kern_synch.c revision 1.228 1 /* $NetBSD: kern_synch.c,v 1.228 2008/04/24 15:35:29 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 */
66
67 /*-
68 * Copyright (c) 1982, 1986, 1990, 1991, 1993
69 * The Regents of the University of California. All rights reserved.
70 * (c) UNIX System Laboratories, Inc.
71 * All or some portions of this file are derived from material licensed
72 * to the University of California by American Telephone and Telegraph
73 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
74 * the permission of UNIX System Laboratories, Inc.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the above copyright
80 * notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 * notice, this list of conditions and the following disclaimer in the
83 * documentation and/or other materials provided with the distribution.
84 * 3. Neither the name of the University nor the names of its contributors
85 * may be used to endorse or promote products derived from this software
86 * without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
89 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
90 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
91 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
92 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
93 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
94 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
95 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
96 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
97 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
98 * SUCH DAMAGE.
99 *
100 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
101 */
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.228 2008/04/24 15:35:29 ad Exp $");
105
106 #include "opt_kstack.h"
107 #include "opt_lockdebug.h"
108 #include "opt_multiprocessor.h"
109 #include "opt_perfctrs.h"
110
111 #define __MUTEX_PRIVATE
112
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/proc.h>
116 #include <sys/kernel.h>
117 #if defined(PERFCTRS)
118 #include <sys/pmc.h>
119 #endif
120 #include <sys/cpu.h>
121 #include <sys/resourcevar.h>
122 #include <sys/sched.h>
123 #include <sys/syscall_stats.h>
124 #include <sys/sleepq.h>
125 #include <sys/lockdebug.h>
126 #include <sys/evcnt.h>
127 #include <sys/intr.h>
128 #include <sys/lwpctl.h>
129 #include <sys/atomic.h>
130 #include <sys/simplelock.h>
131 #include <sys/bitops.h>
132 #include <sys/kmem.h>
133 #include <sys/sysctl.h>
134 #include <sys/idle.h>
135
136 #include <uvm/uvm_extern.h>
137
138 /*
139 * Priority related defintions.
140 */
141 #define PRI_TS_COUNT (NPRI_USER)
142 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
143 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
144
145 #define PRI_HIGHEST_TS (MAXPRI_USER)
146
147 /*
148 * Bits per map.
149 */
150 #define BITMAP_BITS (32)
151 #define BITMAP_SHIFT (5)
152 #define BITMAP_MSB (0x80000000U)
153 #define BITMAP_MASK (BITMAP_BITS - 1)
154
155 /*
156 * Structures, runqueue.
157 */
158
159 typedef struct {
160 TAILQ_HEAD(, lwp) q_head;
161 } queue_t;
162
163 typedef struct {
164 /* Lock and bitmap */
165 uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
166 /* Counters */
167 u_int r_count; /* Count of the threads */
168 u_int r_avgcount; /* Average count of threads */
169 u_int r_mcount; /* Count of migratable threads */
170 /* Runqueues */
171 queue_t r_rt_queue[PRI_RT_COUNT];
172 queue_t r_ts_queue[PRI_TS_COUNT];
173 } runqueue_t;
174
175 static u_int sched_unsleep(struct lwp *, bool);
176 static void sched_changepri(struct lwp *, pri_t);
177 static void sched_lendpri(struct lwp *, pri_t);
178 static void *sched_getrq(runqueue_t *, const pri_t);
179 #ifdef MULTIPROCESSOR
180 static lwp_t *sched_catchlwp(void);
181 static void sched_balance(void *);
182 #endif
183
184 syncobj_t sleep_syncobj = {
185 SOBJ_SLEEPQ_SORTED,
186 sleepq_unsleep,
187 sleepq_changepri,
188 sleepq_lendpri,
189 syncobj_noowner,
190 };
191
192 syncobj_t sched_syncobj = {
193 SOBJ_SLEEPQ_SORTED,
194 sched_unsleep,
195 sched_changepri,
196 sched_lendpri,
197 syncobj_noowner,
198 };
199
200 const int schedppq = 1;
201 callout_t sched_pstats_ch;
202 unsigned sched_pstats_ticks;
203 kcondvar_t lbolt; /* once a second sleep address */
204
205 /*
206 * Migration and balancing.
207 */
208 static u_int cacheht_time; /* Cache hotness time */
209 static u_int min_catch; /* Minimal LWP count for catching */
210 static u_int balance_period; /* Balance period */
211 static struct cpu_info *worker_ci; /* Victim CPU */
212 #ifdef MULTIPROCESSOR
213 static struct callout balance_ch; /* Callout of balancer */
214 #endif
215
216 /*
217 * During autoconfiguration or after a panic, a sleep will simply lower the
218 * priority briefly to allow interrupts, then return. The priority to be
219 * used (safepri) is machine-dependent, thus this value is initialized and
220 * maintained in the machine-dependent layers. This priority will typically
221 * be 0, or the lowest priority that is safe for use on the interrupt stack;
222 * it can be made higher to block network software interrupts after panics.
223 */
224 int safepri;
225
226 /*
227 * OBSOLETE INTERFACE
228 *
229 * General sleep call. Suspends the current process until a wakeup is
230 * performed on the specified identifier. The process will then be made
231 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
232 * means no timeout). If pri includes PCATCH flag, signals are checked
233 * before and after sleeping, else signals are not checked. Returns 0 if
234 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
235 * signal needs to be delivered, ERESTART is returned if the current system
236 * call should be restarted if possible, and EINTR is returned if the system
237 * call should be interrupted by the signal (return EINTR).
238 *
239 * The interlock is held until we are on a sleep queue. The interlock will
240 * be locked before returning back to the caller unless the PNORELOCK flag
241 * is specified, in which case the interlock will always be unlocked upon
242 * return.
243 */
244 int
245 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
246 volatile struct simplelock *interlock)
247 {
248 struct lwp *l = curlwp;
249 sleepq_t *sq;
250 int error;
251
252 KASSERT((l->l_pflag & LP_INTR) == 0);
253
254 if (sleepq_dontsleep(l)) {
255 (void)sleepq_abort(NULL, 0);
256 if ((priority & PNORELOCK) != 0)
257 simple_unlock(interlock);
258 return 0;
259 }
260
261 l->l_kpriority = true;
262 sq = sleeptab_lookup(&sleeptab, ident);
263 sleepq_enter(sq, l);
264 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
265
266 if (interlock != NULL) {
267 KASSERT(simple_lock_held(interlock));
268 simple_unlock(interlock);
269 }
270
271 error = sleepq_block(timo, priority & PCATCH);
272
273 if (interlock != NULL && (priority & PNORELOCK) == 0)
274 simple_lock(interlock);
275
276 return error;
277 }
278
279 int
280 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
281 kmutex_t *mtx)
282 {
283 struct lwp *l = curlwp;
284 sleepq_t *sq;
285 int error;
286
287 KASSERT((l->l_pflag & LP_INTR) == 0);
288
289 if (sleepq_dontsleep(l)) {
290 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
291 return 0;
292 }
293
294 l->l_kpriority = true;
295 sq = sleeptab_lookup(&sleeptab, ident);
296 sleepq_enter(sq, l);
297 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
298 mutex_exit(mtx);
299 error = sleepq_block(timo, priority & PCATCH);
300
301 if ((priority & PNORELOCK) == 0)
302 mutex_enter(mtx);
303
304 return error;
305 }
306
307 /*
308 * General sleep call for situations where a wake-up is not expected.
309 */
310 int
311 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
312 {
313 struct lwp *l = curlwp;
314 sleepq_t *sq;
315 int error;
316
317 if (sleepq_dontsleep(l))
318 return sleepq_abort(NULL, 0);
319
320 if (mtx != NULL)
321 mutex_exit(mtx);
322 l->l_kpriority = true;
323 sq = sleeptab_lookup(&sleeptab, l);
324 sleepq_enter(sq, l);
325 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
326 error = sleepq_block(timo, intr);
327 if (mtx != NULL)
328 mutex_enter(mtx);
329
330 return error;
331 }
332
333 /*
334 * OBSOLETE INTERFACE
335 *
336 * Make all processes sleeping on the specified identifier runnable.
337 */
338 void
339 wakeup(wchan_t ident)
340 {
341 sleepq_t *sq;
342
343 if (cold)
344 return;
345
346 sq = sleeptab_lookup(&sleeptab, ident);
347 sleepq_wake(sq, ident, (u_int)-1);
348 }
349
350 /*
351 * OBSOLETE INTERFACE
352 *
353 * Make the highest priority process first in line on the specified
354 * identifier runnable.
355 */
356 void
357 wakeup_one(wchan_t ident)
358 {
359 sleepq_t *sq;
360
361 if (cold)
362 return;
363
364 sq = sleeptab_lookup(&sleeptab, ident);
365 sleepq_wake(sq, ident, 1);
366 }
367
368
369 /*
370 * General yield call. Puts the current process back on its run queue and
371 * performs a voluntary context switch. Should only be called when the
372 * current process explicitly requests it (eg sched_yield(2)).
373 */
374 void
375 yield(void)
376 {
377 struct lwp *l = curlwp;
378
379 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
380 lwp_lock(l);
381 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
382 KASSERT(l->l_stat == LSONPROC);
383 l->l_kpriority = false;
384 (void)mi_switch(l);
385 KERNEL_LOCK(l->l_biglocks, l);
386 }
387
388 /*
389 * General preemption call. Puts the current process back on its run queue
390 * and performs an involuntary context switch.
391 */
392 void
393 preempt(void)
394 {
395 struct lwp *l = curlwp;
396
397 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
398 lwp_lock(l);
399 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
400 KASSERT(l->l_stat == LSONPROC);
401 l->l_kpriority = false;
402 l->l_nivcsw++;
403 (void)mi_switch(l);
404 KERNEL_LOCK(l->l_biglocks, l);
405 }
406
407 /*
408 * Compute the amount of time during which the current lwp was running.
409 *
410 * - update l_rtime unless it's an idle lwp.
411 */
412
413 void
414 updatertime(lwp_t *l, const struct bintime *now)
415 {
416
417 if ((l->l_flag & LW_IDLE) != 0)
418 return;
419
420 /* rtime += now - stime */
421 bintime_add(&l->l_rtime, now);
422 bintime_sub(&l->l_rtime, &l->l_stime);
423 }
424
425 /*
426 * The machine independent parts of context switch.
427 *
428 * Returns 1 if another LWP was actually run.
429 */
430 int
431 mi_switch(lwp_t *l)
432 {
433 struct cpu_info *ci, *tci = NULL;
434 struct schedstate_percpu *spc;
435 struct lwp *newl;
436 int retval, oldspl;
437 struct bintime bt;
438 bool returning;
439
440 KASSERT(lwp_locked(l, NULL));
441 LOCKDEBUG_BARRIER(l->l_mutex, 1);
442
443 #ifdef KSTACK_CHECK_MAGIC
444 kstack_check_magic(l);
445 #endif
446
447 binuptime(&bt);
448
449 KDASSERT(l->l_cpu == curcpu());
450 ci = l->l_cpu;
451 spc = &ci->ci_schedstate;
452 returning = false;
453 newl = NULL;
454
455 /*
456 * If we have been asked to switch to a specific LWP, then there
457 * is no need to inspect the run queues. If a soft interrupt is
458 * blocking, then return to the interrupted thread without adjusting
459 * VM context or its start time: neither have been changed in order
460 * to take the interrupt.
461 */
462 if (l->l_switchto != NULL) {
463 if ((l->l_pflag & LP_INTR) != 0) {
464 returning = true;
465 softint_block(l);
466 if ((l->l_flag & LW_TIMEINTR) != 0)
467 updatertime(l, &bt);
468 }
469 newl = l->l_switchto;
470 l->l_switchto = NULL;
471 }
472 #ifndef __HAVE_FAST_SOFTINTS
473 else if (ci->ci_data.cpu_softints != 0) {
474 /* There are pending soft interrupts, so pick one. */
475 newl = softint_picklwp();
476 newl->l_stat = LSONPROC;
477 newl->l_flag |= LW_RUNNING;
478 }
479 #endif /* !__HAVE_FAST_SOFTINTS */
480
481 /* Count time spent in current system call */
482 if (!returning) {
483 SYSCALL_TIME_SLEEP(l);
484
485 /*
486 * XXXSMP If we are using h/w performance counters,
487 * save context.
488 */
489 #if PERFCTRS
490 if (PMC_ENABLED(l->l_proc)) {
491 pmc_save_context(l->l_proc);
492 }
493 #endif
494 updatertime(l, &bt);
495 }
496
497 /*
498 * If on the CPU and we have gotten this far, then we must yield.
499 */
500 KASSERT(l->l_stat != LSRUN);
501 if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
502 KASSERT(lwp_locked(l, spc->spc_lwplock));
503
504 if (l->l_target_cpu == l->l_cpu) {
505 l->l_target_cpu = NULL;
506 } else {
507 tci = l->l_target_cpu;
508 }
509
510 if (__predict_false(tci != NULL)) {
511 /* Double-lock the runqueues */
512 spc_dlock(ci, tci);
513 } else {
514 /* Lock the runqueue */
515 spc_lock(ci);
516 }
517
518 if ((l->l_flag & LW_IDLE) == 0) {
519 l->l_stat = LSRUN;
520 if (__predict_false(tci != NULL)) {
521 /*
522 * Set the new CPU, lock and unset the
523 * l_target_cpu - thread will be enqueued
524 * to the runqueue of target CPU.
525 */
526 l->l_cpu = tci;
527 lwp_setlock(l, tci->ci_schedstate.spc_mutex);
528 l->l_target_cpu = NULL;
529 } else {
530 lwp_setlock(l, spc->spc_mutex);
531 }
532 sched_enqueue(l, true);
533 } else {
534 KASSERT(tci == NULL);
535 l->l_stat = LSIDL;
536 }
537 } else {
538 /* Lock the runqueue */
539 spc_lock(ci);
540 }
541
542 /*
543 * Let sched_nextlwp() select the LWP to run the CPU next.
544 * If no LWP is runnable, select the idle LWP.
545 *
546 * Note that spc_lwplock might not necessary be held, and
547 * new thread would be unlocked after setting the LWP-lock.
548 */
549 if (newl == NULL) {
550 newl = sched_nextlwp();
551 if (newl != NULL) {
552 sched_dequeue(newl);
553 KASSERT(lwp_locked(newl, spc->spc_mutex));
554 newl->l_stat = LSONPROC;
555 newl->l_cpu = ci;
556 newl->l_flag |= LW_RUNNING;
557 lwp_setlock(newl, spc->spc_lwplock);
558 } else {
559 newl = ci->ci_data.cpu_idlelwp;
560 newl->l_stat = LSONPROC;
561 newl->l_flag |= LW_RUNNING;
562 }
563 /*
564 * Only clear want_resched if there are no
565 * pending (slow) software interrupts.
566 */
567 ci->ci_want_resched = ci->ci_data.cpu_softints;
568 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
569 spc->spc_curpriority = lwp_eprio(newl);
570 }
571
572 /* Items that must be updated with the CPU locked. */
573 if (!returning) {
574 /* Update the new LWP's start time. */
575 newl->l_stime = bt;
576
577 /*
578 * ci_curlwp changes when a fast soft interrupt occurs.
579 * We use cpu_onproc to keep track of which kernel or
580 * user thread is running 'underneath' the software
581 * interrupt. This is important for time accounting,
582 * itimers and forcing user threads to preempt (aston).
583 */
584 ci->ci_data.cpu_onproc = newl;
585 }
586
587 if (l != newl) {
588 struct lwp *prevlwp;
589
590 /* Release all locks, but leave the current LWP locked */
591 if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
592 /*
593 * In case of migration, drop the local runqueue
594 * lock, thread is on other runqueue now.
595 */
596 if (__predict_false(tci != NULL))
597 spc_unlock(ci);
598 /*
599 * Drop spc_lwplock, if the current LWP has been moved
600 * to the run queue (it is now locked by spc_mutex).
601 */
602 mutex_spin_exit(spc->spc_lwplock);
603 } else {
604 /*
605 * Otherwise, drop the spc_mutex, we are done with the
606 * run queues.
607 */
608 mutex_spin_exit(spc->spc_mutex);
609 KASSERT(tci == NULL);
610 }
611
612 /*
613 * Mark that context switch is going to be perfomed
614 * for this LWP, to protect it from being switched
615 * to on another CPU.
616 */
617 KASSERT(l->l_ctxswtch == 0);
618 l->l_ctxswtch = 1;
619 l->l_ncsw++;
620 l->l_flag &= ~LW_RUNNING;
621
622 /*
623 * Increase the count of spin-mutexes before the release
624 * of the last lock - we must remain at IPL_SCHED during
625 * the context switch.
626 */
627 oldspl = MUTEX_SPIN_OLDSPL(ci);
628 ci->ci_mtx_count--;
629 lwp_unlock(l);
630
631 /* Count the context switch on this CPU. */
632 ci->ci_data.cpu_nswtch++;
633
634 /* Update status for lwpctl, if present. */
635 if (l->l_lwpctl != NULL)
636 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
637
638 /*
639 * Save old VM context, unless a soft interrupt
640 * handler is blocking.
641 */
642 if (!returning)
643 pmap_deactivate(l);
644
645 /*
646 * We may need to spin-wait for if 'newl' is still
647 * context switching on another CPU.
648 */
649 if (newl->l_ctxswtch != 0) {
650 u_int count;
651 count = SPINLOCK_BACKOFF_MIN;
652 while (newl->l_ctxswtch)
653 SPINLOCK_BACKOFF(count);
654 }
655
656 /* Switch to the new LWP.. */
657 prevlwp = cpu_switchto(l, newl, returning);
658 ci = curcpu();
659
660 /*
661 * Switched away - we have new curlwp.
662 * Restore VM context and IPL.
663 */
664 pmap_activate(l);
665 if (prevlwp != NULL) {
666 /* Normalize the count of the spin-mutexes */
667 ci->ci_mtx_count++;
668 /* Unmark the state of context switch */
669 membar_exit();
670 prevlwp->l_ctxswtch = 0;
671 }
672 splx(oldspl);
673
674 /* Update status for lwpctl, if present. */
675 if (l->l_lwpctl != NULL) {
676 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
677 l->l_lwpctl->lc_pctr++;
678 }
679
680 retval = 1;
681 } else {
682 /* Nothing to do - just unlock and return. */
683 KASSERT(tci == NULL);
684 spc_unlock(ci);
685 lwp_unlock(l);
686 retval = 0;
687 }
688
689 KASSERT(l == curlwp);
690 KASSERT(l->l_stat == LSONPROC);
691 KASSERT(l->l_cpu == ci);
692
693 /*
694 * XXXSMP If we are using h/w performance counters, restore context.
695 */
696 #if PERFCTRS
697 if (PMC_ENABLED(l->l_proc)) {
698 pmc_restore_context(l->l_proc);
699 }
700 #endif
701 SYSCALL_TIME_WAKEUP(l);
702 LOCKDEBUG_BARRIER(NULL, 1);
703
704 return retval;
705 }
706
707 /*
708 * Change process state to be runnable, placing it on the run queue if it is
709 * in memory, and awakening the swapper if it isn't in memory.
710 *
711 * Call with the process and LWP locked. Will return with the LWP unlocked.
712 */
713 void
714 setrunnable(struct lwp *l)
715 {
716 struct proc *p = l->l_proc;
717 struct cpu_info *ci;
718 sigset_t *ss;
719
720 KASSERT((l->l_flag & LW_IDLE) == 0);
721 KASSERT(mutex_owned(&p->p_smutex));
722 KASSERT(lwp_locked(l, NULL));
723 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
724
725 switch (l->l_stat) {
726 case LSSTOP:
727 /*
728 * If we're being traced (possibly because someone attached us
729 * while we were stopped), check for a signal from the debugger.
730 */
731 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
732 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
733 ss = &l->l_sigpend.sp_set;
734 else
735 ss = &p->p_sigpend.sp_set;
736 sigaddset(ss, p->p_xstat);
737 signotify(l);
738 }
739 p->p_nrlwps++;
740 break;
741 case LSSUSPENDED:
742 l->l_flag &= ~LW_WSUSPEND;
743 p->p_nrlwps++;
744 cv_broadcast(&p->p_lwpcv);
745 break;
746 case LSSLEEP:
747 KASSERT(l->l_wchan != NULL);
748 break;
749 default:
750 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
751 }
752
753 /*
754 * If the LWP was sleeping interruptably, then it's OK to start it
755 * again. If not, mark it as still sleeping.
756 */
757 if (l->l_wchan != NULL) {
758 l->l_stat = LSSLEEP;
759 /* lwp_unsleep() will release the lock. */
760 lwp_unsleep(l, true);
761 return;
762 }
763
764 /*
765 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
766 * about to call mi_switch(), in which case it will yield.
767 */
768 if ((l->l_flag & LW_RUNNING) != 0) {
769 l->l_stat = LSONPROC;
770 l->l_slptime = 0;
771 lwp_unlock(l);
772 return;
773 }
774
775 /*
776 * Look for a CPU to run.
777 * Set the LWP runnable.
778 */
779 ci = sched_takecpu(l);
780 l->l_cpu = ci;
781 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
782 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
783 lwp_lock(l);
784 }
785 sched_setrunnable(l);
786 l->l_stat = LSRUN;
787 l->l_slptime = 0;
788
789 /*
790 * If thread is swapped out - wake the swapper to bring it back in.
791 * Otherwise, enter it into a run queue.
792 */
793 if (l->l_flag & LW_INMEM) {
794 sched_enqueue(l, false);
795 resched_cpu(l);
796 lwp_unlock(l);
797 } else {
798 lwp_unlock(l);
799 uvm_kick_scheduler();
800 }
801 }
802
803 /*
804 * suspendsched:
805 *
806 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
807 */
808 void
809 suspendsched(void)
810 {
811 CPU_INFO_ITERATOR cii;
812 struct cpu_info *ci;
813 struct lwp *l;
814 struct proc *p;
815
816 /*
817 * We do this by process in order not to violate the locking rules.
818 */
819 mutex_enter(proc_lock);
820 PROCLIST_FOREACH(p, &allproc) {
821 mutex_enter(&p->p_smutex);
822
823 if ((p->p_flag & PK_SYSTEM) != 0) {
824 mutex_exit(&p->p_smutex);
825 continue;
826 }
827
828 p->p_stat = SSTOP;
829
830 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
831 if (l == curlwp)
832 continue;
833
834 lwp_lock(l);
835
836 /*
837 * Set L_WREBOOT so that the LWP will suspend itself
838 * when it tries to return to user mode. We want to
839 * try and get to get as many LWPs as possible to
840 * the user / kernel boundary, so that they will
841 * release any locks that they hold.
842 */
843 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
844
845 if (l->l_stat == LSSLEEP &&
846 (l->l_flag & LW_SINTR) != 0) {
847 /* setrunnable() will release the lock. */
848 setrunnable(l);
849 continue;
850 }
851
852 lwp_unlock(l);
853 }
854
855 mutex_exit(&p->p_smutex);
856 }
857 mutex_exit(proc_lock);
858
859 /*
860 * Kick all CPUs to make them preempt any LWPs running in user mode.
861 * They'll trap into the kernel and suspend themselves in userret().
862 */
863 for (CPU_INFO_FOREACH(cii, ci)) {
864 spc_lock(ci);
865 cpu_need_resched(ci, RESCHED_IMMED);
866 spc_unlock(ci);
867 }
868 }
869
870 /*
871 * sched_unsleep:
872 *
873 * The is called when the LWP has not been awoken normally but instead
874 * interrupted: for example, if the sleep timed out. Because of this,
875 * it's not a valid action for running or idle LWPs.
876 */
877 static u_int
878 sched_unsleep(struct lwp *l, bool cleanup)
879 {
880
881 lwp_unlock(l);
882 panic("sched_unsleep");
883 }
884
885 void
886 resched_cpu(struct lwp *l)
887 {
888 struct cpu_info *ci;
889
890 /*
891 * XXXSMP
892 * Since l->l_cpu persists across a context switch,
893 * this gives us *very weak* processor affinity, in
894 * that we notify the CPU on which the process last
895 * ran that it should try to switch.
896 *
897 * This does not guarantee that the process will run on
898 * that processor next, because another processor might
899 * grab it the next time it performs a context switch.
900 *
901 * This also does not handle the case where its last
902 * CPU is running a higher-priority process, but every
903 * other CPU is running a lower-priority process. There
904 * are ways to handle this situation, but they're not
905 * currently very pretty, and we also need to weigh the
906 * cost of moving a process from one CPU to another.
907 */
908 ci = l->l_cpu;
909 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
910 cpu_need_resched(ci, 0);
911 }
912
913 static void
914 sched_changepri(struct lwp *l, pri_t pri)
915 {
916
917 KASSERT(lwp_locked(l, NULL));
918
919 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
920 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
921 sched_dequeue(l);
922 l->l_priority = pri;
923 sched_enqueue(l, false);
924 } else {
925 l->l_priority = pri;
926 }
927 resched_cpu(l);
928 }
929
930 static void
931 sched_lendpri(struct lwp *l, pri_t pri)
932 {
933
934 KASSERT(lwp_locked(l, NULL));
935
936 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
937 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
938 sched_dequeue(l);
939 l->l_inheritedprio = pri;
940 sched_enqueue(l, false);
941 } else {
942 l->l_inheritedprio = pri;
943 }
944 resched_cpu(l);
945 }
946
947 struct lwp *
948 syncobj_noowner(wchan_t wchan)
949 {
950
951 return NULL;
952 }
953
954 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
955 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
956
957 /*
958 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
959 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
960 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
961 *
962 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
963 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
964 *
965 * If you dont want to bother with the faster/more-accurate formula, you
966 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
967 * (more general) method of calculating the %age of CPU used by a process.
968 */
969 #define CCPU_SHIFT (FSHIFT + 1)
970
971 /*
972 * sched_pstats:
973 *
974 * Update process statistics and check CPU resource allocation.
975 * Call scheduler-specific hook to eventually adjust process/LWP
976 * priorities.
977 */
978 /* ARGSUSED */
979 void
980 sched_pstats(void *arg)
981 {
982 struct rlimit *rlim;
983 struct lwp *l;
984 struct proc *p;
985 int sig, clkhz;
986 long runtm;
987
988 sched_pstats_ticks++;
989
990 mutex_enter(proc_lock);
991 PROCLIST_FOREACH(p, &allproc) {
992 /*
993 * Increment time in/out of memory and sleep time (if
994 * sleeping). We ignore overflow; with 16-bit int's
995 * (remember them?) overflow takes 45 days.
996 */
997 mutex_enter(&p->p_smutex);
998 mutex_spin_enter(&p->p_stmutex);
999 runtm = p->p_rtime.sec;
1000 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1001 if ((l->l_flag & LW_IDLE) != 0)
1002 continue;
1003 lwp_lock(l);
1004 runtm += l->l_rtime.sec;
1005 l->l_swtime++;
1006 sched_pstats_hook(l);
1007 lwp_unlock(l);
1008
1009 /*
1010 * p_pctcpu is only for ps.
1011 */
1012 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1013 if (l->l_slptime < 1) {
1014 clkhz = stathz != 0 ? stathz : hz;
1015 #if (FSHIFT >= CCPU_SHIFT)
1016 l->l_pctcpu += (clkhz == 100) ?
1017 ((fixpt_t)l->l_cpticks) <<
1018 (FSHIFT - CCPU_SHIFT) :
1019 100 * (((fixpt_t) p->p_cpticks)
1020 << (FSHIFT - CCPU_SHIFT)) / clkhz;
1021 #else
1022 l->l_pctcpu += ((FSCALE - ccpu) *
1023 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1024 #endif
1025 l->l_cpticks = 0;
1026 }
1027 }
1028 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1029 mutex_spin_exit(&p->p_stmutex);
1030
1031 /*
1032 * Check if the process exceeds its CPU resource allocation.
1033 * If over max, kill it.
1034 */
1035 rlim = &p->p_rlimit[RLIMIT_CPU];
1036 sig = 0;
1037 if (runtm >= rlim->rlim_cur) {
1038 if (runtm >= rlim->rlim_max)
1039 sig = SIGKILL;
1040 else {
1041 sig = SIGXCPU;
1042 if (rlim->rlim_cur < rlim->rlim_max)
1043 rlim->rlim_cur += 5;
1044 }
1045 }
1046 mutex_exit(&p->p_smutex);
1047 if (sig)
1048 psignal(p, sig);
1049 }
1050 mutex_exit(proc_lock);
1051 uvm_meter();
1052 cv_wakeup(&lbolt);
1053 callout_schedule(&sched_pstats_ch, hz);
1054 }
1055
1056 void
1057 sched_init(void)
1058 {
1059
1060 cv_init(&lbolt, "lbolt");
1061 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
1062 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
1063
1064 /* Balancing */
1065 worker_ci = curcpu();
1066 cacheht_time = mstohz(5); /* ~5 ms */
1067 balance_period = mstohz(300); /* ~300ms */
1068
1069 /* Minimal count of LWPs for catching: log2(count of CPUs) */
1070 min_catch = min(ilog2(ncpu), 4);
1071
1072 /* Initialize balancing callout and run it */
1073 #ifdef MULTIPROCESSOR
1074 callout_init(&balance_ch, CALLOUT_MPSAFE);
1075 callout_setfunc(&balance_ch, sched_balance, NULL);
1076 callout_schedule(&balance_ch, balance_period);
1077 #endif
1078 sched_pstats(NULL);
1079 }
1080
1081 SYSCTL_SETUP(sysctl_sched_setup, "sysctl sched setup")
1082 {
1083 const struct sysctlnode *node = NULL;
1084
1085 sysctl_createv(clog, 0, NULL, NULL,
1086 CTLFLAG_PERMANENT,
1087 CTLTYPE_NODE, "kern", NULL,
1088 NULL, 0, NULL, 0,
1089 CTL_KERN, CTL_EOL);
1090 sysctl_createv(clog, 0, NULL, &node,
1091 CTLFLAG_PERMANENT,
1092 CTLTYPE_NODE, "sched",
1093 SYSCTL_DESCR("Scheduler options"),
1094 NULL, 0, NULL, 0,
1095 CTL_KERN, CTL_CREATE, CTL_EOL);
1096
1097 if (node == NULL)
1098 return;
1099
1100 sysctl_createv(clog, 0, &node, NULL,
1101 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1102 CTLTYPE_INT, "cacheht_time",
1103 SYSCTL_DESCR("Cache hotness time (in ticks)"),
1104 NULL, 0, &cacheht_time, 0,
1105 CTL_CREATE, CTL_EOL);
1106 sysctl_createv(clog, 0, &node, NULL,
1107 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1108 CTLTYPE_INT, "balance_period",
1109 SYSCTL_DESCR("Balance period (in ticks)"),
1110 NULL, 0, &balance_period, 0,
1111 CTL_CREATE, CTL_EOL);
1112 sysctl_createv(clog, 0, &node, NULL,
1113 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1114 CTLTYPE_INT, "min_catch",
1115 SYSCTL_DESCR("Minimal count of threads for catching"),
1116 NULL, 0, &min_catch, 0,
1117 CTL_CREATE, CTL_EOL);
1118 sysctl_createv(clog, 0, &node, NULL,
1119 CTLFLAG_READWRITE,
1120 CTLTYPE_INT, "timesoftints",
1121 SYSCTL_DESCR("Track CPU time for soft interrupts"),
1122 NULL, 0, &softint_timing, 0,
1123 CTL_CREATE, CTL_EOL);
1124 }
1125
1126 void
1127 sched_cpuattach(struct cpu_info *ci)
1128 {
1129 runqueue_t *ci_rq;
1130 void *rq_ptr;
1131 u_int i, size;
1132
1133 if (ci->ci_schedstate.spc_lwplock == NULL) {
1134 ci->ci_schedstate.spc_lwplock =
1135 mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1136 }
1137 if (ci == lwp0.l_cpu) {
1138 /* Initialize the scheduler structure of the primary LWP */
1139 lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
1140 }
1141 if (ci->ci_schedstate.spc_mutex != NULL) {
1142 /* Already initialized. */
1143 return;
1144 }
1145
1146 /* Allocate the run queue */
1147 size = roundup2(sizeof(runqueue_t), coherency_unit) + coherency_unit;
1148 rq_ptr = kmem_zalloc(size, KM_SLEEP);
1149 if (rq_ptr == NULL) {
1150 panic("sched_cpuattach: could not allocate the runqueue");
1151 }
1152 ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), coherency_unit));
1153
1154 /* Initialize run queues */
1155 ci->ci_schedstate.spc_mutex =
1156 mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1157 for (i = 0; i < PRI_RT_COUNT; i++)
1158 TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
1159 for (i = 0; i < PRI_TS_COUNT; i++)
1160 TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
1161
1162 ci->ci_schedstate.spc_sched_info = ci_rq;
1163 }
1164
1165 /*
1166 * Control of the runqueue.
1167 */
1168
1169 static void *
1170 sched_getrq(runqueue_t *ci_rq, const pri_t prio)
1171 {
1172
1173 KASSERT(prio < PRI_COUNT);
1174 return (prio <= PRI_HIGHEST_TS) ?
1175 &ci_rq->r_ts_queue[prio].q_head :
1176 &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
1177 }
1178
1179 void
1180 sched_enqueue(struct lwp *l, bool swtch)
1181 {
1182 runqueue_t *ci_rq;
1183 struct schedstate_percpu *spc;
1184 TAILQ_HEAD(, lwp) *q_head;
1185 const pri_t eprio = lwp_eprio(l);
1186 struct cpu_info *ci;
1187
1188 ci = l->l_cpu;
1189 spc = &ci->ci_schedstate;
1190 ci_rq = spc->spc_sched_info;
1191 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1192
1193 /* Update the last run time on switch */
1194 if (__predict_true(swtch == true)) {
1195 l->l_rticks = hardclock_ticks;
1196 l->l_rticksum += (hardclock_ticks - l->l_rticks);
1197 } else if (l->l_rticks == 0)
1198 l->l_rticks = hardclock_ticks;
1199
1200 /* Enqueue the thread */
1201 q_head = sched_getrq(ci_rq, eprio);
1202 if (TAILQ_EMPTY(q_head)) {
1203 u_int i;
1204 uint32_t q;
1205
1206 /* Mark bit */
1207 i = eprio >> BITMAP_SHIFT;
1208 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
1209 KASSERT((ci_rq->r_bitmap[i] & q) == 0);
1210 ci_rq->r_bitmap[i] |= q;
1211 }
1212 TAILQ_INSERT_TAIL(q_head, l, l_runq);
1213 ci_rq->r_count++;
1214 if ((l->l_pflag & LP_BOUND) == 0)
1215 ci_rq->r_mcount++;
1216
1217 /*
1218 * Update the value of highest priority in the runqueue,
1219 * if priority of this thread is higher.
1220 */
1221 if (eprio > spc->spc_maxpriority)
1222 spc->spc_maxpriority = eprio;
1223
1224 sched_newts(l);
1225
1226 /*
1227 * Wake the chosen CPU or cause a preemption if the newly
1228 * enqueued thread has higher priority. Don't cause a
1229 * preemption if the thread is yielding (swtch).
1230 */
1231 if (!swtch && eprio > spc->spc_curpriority) {
1232 cpu_need_resched(ci,
1233 (eprio >= PRI_KERNEL ? RESCHED_IMMED : 0));
1234 }
1235 }
1236
1237 void
1238 sched_dequeue(struct lwp *l)
1239 {
1240 runqueue_t *ci_rq;
1241 TAILQ_HEAD(, lwp) *q_head;
1242 struct schedstate_percpu *spc;
1243 const pri_t eprio = lwp_eprio(l);
1244
1245 spc = & l->l_cpu->ci_schedstate;
1246 ci_rq = spc->spc_sched_info;
1247 KASSERT(lwp_locked(l, spc->spc_mutex));
1248
1249 KASSERT(eprio <= spc->spc_maxpriority);
1250 KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
1251 KASSERT(ci_rq->r_count > 0);
1252
1253 ci_rq->r_count--;
1254 if ((l->l_pflag & LP_BOUND) == 0)
1255 ci_rq->r_mcount--;
1256
1257 q_head = sched_getrq(ci_rq, eprio);
1258 TAILQ_REMOVE(q_head, l, l_runq);
1259 if (TAILQ_EMPTY(q_head)) {
1260 u_int i;
1261 uint32_t q;
1262
1263 /* Unmark bit */
1264 i = eprio >> BITMAP_SHIFT;
1265 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
1266 KASSERT((ci_rq->r_bitmap[i] & q) != 0);
1267 ci_rq->r_bitmap[i] &= ~q;
1268
1269 /*
1270 * Update the value of highest priority in the runqueue, in a
1271 * case it was a last thread in the queue of highest priority.
1272 */
1273 if (eprio != spc->spc_maxpriority)
1274 return;
1275
1276 do {
1277 if (ci_rq->r_bitmap[i] != 0) {
1278 q = ffs(ci_rq->r_bitmap[i]);
1279 spc->spc_maxpriority =
1280 (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
1281 return;
1282 }
1283 } while (i--);
1284
1285 /* If not found - set the lowest value */
1286 spc->spc_maxpriority = 0;
1287 }
1288 }
1289
1290 /*
1291 * Migration and balancing.
1292 */
1293
1294 #ifdef MULTIPROCESSOR
1295
1296 /* Estimate if LWP is cache-hot */
1297 static inline bool
1298 lwp_cache_hot(const struct lwp *l)
1299 {
1300
1301 if (l->l_slptime || l->l_rticks == 0)
1302 return false;
1303
1304 return (hardclock_ticks - l->l_rticks <= cacheht_time);
1305 }
1306
1307 /* Check if LWP can migrate to the chosen CPU */
1308 static inline bool
1309 sched_migratable(const struct lwp *l, struct cpu_info *ci)
1310 {
1311 const struct schedstate_percpu *spc = &ci->ci_schedstate;
1312
1313 /* CPU is offline */
1314 if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
1315 return false;
1316
1317 /* Affinity bind */
1318 if (__predict_false(l->l_flag & LW_AFFINITY))
1319 return CPU_ISSET(cpu_index(ci), &l->l_affinity);
1320
1321 /* Processor-set */
1322 return (spc->spc_psid == l->l_psid);
1323 }
1324
1325 /*
1326 * Estimate the migration of LWP to the other CPU.
1327 * Take and return the CPU, if migration is needed.
1328 */
1329 struct cpu_info *
1330 sched_takecpu(struct lwp *l)
1331 {
1332 struct cpu_info *ci, *tci, *first, *next;
1333 struct schedstate_percpu *spc;
1334 runqueue_t *ci_rq, *ici_rq;
1335 pri_t eprio, lpri, pri;
1336
1337 KASSERT(lwp_locked(l, NULL));
1338
1339 ci = l->l_cpu;
1340 spc = &ci->ci_schedstate;
1341 ci_rq = spc->spc_sched_info;
1342
1343 /* If thread is strictly bound, do not estimate other CPUs */
1344 if (l->l_pflag & LP_BOUND)
1345 return ci;
1346
1347 /* CPU of this thread is idling - run there */
1348 if (ci_rq->r_count == 0)
1349 return ci;
1350
1351 eprio = lwp_eprio(l);
1352
1353 /* Stay if thread is cache-hot */
1354 if (__predict_true(l->l_stat != LSIDL) &&
1355 lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
1356 return ci;
1357
1358 /* Run on current CPU if priority of thread is higher */
1359 ci = curcpu();
1360 spc = &ci->ci_schedstate;
1361 if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
1362 return ci;
1363
1364 /*
1365 * Look for the CPU with the lowest priority thread. In case of
1366 * equal priority, choose the CPU with the fewest of threads.
1367 */
1368 first = l->l_cpu;
1369 ci = first;
1370 tci = first;
1371 lpri = PRI_COUNT;
1372 do {
1373 next = CIRCLEQ_LOOP_NEXT(&cpu_queue, ci, ci_data.cpu_qchain);
1374 spc = &ci->ci_schedstate;
1375 ici_rq = spc->spc_sched_info;
1376 pri = max(spc->spc_curpriority, spc->spc_maxpriority);
1377 if (pri > lpri)
1378 continue;
1379
1380 if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
1381 continue;
1382
1383 if (!sched_migratable(l, ci))
1384 continue;
1385
1386 lpri = pri;
1387 tci = ci;
1388 ci_rq = ici_rq;
1389 } while (ci = next, ci != first);
1390
1391 return tci;
1392 }
1393
1394 /*
1395 * Tries to catch an LWP from the runqueue of other CPU.
1396 */
1397 static struct lwp *
1398 sched_catchlwp(void)
1399 {
1400 struct cpu_info *curci = curcpu(), *ci = worker_ci;
1401 struct schedstate_percpu *spc;
1402 TAILQ_HEAD(, lwp) *q_head;
1403 runqueue_t *ci_rq;
1404 struct lwp *l;
1405
1406 if (curci == ci)
1407 return NULL;
1408
1409 /* Lockless check */
1410 spc = &ci->ci_schedstate;
1411 ci_rq = spc->spc_sched_info;
1412 if (ci_rq->r_mcount < min_catch)
1413 return NULL;
1414
1415 /*
1416 * Double-lock the runqueues.
1417 */
1418 if (curci < ci) {
1419 spc_lock(ci);
1420 } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
1421 const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
1422
1423 spc_unlock(curci);
1424 spc_lock(ci);
1425 spc_lock(curci);
1426
1427 if (cur_rq->r_count) {
1428 spc_unlock(ci);
1429 return NULL;
1430 }
1431 }
1432
1433 if (ci_rq->r_mcount < min_catch) {
1434 spc_unlock(ci);
1435 return NULL;
1436 }
1437
1438 /* Take the highest priority thread */
1439 q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
1440 l = TAILQ_FIRST(q_head);
1441
1442 for (;;) {
1443 /* Check the first and next result from the queue */
1444 if (l == NULL)
1445 break;
1446 KASSERT(l->l_stat == LSRUN);
1447 KASSERT(l->l_flag & LW_INMEM);
1448
1449 /* Look for threads, whose are allowed to migrate */
1450 if ((l->l_pflag & LP_BOUND) || lwp_cache_hot(l) ||
1451 !sched_migratable(l, curci)) {
1452 l = TAILQ_NEXT(l, l_runq);
1453 continue;
1454 }
1455
1456 /* Grab the thread, and move to the local run queue */
1457 sched_dequeue(l);
1458 l->l_cpu = curci;
1459 lwp_unlock_to(l, curci->ci_schedstate.spc_mutex);
1460 sched_enqueue(l, false);
1461 return l;
1462 }
1463 spc_unlock(ci);
1464
1465 return l;
1466 }
1467
1468 /*
1469 * Periodical calculations for balancing.
1470 */
1471 static void
1472 sched_balance(void *nocallout)
1473 {
1474 struct cpu_info *ci, *hci;
1475 runqueue_t *ci_rq;
1476 CPU_INFO_ITERATOR cii;
1477 u_int highest;
1478
1479 hci = curcpu();
1480 highest = 0;
1481
1482 /* Make lockless countings */
1483 for (CPU_INFO_FOREACH(cii, ci)) {
1484 ci_rq = ci->ci_schedstate.spc_sched_info;
1485
1486 /* Average count of the threads */
1487 ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
1488
1489 /* Look for CPU with the highest average */
1490 if (ci_rq->r_avgcount > highest) {
1491 hci = ci;
1492 highest = ci_rq->r_avgcount;
1493 }
1494 }
1495
1496 /* Update the worker */
1497 worker_ci = hci;
1498
1499 if (nocallout == NULL)
1500 callout_schedule(&balance_ch, balance_period);
1501 }
1502
1503 #else
1504
1505 struct cpu_info *
1506 sched_takecpu(struct lwp *l)
1507 {
1508
1509 return l->l_cpu;
1510 }
1511
1512 #endif /* MULTIPROCESSOR */
1513
1514 /*
1515 * Scheduler mill.
1516 */
1517 struct lwp *
1518 sched_nextlwp(void)
1519 {
1520 struct cpu_info *ci = curcpu();
1521 struct schedstate_percpu *spc;
1522 TAILQ_HEAD(, lwp) *q_head;
1523 runqueue_t *ci_rq;
1524 struct lwp *l;
1525
1526 spc = &ci->ci_schedstate;
1527 ci_rq = spc->spc_sched_info;
1528
1529 #ifdef MULTIPROCESSOR
1530 /* If runqueue is empty, try to catch some thread from other CPU */
1531 if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
1532 if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
1533 return NULL;
1534 } else if (ci_rq->r_count == 0) {
1535 /* Reset the counter, and call the balancer */
1536 ci_rq->r_avgcount = 0;
1537 sched_balance(ci);
1538
1539 /* The re-locking will be done inside */
1540 return sched_catchlwp();
1541 }
1542 #else
1543 if (ci_rq->r_count == 0)
1544 return NULL;
1545 #endif
1546
1547 /* Take the highest priority thread */
1548 KASSERT(ci_rq->r_bitmap[spc->spc_maxpriority >> BITMAP_SHIFT]);
1549 q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
1550 l = TAILQ_FIRST(q_head);
1551 KASSERT(l != NULL);
1552
1553 sched_oncpu(l);
1554 l->l_rticks = hardclock_ticks;
1555
1556 return l;
1557 }
1558
1559 bool
1560 sched_curcpu_runnable_p(void)
1561 {
1562 const struct cpu_info *ci = curcpu();
1563 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
1564
1565 #ifndef __HAVE_FAST_SOFTINTS
1566 if (ci->ci_data.cpu_softints)
1567 return true;
1568 #endif
1569
1570 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
1571 return (ci_rq->r_count - ci_rq->r_mcount);
1572
1573 return ci_rq->r_count;
1574 }
1575
1576 /*
1577 * Debugging.
1578 */
1579
1580 #ifdef DDB
1581
1582 void
1583 sched_print_runqueue(void (*pr)(const char *, ...)
1584 __attribute__((__format__(__printf__,1,2))))
1585 {
1586 runqueue_t *ci_rq;
1587 struct schedstate_percpu *spc;
1588 struct lwp *l;
1589 struct proc *p;
1590 int i;
1591 struct cpu_info *ci;
1592 CPU_INFO_ITERATOR cii;
1593
1594 for (CPU_INFO_FOREACH(cii, ci)) {
1595 spc = &ci->ci_schedstate;
1596 ci_rq = spc->spc_sched_info;
1597
1598 (*pr)("Run-queue (CPU = %u):\n", ci->ci_index);
1599 (*pr)(" pid.lid = %d.%d, threads count = %u, "
1600 "avgcount = %u, highest pri = %d\n",
1601 #ifdef MULTIPROCESSOR
1602 ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1603 #else
1604 curlwp->l_proc->p_pid, curlwp->l_lid,
1605 #endif
1606 ci_rq->r_count, ci_rq->r_avgcount, spc->spc_maxpriority);
1607 i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1608 do {
1609 uint32_t q;
1610 q = ci_rq->r_bitmap[i];
1611 (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1612 } while (i--);
1613 }
1614
1615 (*pr)(" %5s %4s %4s %10s %3s %18s %4s %s\n",
1616 "LID", "PRI", "EPRI", "FL", "ST", "LWP", "CPU", "LRTIME");
1617
1618 PROCLIST_FOREACH(p, &allproc) {
1619 (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1620 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1621 ci = l->l_cpu;
1622 (*pr)(" | %5d %4u %4u 0x%8.8x %3s %18p %4u %u\n",
1623 (int)l->l_lid, l->l_priority, lwp_eprio(l),
1624 l->l_flag, l->l_stat == LSRUN ? "RQ" :
1625 (l->l_stat == LSSLEEP ? "SQ" : "-"),
1626 l, ci->ci_index,
1627 (u_int)(hardclock_ticks - l->l_rticks));
1628 }
1629 }
1630 }
1631
1632 #endif
1633