernel boundary, so that they will
    765 			 * release any locks that they hold.
    766 			 */
    767 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    768 
    769 			if (l->l_stat == LSSLEEP &&
    770 			    (l->l_flag & LW_SINTR) != 0) {
    771 				/* setrunnable() will release the lock. */
    772 				setrunnable(l);
    773 				continue;
    774 			}
    775 
    776 			lwp_unlock(l);
    777 		}
    778 
    779 		mutex_exit(&p->p_smutex);
    780 	}
    781 	mutex_exit(&proclist_lock);
    782 
    783 	/*
    784 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    785 	 * They'll trap into the kernel and suspend themselves in userret().
    786 	 */
    787 	for (CPU_INFO_FOREACH(cii, ci)) {
    788 		spc_lock(ci);
    789 		cpu_need_resched(ci, RESCHED_IMMED);
    790 		spc_unlock(ci);
    791 	}
    792 }
    793 
    794 /*
    795  * sched_unsleep:
    796  *
    797  *	The is called when the LWP has not been awoken normally but instead
    798  *	interrupted: for example, if the sleep timed out.  Because of this,
    799  *	it's not a valid action for running or idle LWPs.
    800  */
    801 static void
    802 sched_unsleep(struct lwp *l)
    803 {
    804 
    805 	lwp_unlock(l);
    806 	panic("sched_unsleep");
    807 }
    808 
    809 void
    810 resched_cpu(struct lwp *l)
    811 {
    812 	struct cpu_info *ci;
    813 
    814 	/*
    815 	 * XXXSMP
    816 	 * Since l->l_cpu persists across a context switch,
    817 	 * this gives us *very weak* processor affinity, in
    818 	 * that we notify the CPU on which the process last
    819 	 * ran that it should try to switch.
    820 	 *
    821 	 * This does not guarantee that the process will run on
    822 	 * that processor next, because another processor might
    823 	 * grab it the next time it performs a context switch.
    824 	 *
    825 	 * This also does not handle the case where its last
    826 	 * CPU is running a higher-priority process, but every
    827 	 * other CPU is running a lower-priority process.  There
    828 	 * are ways to handle this situation, but they're not
    829 	 * currently very pretty, and we also need to weigh the
    830 	 * cost of moving a process from one CPU to another.
    831 	 */
    832 	ci = l->l_cpu;
    833 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
    834 		cpu_need_resched(ci, 0);
    835 }
    836 
    837 static void
    838 sched_changepri(struct lwp *l, pri_t pri)
    839 {
    840 
    841 	KASSERT(lwp_locked(l, NULL));
    842 
    843 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    844 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    845 		sched_dequeue(l);
    846 		l->l_priority = pri;
    847 		sched_enqueue(l, false);
    848 	} else {
    849 		l->l_priority = pri;
    850 	}
    851 	resched_cpu(l);
    852 }
    853 
    854 static void
    855 sched_lendpri(struct lwp *l, pri_t pri)
    856 {
    857 
    858 	KASSERT(lwp_locked(l, NULL));
    859 
    860 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
    861 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    862 		sched_dequeue(l);
    863 		l->l_inheritedprio = pri;
    864 		sched_enqueue(l, false);
    865 	} else {
    866 		l->l_inheritedprio = pri;
    867 	}
    868 	resched_cpu(l);
    869 }
    870 
    871 struct lwp *
    872 syncobj_noowner(wchan_t wchan)
    873 {
    874 
    875 	return NULL;
    876 }
    877 
    878 
    879 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    880 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    881 
    882 /*
    883  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    884  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    885  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    886  *
    887  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    888  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    889  *
    890  * If you dont want to bother with the faster/more-accurate formula, you
    891  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    892  * (more general) method of calculating the %age of CPU used by a process.
    893  */
    894 #define	CCPU_SHIFT	(FSHIFT + 1)
    895 
    896 /*
    897  * sched_pstats:
    898  *
    899  * Update process statistics and check CPU resource allocation.
    900  * Call scheduler-specific hook to eventually adjust process/LWP
    901  * priorities.
    902  */
    903 /* ARGSUSED */
    904 void
    905 sched_pstats(void *arg)
    906 {
    907 	struct rlimit *rlim;
    908 	struct lwp *l;
    909 	struct proc *p;
    910 	int sig, clkhz;
    911 	long runtm;
    912 
    913 	sched_pstats_ticks++;
    914 
    915 	mutex_enter(&proclist_lock);
    916 	PROCLIST_FOREACH(p, &allproc) {
    917 		/*
    918 		 * Increment time in/out of memory and sleep time (if
    919 		 * sleeping).  We ignore overflow; with 16-bit int's
    920 		 * (remember them?) overflow takes 45 days.
    921 		 */
    922 		mutex_enter(&p->p_smutex);
    923 		mutex_spin_enter(&p->p_stmutex);
    924 		runtm = p->p_rtime.sec;
    925 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    926 			if ((l->l_flag & LW_IDLE) != 0)
    927 				continue;
    928 			lwp_lock(l);
    929 			runtm += l->l_rtime.sec;
    930 			l->l_swtime++;
    931 			sched_pstats_hook(l);
    932 			lwp_unlock(l);
    933 
    934 			/*
    935 			 * p_pctcpu is only for ps.
    936 			 */
    937 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
    938 			if (l->l_slptime < 1) {
    939 				clkhz = stathz != 0 ? stathz : hz;
    940 #if	(FSHIFT >= CCPU_SHIFT)
    941 				l->l_pctcpu += (clkhz == 100) ?
    942 				    ((fixpt_t)l->l_cpticks) <<
    943 				        (FSHIFT - CCPU_SHIFT) :
    944 				    100 * (((fixpt_t) p->p_cpticks)
    945 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
    946 #else
    947 				l->l_pctcpu += ((FSCALE - ccpu) *
    948 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
    949 #endif
    950 				l->l_cpticks = 0;
    951 			}
    952 		}
    953 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    954 		mutex_spin_exit(&p->p_stmutex);
    955 
    956 		/*
    957 		 * Check if the process exceeds its CPU resource allocation.
    958 		 * If over max, kill it.
    959 		 */
    960 		rlim = &p->p_rlimit[RLIMIT_CPU];
    961 		sig = 0;
    962 		if (runtm >= rlim->rlim_cur) {
    963 			if (runtm >= rlim->rlim_max)
    964 				sig = SIGKILL;
    965 			else {
    966 				sig = SIGXCPU;
    967 				if (rlim->rlim_cur < rlim->rlim_max)
    968 					rlim->rlim_cur += 5;
    969 			}
    970 		}
    971 		mutex_exit(&p->p_smutex);
    972 		if (sig) {
    973 			mutex_enter(&proclist_mutex);
    974 			psignal(p, sig);
    975 			mutex_exit(&proclist_mutex);
    976 		}
    977 	}
    978 	mutex_exit(&proclist_lock);
    979 	uvm_meter();
    980 	cv_wakeup(&lbolt);
    981 	callout_schedule(&sched_pstats_ch, hz);
    982 }
    983 
    984 void
    985 sched_init(void)
    986 {
    987 
    988 	cv_init(&lbolt, "lbolt");
    989 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    990 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    991 	sched_setup();
    992 	sched_pstats(NULL);
    993 }
    994