kern_synch.c revision 1.230 1 /* $NetBSD: kern_synch.c,v 1.230 2008/04/27 11:37:48 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 */
66
67 /*-
68 * Copyright (c) 1982, 1986, 1990, 1991, 1993
69 * The Regents of the University of California. All rights reserved.
70 * (c) UNIX System Laboratories, Inc.
71 * All or some portions of this file are derived from material licensed
72 * to the University of California by American Telephone and Telegraph
73 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
74 * the permission of UNIX System Laboratories, Inc.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the above copyright
80 * notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 * notice, this list of conditions and the following disclaimer in the
83 * documentation and/or other materials provided with the distribution.
84 * 3. Neither the name of the University nor the names of its contributors
85 * may be used to endorse or promote products derived from this software
86 * without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
89 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
90 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
91 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
92 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
93 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
94 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
95 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
96 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
97 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
98 * SUCH DAMAGE.
99 *
100 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
101 */
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.230 2008/04/27 11:37:48 ad Exp $");
105
106 #include "opt_kstack.h"
107 #include "opt_lockdebug.h"
108 #include "opt_multiprocessor.h"
109 #include "opt_perfctrs.h"
110
111 #define __MUTEX_PRIVATE
112
113 #include <sys/param.h>
114 #include <sys/systm.h>
115 #include <sys/proc.h>
116 #include <sys/kernel.h>
117 #if defined(PERFCTRS)
118 #include <sys/pmc.h>
119 #endif
120 #include <sys/cpu.h>
121 #include <sys/resourcevar.h>
122 #include <sys/sched.h>
123 #include <sys/syscall_stats.h>
124 #include <sys/sleepq.h>
125 #include <sys/lockdebug.h>
126 #include <sys/evcnt.h>
127 #include <sys/intr.h>
128 #include <sys/lwpctl.h>
129 #include <sys/atomic.h>
130 #include <sys/simplelock.h>
131 #include <sys/bitops.h>
132 #include <sys/kmem.h>
133 #include <sys/sysctl.h>
134 #include <sys/idle.h>
135
136 #include <uvm/uvm_extern.h>
137
138 /*
139 * Priority related defintions.
140 */
141 #define PRI_TS_COUNT (NPRI_USER)
142 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
143 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
144
145 #define PRI_HIGHEST_TS (MAXPRI_USER)
146
147 /*
148 * Bits per map.
149 */
150 #define BITMAP_BITS (32)
151 #define BITMAP_SHIFT (5)
152 #define BITMAP_MSB (0x80000000U)
153 #define BITMAP_MASK (BITMAP_BITS - 1)
154
155 /*
156 * Structures, runqueue.
157 */
158
159 typedef struct {
160 TAILQ_HEAD(, lwp) q_head;
161 } queue_t;
162
163 typedef struct {
164 /* Lock and bitmap */
165 uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
166 /* Counters */
167 u_int r_count; /* Count of the threads */
168 u_int r_avgcount; /* Average count of threads */
169 u_int r_mcount; /* Count of migratable threads */
170 /* Runqueues */
171 queue_t r_rt_queue[PRI_RT_COUNT];
172 queue_t r_ts_queue[PRI_TS_COUNT];
173 } runqueue_t;
174
175 static u_int sched_unsleep(struct lwp *, bool);
176 static void sched_changepri(struct lwp *, pri_t);
177 static void sched_lendpri(struct lwp *, pri_t);
178 static void *sched_getrq(runqueue_t *, const pri_t);
179 #ifdef MULTIPROCESSOR
180 static lwp_t *sched_catchlwp(void);
181 static void sched_balance(void *);
182 #endif
183
184 syncobj_t sleep_syncobj = {
185 SOBJ_SLEEPQ_SORTED,
186 sleepq_unsleep,
187 sleepq_changepri,
188 sleepq_lendpri,
189 syncobj_noowner,
190 };
191
192 syncobj_t sched_syncobj = {
193 SOBJ_SLEEPQ_SORTED,
194 sched_unsleep,
195 sched_changepri,
196 sched_lendpri,
197 syncobj_noowner,
198 };
199
200 const int schedppq = 1;
201 callout_t sched_pstats_ch;
202 unsigned sched_pstats_ticks;
203 kcondvar_t lbolt; /* once a second sleep address */
204
205 /*
206 * Migration and balancing.
207 */
208 static u_int cacheht_time; /* Cache hotness time */
209 static u_int min_catch; /* Minimal LWP count for catching */
210 static u_int balance_period; /* Balance period */
211 static struct cpu_info *worker_ci; /* Victim CPU */
212 #ifdef MULTIPROCESSOR
213 static struct callout balance_ch; /* Callout of balancer */
214 #endif
215
216 /*
217 * During autoconfiguration or after a panic, a sleep will simply lower the
218 * priority briefly to allow interrupts, then return. The priority to be
219 * used (safepri) is machine-dependent, thus this value is initialized and
220 * maintained in the machine-dependent layers. This priority will typically
221 * be 0, or the lowest priority that is safe for use on the interrupt stack;
222 * it can be made higher to block network software interrupts after panics.
223 */
224 int safepri;
225
226 /*
227 * OBSOLETE INTERFACE
228 *
229 * General sleep call. Suspends the current process until a wakeup is
230 * performed on the specified identifier. The process will then be made
231 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
232 * means no timeout). If pri includes PCATCH flag, signals are checked
233 * before and after sleeping, else signals are not checked. Returns 0 if
234 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
235 * signal needs to be delivered, ERESTART is returned if the current system
236 * call should be restarted if possible, and EINTR is returned if the system
237 * call should be interrupted by the signal (return EINTR).
238 *
239 * The interlock is held until we are on a sleep queue. The interlock will
240 * be locked before returning back to the caller unless the PNORELOCK flag
241 * is specified, in which case the interlock will always be unlocked upon
242 * return.
243 */
244 int
245 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
246 volatile struct simplelock *interlock)
247 {
248 struct lwp *l = curlwp;
249 sleepq_t *sq;
250 int error;
251
252 KASSERT((l->l_pflag & LP_INTR) == 0);
253
254 if (sleepq_dontsleep(l)) {
255 (void)sleepq_abort(NULL, 0);
256 if ((priority & PNORELOCK) != 0)
257 simple_unlock(interlock);
258 return 0;
259 }
260
261 l->l_kpriority = true;
262 sq = sleeptab_lookup(&sleeptab, ident);
263 sleepq_enter(sq, l);
264 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
265
266 if (interlock != NULL) {
267 KASSERT(simple_lock_held(interlock));
268 simple_unlock(interlock);
269 }
270
271 error = sleepq_block(timo, priority & PCATCH);
272
273 if (interlock != NULL && (priority & PNORELOCK) == 0)
274 simple_lock(interlock);
275
276 return error;
277 }
278
279 int
280 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
281 kmutex_t *mtx)
282 {
283 struct lwp *l = curlwp;
284 sleepq_t *sq;
285 int error;
286
287 KASSERT((l->l_pflag & LP_INTR) == 0);
288
289 if (sleepq_dontsleep(l)) {
290 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
291 return 0;
292 }
293
294 l->l_kpriority = true;
295 sq = sleeptab_lookup(&sleeptab, ident);
296 sleepq_enter(sq, l);
297 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
298 mutex_exit(mtx);
299 error = sleepq_block(timo, priority & PCATCH);
300
301 if ((priority & PNORELOCK) == 0)
302 mutex_enter(mtx);
303
304 return error;
305 }
306
307 /*
308 * General sleep call for situations where a wake-up is not expected.
309 */
310 int
311 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
312 {
313 struct lwp *l = curlwp;
314 sleepq_t *sq;
315 int error;
316
317 if (sleepq_dontsleep(l))
318 return sleepq_abort(NULL, 0);
319
320 if (mtx != NULL)
321 mutex_exit(mtx);
322 l->l_kpriority = true;
323 sq = sleeptab_lookup(&sleeptab, l);
324 sleepq_enter(sq, l);
325 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
326 error = sleepq_block(timo, intr);
327 if (mtx != NULL)
328 mutex_enter(mtx);
329
330 return error;
331 }
332
333 /*
334 * OBSOLETE INTERFACE
335 *
336 * Make all processes sleeping on the specified identifier runnable.
337 */
338 void
339 wakeup(wchan_t ident)
340 {
341 sleepq_t *sq;
342
343 if (cold)
344 return;
345
346 sq = sleeptab_lookup(&sleeptab, ident);
347 sleepq_wake(sq, ident, (u_int)-1);
348 }
349
350 /*
351 * OBSOLETE INTERFACE
352 *
353 * Make the highest priority process first in line on the specified
354 * identifier runnable.
355 */
356 void
357 wakeup_one(wchan_t ident)
358 {
359 sleepq_t *sq;
360
361 if (cold)
362 return;
363
364 sq = sleeptab_lookup(&sleeptab, ident);
365 sleepq_wake(sq, ident, 1);
366 }
367
368
369 /*
370 * General yield call. Puts the current process back on its run queue and
371 * performs a voluntary context switch. Should only be called when the
372 * current process explicitly requests it (eg sched_yield(2)).
373 */
374 void
375 yield(void)
376 {
377 struct lwp *l = curlwp;
378
379 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
380 lwp_lock(l);
381 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
382 KASSERT(l->l_stat == LSONPROC);
383 l->l_kpriority = false;
384 (void)mi_switch(l);
385 KERNEL_LOCK(l->l_biglocks, l);
386 }
387
388 /*
389 * General preemption call. Puts the current process back on its run queue
390 * and performs an involuntary context switch.
391 */
392 void
393 preempt(void)
394 {
395 struct lwp *l = curlwp;
396
397 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
398 lwp_lock(l);
399 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
400 KASSERT(l->l_stat == LSONPROC);
401 l->l_kpriority = false;
402 l->l_nivcsw++;
403 (void)mi_switch(l);
404 KERNEL_LOCK(l->l_biglocks, l);
405 }
406
407 /*
408 * Disable kernel preemption.
409 */
410 void
411 kpreempt_disable(void)
412 {
413
414 KPREEMPT_DISABLE();
415 }
416
417 /*
418 * Reenable kernel preemption.
419 */
420 void
421 kpreempt_enable(void)
422 {
423
424 KPREEMPT_ENABLE();
425 }
426
427 /*
428 * Return true if preemption is explicitly disabled.
429 */
430 bool
431 kpreempt_disabled(void)
432 {
433
434 /* Just a diagnostic check, so for now always true. */
435 return true;
436 }
437
438 /*
439 * Compute the amount of time during which the current lwp was running.
440 *
441 * - update l_rtime unless it's an idle lwp.
442 */
443
444 void
445 updatertime(lwp_t *l, const struct bintime *now)
446 {
447
448 if ((l->l_flag & LW_IDLE) != 0)
449 return;
450
451 /* rtime += now - stime */
452 bintime_add(&l->l_rtime, now);
453 bintime_sub(&l->l_rtime, &l->l_stime);
454 }
455
456 /*
457 * The machine independent parts of context switch.
458 *
459 * Returns 1 if another LWP was actually run.
460 */
461 int
462 mi_switch(lwp_t *l)
463 {
464 struct cpu_info *ci, *tci = NULL;
465 struct schedstate_percpu *spc;
466 struct lwp *newl;
467 int retval, oldspl;
468 struct bintime bt;
469 bool returning;
470
471 KASSERT(lwp_locked(l, NULL));
472 LOCKDEBUG_BARRIER(l->l_mutex, 1);
473
474 #ifdef KSTACK_CHECK_MAGIC
475 kstack_check_magic(l);
476 #endif
477
478 binuptime(&bt);
479
480 KDASSERT(l->l_cpu == curcpu());
481 ci = l->l_cpu;
482 spc = &ci->ci_schedstate;
483 returning = false;
484 newl = NULL;
485
486 /*
487 * If we have been asked to switch to a specific LWP, then there
488 * is no need to inspect the run queues. If a soft interrupt is
489 * blocking, then return to the interrupted thread without adjusting
490 * VM context or its start time: neither have been changed in order
491 * to take the interrupt.
492 */
493 if (l->l_switchto != NULL) {
494 if ((l->l_pflag & LP_INTR) != 0) {
495 returning = true;
496 softint_block(l);
497 if ((l->l_flag & LW_TIMEINTR) != 0)
498 updatertime(l, &bt);
499 }
500 newl = l->l_switchto;
501 l->l_switchto = NULL;
502 }
503 #ifndef __HAVE_FAST_SOFTINTS
504 else if (ci->ci_data.cpu_softints != 0) {
505 /* There are pending soft interrupts, so pick one. */
506 newl = softint_picklwp();
507 newl->l_stat = LSONPROC;
508 newl->l_flag |= LW_RUNNING;
509 }
510 #endif /* !__HAVE_FAST_SOFTINTS */
511
512 /* Count time spent in current system call */
513 if (!returning) {
514 SYSCALL_TIME_SLEEP(l);
515
516 /*
517 * XXXSMP If we are using h/w performance counters,
518 * save context.
519 */
520 #if PERFCTRS
521 if (PMC_ENABLED(l->l_proc)) {
522 pmc_save_context(l->l_proc);
523 }
524 #endif
525 updatertime(l, &bt);
526 }
527
528 /*
529 * If on the CPU and we have gotten this far, then we must yield.
530 */
531 KASSERT(l->l_stat != LSRUN);
532 if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
533 KASSERT(lwp_locked(l, spc->spc_lwplock));
534
535 if (l->l_target_cpu == l->l_cpu) {
536 l->l_target_cpu = NULL;
537 } else {
538 tci = l->l_target_cpu;
539 }
540
541 if (__predict_false(tci != NULL)) {
542 /* Double-lock the runqueues */
543 spc_dlock(ci, tci);
544 } else {
545 /* Lock the runqueue */
546 spc_lock(ci);
547 }
548
549 if ((l->l_flag & LW_IDLE) == 0) {
550 l->l_stat = LSRUN;
551 if (__predict_false(tci != NULL)) {
552 /*
553 * Set the new CPU, lock and unset the
554 * l_target_cpu - thread will be enqueued
555 * to the runqueue of target CPU.
556 */
557 l->l_cpu = tci;
558 lwp_setlock(l, tci->ci_schedstate.spc_mutex);
559 l->l_target_cpu = NULL;
560 } else {
561 lwp_setlock(l, spc->spc_mutex);
562 }
563 sched_enqueue(l, true);
564 } else {
565 KASSERT(tci == NULL);
566 l->l_stat = LSIDL;
567 }
568 } else {
569 /* Lock the runqueue */
570 spc_lock(ci);
571 }
572
573 /*
574 * Let sched_nextlwp() select the LWP to run the CPU next.
575 * If no LWP is runnable, select the idle LWP.
576 *
577 * Note that spc_lwplock might not necessary be held, and
578 * new thread would be unlocked after setting the LWP-lock.
579 */
580 if (newl == NULL) {
581 newl = sched_nextlwp();
582 if (newl != NULL) {
583 sched_dequeue(newl);
584 KASSERT(lwp_locked(newl, spc->spc_mutex));
585 newl->l_stat = LSONPROC;
586 newl->l_cpu = ci;
587 newl->l_flag |= LW_RUNNING;
588 lwp_setlock(newl, spc->spc_lwplock);
589 } else {
590 newl = ci->ci_data.cpu_idlelwp;
591 newl->l_stat = LSONPROC;
592 newl->l_flag |= LW_RUNNING;
593 }
594 /*
595 * Only clear want_resched if there are no
596 * pending (slow) software interrupts.
597 */
598 ci->ci_want_resched = ci->ci_data.cpu_softints;
599 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
600 spc->spc_curpriority = lwp_eprio(newl);
601 }
602
603 /* Items that must be updated with the CPU locked. */
604 if (!returning) {
605 /* Update the new LWP's start time. */
606 newl->l_stime = bt;
607
608 /*
609 * ci_curlwp changes when a fast soft interrupt occurs.
610 * We use cpu_onproc to keep track of which kernel or
611 * user thread is running 'underneath' the software
612 * interrupt. This is important for time accounting,
613 * itimers and forcing user threads to preempt (aston).
614 */
615 ci->ci_data.cpu_onproc = newl;
616 }
617
618 if (l != newl) {
619 struct lwp *prevlwp;
620
621 /* Release all locks, but leave the current LWP locked */
622 if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
623 /*
624 * In case of migration, drop the local runqueue
625 * lock, thread is on other runqueue now.
626 */
627 if (__predict_false(tci != NULL))
628 spc_unlock(ci);
629 /*
630 * Drop spc_lwplock, if the current LWP has been moved
631 * to the run queue (it is now locked by spc_mutex).
632 */
633 mutex_spin_exit(spc->spc_lwplock);
634 } else {
635 /*
636 * Otherwise, drop the spc_mutex, we are done with the
637 * run queues.
638 */
639 mutex_spin_exit(spc->spc_mutex);
640 KASSERT(tci == NULL);
641 }
642
643 /*
644 * Mark that context switch is going to be perfomed
645 * for this LWP, to protect it from being switched
646 * to on another CPU.
647 */
648 KASSERT(l->l_ctxswtch == 0);
649 l->l_ctxswtch = 1;
650 l->l_ncsw++;
651 l->l_flag &= ~LW_RUNNING;
652
653 /*
654 * Increase the count of spin-mutexes before the release
655 * of the last lock - we must remain at IPL_SCHED during
656 * the context switch.
657 */
658 oldspl = MUTEX_SPIN_OLDSPL(ci);
659 ci->ci_mtx_count--;
660 lwp_unlock(l);
661
662 /* Count the context switch on this CPU. */
663 ci->ci_data.cpu_nswtch++;
664
665 /* Update status for lwpctl, if present. */
666 if (l->l_lwpctl != NULL)
667 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
668
669 /*
670 * Save old VM context, unless a soft interrupt
671 * handler is blocking.
672 */
673 if (!returning)
674 pmap_deactivate(l);
675
676 /*
677 * We may need to spin-wait for if 'newl' is still
678 * context switching on another CPU.
679 */
680 if (newl->l_ctxswtch != 0) {
681 u_int count;
682 count = SPINLOCK_BACKOFF_MIN;
683 while (newl->l_ctxswtch)
684 SPINLOCK_BACKOFF(count);
685 }
686
687 /* Switch to the new LWP.. */
688 prevlwp = cpu_switchto(l, newl, returning);
689 ci = curcpu();
690
691 /*
692 * Switched away - we have new curlwp.
693 * Restore VM context and IPL.
694 */
695 pmap_activate(l);
696 if (prevlwp != NULL) {
697 /* Normalize the count of the spin-mutexes */
698 ci->ci_mtx_count++;
699 /* Unmark the state of context switch */
700 membar_exit();
701 prevlwp->l_ctxswtch = 0;
702 }
703 splx(oldspl);
704
705 /* Update status for lwpctl, if present. */
706 if (l->l_lwpctl != NULL) {
707 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
708 l->l_lwpctl->lc_pctr++;
709 }
710
711 retval = 1;
712 } else {
713 /* Nothing to do - just unlock and return. */
714 KASSERT(tci == NULL);
715 spc_unlock(ci);
716 lwp_unlock(l);
717 retval = 0;
718 }
719
720 KASSERT(l == curlwp);
721 KASSERT(l->l_stat == LSONPROC);
722 KASSERT(l->l_cpu == ci);
723
724 /*
725 * XXXSMP If we are using h/w performance counters, restore context.
726 */
727 #if PERFCTRS
728 if (PMC_ENABLED(l->l_proc)) {
729 pmc_restore_context(l->l_proc);
730 }
731 #endif
732 SYSCALL_TIME_WAKEUP(l);
733 LOCKDEBUG_BARRIER(NULL, 1);
734
735 return retval;
736 }
737
738 /*
739 * Change process state to be runnable, placing it on the run queue if it is
740 * in memory, and awakening the swapper if it isn't in memory.
741 *
742 * Call with the process and LWP locked. Will return with the LWP unlocked.
743 */
744 void
745 setrunnable(struct lwp *l)
746 {
747 struct proc *p = l->l_proc;
748 struct cpu_info *ci;
749 sigset_t *ss;
750
751 KASSERT((l->l_flag & LW_IDLE) == 0);
752 KASSERT(mutex_owned(p->p_lock));
753 KASSERT(lwp_locked(l, NULL));
754 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
755
756 switch (l->l_stat) {
757 case LSSTOP:
758 /*
759 * If we're being traced (possibly because someone attached us
760 * while we were stopped), check for a signal from the debugger.
761 */
762 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
763 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
764 ss = &l->l_sigpend.sp_set;
765 else
766 ss = &p->p_sigpend.sp_set;
767 sigaddset(ss, p->p_xstat);
768 signotify(l);
769 }
770 p->p_nrlwps++;
771 break;
772 case LSSUSPENDED:
773 l->l_flag &= ~LW_WSUSPEND;
774 p->p_nrlwps++;
775 cv_broadcast(&p->p_lwpcv);
776 break;
777 case LSSLEEP:
778 KASSERT(l->l_wchan != NULL);
779 break;
780 default:
781 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
782 }
783
784 /*
785 * If the LWP was sleeping interruptably, then it's OK to start it
786 * again. If not, mark it as still sleeping.
787 */
788 if (l->l_wchan != NULL) {
789 l->l_stat = LSSLEEP;
790 /* lwp_unsleep() will release the lock. */
791 lwp_unsleep(l, true);
792 return;
793 }
794
795 /*
796 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
797 * about to call mi_switch(), in which case it will yield.
798 */
799 if ((l->l_flag & LW_RUNNING) != 0) {
800 l->l_stat = LSONPROC;
801 l->l_slptime = 0;
802 lwp_unlock(l);
803 return;
804 }
805
806 /*
807 * Look for a CPU to run.
808 * Set the LWP runnable.
809 */
810 ci = sched_takecpu(l);
811 l->l_cpu = ci;
812 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
813 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
814 lwp_lock(l);
815 }
816 sched_setrunnable(l);
817 l->l_stat = LSRUN;
818 l->l_slptime = 0;
819
820 /*
821 * If thread is swapped out - wake the swapper to bring it back in.
822 * Otherwise, enter it into a run queue.
823 */
824 if (l->l_flag & LW_INMEM) {
825 sched_enqueue(l, false);
826 resched_cpu(l);
827 lwp_unlock(l);
828 } else {
829 lwp_unlock(l);
830 uvm_kick_scheduler();
831 }
832 }
833
834 /*
835 * suspendsched:
836 *
837 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
838 */
839 void
840 suspendsched(void)
841 {
842 CPU_INFO_ITERATOR cii;
843 struct cpu_info *ci;
844 struct lwp *l;
845 struct proc *p;
846
847 /*
848 * We do this by process in order not to violate the locking rules.
849 */
850 mutex_enter(proc_lock);
851 PROCLIST_FOREACH(p, &allproc) {
852 mutex_enter(p->p_lock);
853
854 if ((p->p_flag & PK_SYSTEM) != 0) {
855 mutex_exit(p->p_lock);
856 continue;
857 }
858
859 p->p_stat = SSTOP;
860
861 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
862 if (l == curlwp)
863 continue;
864
865 lwp_lock(l);
866
867 /*
868 * Set L_WREBOOT so that the LWP will suspend itself
869 * when it tries to return to user mode. We want to
870 * try and get to get as many LWPs as possible to
871 * the user / kernel boundary, so that they will
872 * release any locks that they hold.
873 */
874 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
875
876 if (l->l_stat == LSSLEEP &&
877 (l->l_flag & LW_SINTR) != 0) {
878 /* setrunnable() will release the lock. */
879 setrunnable(l);
880 continue;
881 }
882
883 lwp_unlock(l);
884 }
885
886 mutex_exit(p->p_lock);
887 }
888 mutex_exit(proc_lock);
889
890 /*
891 * Kick all CPUs to make them preempt any LWPs running in user mode.
892 * They'll trap into the kernel and suspend themselves in userret().
893 */
894 for (CPU_INFO_FOREACH(cii, ci)) {
895 spc_lock(ci);
896 cpu_need_resched(ci, RESCHED_IMMED);
897 spc_unlock(ci);
898 }
899 }
900
901 /*
902 * sched_unsleep:
903 *
904 * The is called when the LWP has not been awoken normally but instead
905 * interrupted: for example, if the sleep timed out. Because of this,
906 * it's not a valid action for running or idle LWPs.
907 */
908 static u_int
909 sched_unsleep(struct lwp *l, bool cleanup)
910 {
911
912 lwp_unlock(l);
913 panic("sched_unsleep");
914 }
915
916 void
917 resched_cpu(struct lwp *l)
918 {
919 struct cpu_info *ci;
920
921 /*
922 * XXXSMP
923 * Since l->l_cpu persists across a context switch,
924 * this gives us *very weak* processor affinity, in
925 * that we notify the CPU on which the process last
926 * ran that it should try to switch.
927 *
928 * This does not guarantee that the process will run on
929 * that processor next, because another processor might
930 * grab it the next time it performs a context switch.
931 *
932 * This also does not handle the case where its last
933 * CPU is running a higher-priority process, but every
934 * other CPU is running a lower-priority process. There
935 * are ways to handle this situation, but they're not
936 * currently very pretty, and we also need to weigh the
937 * cost of moving a process from one CPU to another.
938 */
939 ci = l->l_cpu;
940 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
941 cpu_need_resched(ci, 0);
942 }
943
944 static void
945 sched_changepri(struct lwp *l, pri_t pri)
946 {
947
948 KASSERT(lwp_locked(l, NULL));
949
950 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
951 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
952 sched_dequeue(l);
953 l->l_priority = pri;
954 sched_enqueue(l, false);
955 } else {
956 l->l_priority = pri;
957 }
958 resched_cpu(l);
959 }
960
961 static void
962 sched_lendpri(struct lwp *l, pri_t pri)
963 {
964
965 KASSERT(lwp_locked(l, NULL));
966
967 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
968 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
969 sched_dequeue(l);
970 l->l_inheritedprio = pri;
971 sched_enqueue(l, false);
972 } else {
973 l->l_inheritedprio = pri;
974 }
975 resched_cpu(l);
976 }
977
978 struct lwp *
979 syncobj_noowner(wchan_t wchan)
980 {
981
982 return NULL;
983 }
984
985 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
986 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
987
988 /*
989 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
990 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
991 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
992 *
993 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
994 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
995 *
996 * If you dont want to bother with the faster/more-accurate formula, you
997 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
998 * (more general) method of calculating the %age of CPU used by a process.
999 */
1000 #define CCPU_SHIFT (FSHIFT + 1)
1001
1002 /*
1003 * sched_pstats:
1004 *
1005 * Update process statistics and check CPU resource allocation.
1006 * Call scheduler-specific hook to eventually adjust process/LWP
1007 * priorities.
1008 */
1009 /* ARGSUSED */
1010 void
1011 sched_pstats(void *arg)
1012 {
1013 struct rlimit *rlim;
1014 struct lwp *l;
1015 struct proc *p;
1016 int sig, clkhz;
1017 long runtm;
1018
1019 sched_pstats_ticks++;
1020
1021 mutex_enter(proc_lock);
1022 PROCLIST_FOREACH(p, &allproc) {
1023 /*
1024 * Increment time in/out of memory and sleep time (if
1025 * sleeping). We ignore overflow; with 16-bit int's
1026 * (remember them?) overflow takes 45 days.
1027 */
1028 mutex_enter(p->p_lock);
1029 mutex_spin_enter(&p->p_stmutex);
1030 runtm = p->p_rtime.sec;
1031 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1032 if ((l->l_flag & LW_IDLE) != 0)
1033 continue;
1034 lwp_lock(l);
1035 runtm += l->l_rtime.sec;
1036 l->l_swtime++;
1037 sched_pstats_hook(l);
1038 lwp_unlock(l);
1039
1040 /*
1041 * p_pctcpu is only for ps.
1042 */
1043 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1044 if (l->l_slptime < 1) {
1045 clkhz = stathz != 0 ? stathz : hz;
1046 #if (FSHIFT >= CCPU_SHIFT)
1047 l->l_pctcpu += (clkhz == 100) ?
1048 ((fixpt_t)l->l_cpticks) <<
1049 (FSHIFT - CCPU_SHIFT) :
1050 100 * (((fixpt_t) p->p_cpticks)
1051 << (FSHIFT - CCPU_SHIFT)) / clkhz;
1052 #else
1053 l->l_pctcpu += ((FSCALE - ccpu) *
1054 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1055 #endif
1056 l->l_cpticks = 0;
1057 }
1058 }
1059 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1060 mutex_spin_exit(&p->p_stmutex);
1061
1062 /*
1063 * Check if the process exceeds its CPU resource allocation.
1064 * If over max, kill it.
1065 */
1066 rlim = &p->p_rlimit[RLIMIT_CPU];
1067 sig = 0;
1068 if (runtm >= rlim->rlim_cur) {
1069 if (runtm >= rlim->rlim_max)
1070 sig = SIGKILL;
1071 else {
1072 sig = SIGXCPU;
1073 if (rlim->rlim_cur < rlim->rlim_max)
1074 rlim->rlim_cur += 5;
1075 }
1076 }
1077 mutex_exit(p->p_lock);
1078 if (sig)
1079 psignal(p, sig);
1080 }
1081 mutex_exit(proc_lock);
1082 uvm_meter();
1083 cv_wakeup(&lbolt);
1084 callout_schedule(&sched_pstats_ch, hz);
1085 }
1086
1087 void
1088 sched_init(void)
1089 {
1090
1091 cv_init(&lbolt, "lbolt");
1092 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
1093 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
1094
1095 /* Balancing */
1096 worker_ci = curcpu();
1097 cacheht_time = mstohz(5); /* ~5 ms */
1098 balance_period = mstohz(300); /* ~300ms */
1099
1100 /* Minimal count of LWPs for catching: log2(count of CPUs) */
1101 min_catch = min(ilog2(ncpu), 4);
1102
1103 /* Initialize balancing callout and run it */
1104 #ifdef MULTIPROCESSOR
1105 callout_init(&balance_ch, CALLOUT_MPSAFE);
1106 callout_setfunc(&balance_ch, sched_balance, NULL);
1107 callout_schedule(&balance_ch, balance_period);
1108 #endif
1109 sched_pstats(NULL);
1110 }
1111
1112 SYSCTL_SETUP(sysctl_sched_setup, "sysctl sched setup")
1113 {
1114 const struct sysctlnode *node = NULL;
1115
1116 sysctl_createv(clog, 0, NULL, NULL,
1117 CTLFLAG_PERMANENT,
1118 CTLTYPE_NODE, "kern", NULL,
1119 NULL, 0, NULL, 0,
1120 CTL_KERN, CTL_EOL);
1121 sysctl_createv(clog, 0, NULL, &node,
1122 CTLFLAG_PERMANENT,
1123 CTLTYPE_NODE, "sched",
1124 SYSCTL_DESCR("Scheduler options"),
1125 NULL, 0, NULL, 0,
1126 CTL_KERN, CTL_CREATE, CTL_EOL);
1127
1128 if (node == NULL)
1129 return;
1130
1131 sysctl_createv(clog, 0, &node, NULL,
1132 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1133 CTLTYPE_INT, "cacheht_time",
1134 SYSCTL_DESCR("Cache hotness time (in ticks)"),
1135 NULL, 0, &cacheht_time, 0,
1136 CTL_CREATE, CTL_EOL);
1137 sysctl_createv(clog, 0, &node, NULL,
1138 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1139 CTLTYPE_INT, "balance_period",
1140 SYSCTL_DESCR("Balance period (in ticks)"),
1141 NULL, 0, &balance_period, 0,
1142 CTL_CREATE, CTL_EOL);
1143 sysctl_createv(clog, 0, &node, NULL,
1144 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1145 CTLTYPE_INT, "min_catch",
1146 SYSCTL_DESCR("Minimal count of threads for catching"),
1147 NULL, 0, &min_catch, 0,
1148 CTL_CREATE, CTL_EOL);
1149 sysctl_createv(clog, 0, &node, NULL,
1150 CTLFLAG_READWRITE,
1151 CTLTYPE_INT, "timesoftints",
1152 SYSCTL_DESCR("Track CPU time for soft interrupts"),
1153 NULL, 0, &softint_timing, 0,
1154 CTL_CREATE, CTL_EOL);
1155 }
1156
1157 void
1158 sched_cpuattach(struct cpu_info *ci)
1159 {
1160 runqueue_t *ci_rq;
1161 void *rq_ptr;
1162 u_int i, size;
1163
1164 if (ci->ci_schedstate.spc_lwplock == NULL) {
1165 ci->ci_schedstate.spc_lwplock =
1166 mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1167 }
1168 if (ci == lwp0.l_cpu) {
1169 /* Initialize the scheduler structure of the primary LWP */
1170 lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
1171 }
1172 if (ci->ci_schedstate.spc_mutex != NULL) {
1173 /* Already initialized. */
1174 return;
1175 }
1176
1177 /* Allocate the run queue */
1178 size = roundup2(sizeof(runqueue_t), coherency_unit) + coherency_unit;
1179 rq_ptr = kmem_zalloc(size, KM_SLEEP);
1180 if (rq_ptr == NULL) {
1181 panic("sched_cpuattach: could not allocate the runqueue");
1182 }
1183 ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), coherency_unit));
1184
1185 /* Initialize run queues */
1186 ci->ci_schedstate.spc_mutex =
1187 mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1188 for (i = 0; i < PRI_RT_COUNT; i++)
1189 TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
1190 for (i = 0; i < PRI_TS_COUNT; i++)
1191 TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
1192
1193 ci->ci_schedstate.spc_sched_info = ci_rq;
1194 }
1195
1196 /*
1197 * Control of the runqueue.
1198 */
1199
1200 static void *
1201 sched_getrq(runqueue_t *ci_rq, const pri_t prio)
1202 {
1203
1204 KASSERT(prio < PRI_COUNT);
1205 return (prio <= PRI_HIGHEST_TS) ?
1206 &ci_rq->r_ts_queue[prio].q_head :
1207 &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
1208 }
1209
1210 void
1211 sched_enqueue(struct lwp *l, bool swtch)
1212 {
1213 runqueue_t *ci_rq;
1214 struct schedstate_percpu *spc;
1215 TAILQ_HEAD(, lwp) *q_head;
1216 const pri_t eprio = lwp_eprio(l);
1217 struct cpu_info *ci;
1218
1219 ci = l->l_cpu;
1220 spc = &ci->ci_schedstate;
1221 ci_rq = spc->spc_sched_info;
1222 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1223
1224 /* Update the last run time on switch */
1225 if (__predict_true(swtch == true)) {
1226 l->l_rticks = hardclock_ticks;
1227 l->l_rticksum += (hardclock_ticks - l->l_rticks);
1228 } else if (l->l_rticks == 0)
1229 l->l_rticks = hardclock_ticks;
1230
1231 /* Enqueue the thread */
1232 q_head = sched_getrq(ci_rq, eprio);
1233 if (TAILQ_EMPTY(q_head)) {
1234 u_int i;
1235 uint32_t q;
1236
1237 /* Mark bit */
1238 i = eprio >> BITMAP_SHIFT;
1239 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
1240 KASSERT((ci_rq->r_bitmap[i] & q) == 0);
1241 ci_rq->r_bitmap[i] |= q;
1242 }
1243 TAILQ_INSERT_TAIL(q_head, l, l_runq);
1244 ci_rq->r_count++;
1245 if ((l->l_pflag & LP_BOUND) == 0)
1246 ci_rq->r_mcount++;
1247
1248 /*
1249 * Update the value of highest priority in the runqueue,
1250 * if priority of this thread is higher.
1251 */
1252 if (eprio > spc->spc_maxpriority)
1253 spc->spc_maxpriority = eprio;
1254
1255 sched_newts(l);
1256
1257 /*
1258 * Wake the chosen CPU or cause a preemption if the newly
1259 * enqueued thread has higher priority. Don't cause a
1260 * preemption if the thread is yielding (swtch).
1261 */
1262 if (!swtch && eprio > spc->spc_curpriority) {
1263 cpu_need_resched(ci,
1264 (eprio >= PRI_KERNEL ? RESCHED_IMMED : 0));
1265 }
1266 }
1267
1268 void
1269 sched_dequeue(struct lwp *l)
1270 {
1271 runqueue_t *ci_rq;
1272 TAILQ_HEAD(, lwp) *q_head;
1273 struct schedstate_percpu *spc;
1274 const pri_t eprio = lwp_eprio(l);
1275
1276 spc = & l->l_cpu->ci_schedstate;
1277 ci_rq = spc->spc_sched_info;
1278 KASSERT(lwp_locked(l, spc->spc_mutex));
1279
1280 KASSERT(eprio <= spc->spc_maxpriority);
1281 KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
1282 KASSERT(ci_rq->r_count > 0);
1283
1284 ci_rq->r_count--;
1285 if ((l->l_pflag & LP_BOUND) == 0)
1286 ci_rq->r_mcount--;
1287
1288 q_head = sched_getrq(ci_rq, eprio);
1289 TAILQ_REMOVE(q_head, l, l_runq);
1290 if (TAILQ_EMPTY(q_head)) {
1291 u_int i;
1292 uint32_t q;
1293
1294 /* Unmark bit */
1295 i = eprio >> BITMAP_SHIFT;
1296 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
1297 KASSERT((ci_rq->r_bitmap[i] & q) != 0);
1298 ci_rq->r_bitmap[i] &= ~q;
1299
1300 /*
1301 * Update the value of highest priority in the runqueue, in a
1302 * case it was a last thread in the queue of highest priority.
1303 */
1304 if (eprio != spc->spc_maxpriority)
1305 return;
1306
1307 do {
1308 if (ci_rq->r_bitmap[i] != 0) {
1309 q = ffs(ci_rq->r_bitmap[i]);
1310 spc->spc_maxpriority =
1311 (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
1312 return;
1313 }
1314 } while (i--);
1315
1316 /* If not found - set the lowest value */
1317 spc->spc_maxpriority = 0;
1318 }
1319 }
1320
1321 /*
1322 * Migration and balancing.
1323 */
1324
1325 #ifdef MULTIPROCESSOR
1326
1327 /* Estimate if LWP is cache-hot */
1328 static inline bool
1329 lwp_cache_hot(const struct lwp *l)
1330 {
1331
1332 if (l->l_slptime || l->l_rticks == 0)
1333 return false;
1334
1335 return (hardclock_ticks - l->l_rticks <= cacheht_time);
1336 }
1337
1338 /* Check if LWP can migrate to the chosen CPU */
1339 static inline bool
1340 sched_migratable(const struct lwp *l, struct cpu_info *ci)
1341 {
1342 const struct schedstate_percpu *spc = &ci->ci_schedstate;
1343
1344 /* CPU is offline */
1345 if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
1346 return false;
1347
1348 /* Affinity bind */
1349 if (__predict_false(l->l_flag & LW_AFFINITY))
1350 return CPU_ISSET(cpu_index(ci), &l->l_affinity);
1351
1352 /* Processor-set */
1353 return (spc->spc_psid == l->l_psid);
1354 }
1355
1356 /*
1357 * Estimate the migration of LWP to the other CPU.
1358 * Take and return the CPU, if migration is needed.
1359 */
1360 struct cpu_info *
1361 sched_takecpu(struct lwp *l)
1362 {
1363 struct cpu_info *ci, *tci, *first, *next;
1364 struct schedstate_percpu *spc;
1365 runqueue_t *ci_rq, *ici_rq;
1366 pri_t eprio, lpri, pri;
1367
1368 KASSERT(lwp_locked(l, NULL));
1369
1370 ci = l->l_cpu;
1371 spc = &ci->ci_schedstate;
1372 ci_rq = spc->spc_sched_info;
1373
1374 /* If thread is strictly bound, do not estimate other CPUs */
1375 if (l->l_pflag & LP_BOUND)
1376 return ci;
1377
1378 /* CPU of this thread is idling - run there */
1379 if (ci_rq->r_count == 0)
1380 return ci;
1381
1382 eprio = lwp_eprio(l);
1383
1384 /* Stay if thread is cache-hot */
1385 if (__predict_true(l->l_stat != LSIDL) &&
1386 lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
1387 return ci;
1388
1389 /* Run on current CPU if priority of thread is higher */
1390 ci = curcpu();
1391 spc = &ci->ci_schedstate;
1392 if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
1393 return ci;
1394
1395 /*
1396 * Look for the CPU with the lowest priority thread. In case of
1397 * equal priority, choose the CPU with the fewest of threads.
1398 */
1399 first = l->l_cpu;
1400 ci = first;
1401 tci = first;
1402 lpri = PRI_COUNT;
1403 do {
1404 next = CIRCLEQ_LOOP_NEXT(&cpu_queue, ci, ci_data.cpu_qchain);
1405 spc = &ci->ci_schedstate;
1406 ici_rq = spc->spc_sched_info;
1407 pri = max(spc->spc_curpriority, spc->spc_maxpriority);
1408 if (pri > lpri)
1409 continue;
1410
1411 if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
1412 continue;
1413
1414 if (!sched_migratable(l, ci))
1415 continue;
1416
1417 lpri = pri;
1418 tci = ci;
1419 ci_rq = ici_rq;
1420 } while (ci = next, ci != first);
1421
1422 return tci;
1423 }
1424
1425 /*
1426 * Tries to catch an LWP from the runqueue of other CPU.
1427 */
1428 static struct lwp *
1429 sched_catchlwp(void)
1430 {
1431 struct cpu_info *curci = curcpu(), *ci = worker_ci;
1432 struct schedstate_percpu *spc;
1433 TAILQ_HEAD(, lwp) *q_head;
1434 runqueue_t *ci_rq;
1435 struct lwp *l;
1436
1437 if (curci == ci)
1438 return NULL;
1439
1440 /* Lockless check */
1441 spc = &ci->ci_schedstate;
1442 ci_rq = spc->spc_sched_info;
1443 if (ci_rq->r_mcount < min_catch)
1444 return NULL;
1445
1446 /*
1447 * Double-lock the runqueues.
1448 */
1449 if (curci < ci) {
1450 spc_lock(ci);
1451 } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
1452 const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
1453
1454 spc_unlock(curci);
1455 spc_lock(ci);
1456 spc_lock(curci);
1457
1458 if (cur_rq->r_count) {
1459 spc_unlock(ci);
1460 return NULL;
1461 }
1462 }
1463
1464 if (ci_rq->r_mcount < min_catch) {
1465 spc_unlock(ci);
1466 return NULL;
1467 }
1468
1469 /* Take the highest priority thread */
1470 q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
1471 l = TAILQ_FIRST(q_head);
1472
1473 for (;;) {
1474 /* Check the first and next result from the queue */
1475 if (l == NULL)
1476 break;
1477 KASSERT(l->l_stat == LSRUN);
1478 KASSERT(l->l_flag & LW_INMEM);
1479
1480 /* Look for threads, whose are allowed to migrate */
1481 if ((l->l_pflag & LP_BOUND) || lwp_cache_hot(l) ||
1482 !sched_migratable(l, curci)) {
1483 l = TAILQ_NEXT(l, l_runq);
1484 continue;
1485 }
1486
1487 /* Grab the thread, and move to the local run queue */
1488 sched_dequeue(l);
1489 l->l_cpu = curci;
1490 lwp_unlock_to(l, curci->ci_schedstate.spc_mutex);
1491 sched_enqueue(l, false);
1492 return l;
1493 }
1494 spc_unlock(ci);
1495
1496 return l;
1497 }
1498
1499 /*
1500 * Periodical calculations for balancing.
1501 */
1502 static void
1503 sched_balance(void *nocallout)
1504 {
1505 struct cpu_info *ci, *hci;
1506 runqueue_t *ci_rq;
1507 CPU_INFO_ITERATOR cii;
1508 u_int highest;
1509
1510 hci = curcpu();
1511 highest = 0;
1512
1513 /* Make lockless countings */
1514 for (CPU_INFO_FOREACH(cii, ci)) {
1515 ci_rq = ci->ci_schedstate.spc_sched_info;
1516
1517 /* Average count of the threads */
1518 ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
1519
1520 /* Look for CPU with the highest average */
1521 if (ci_rq->r_avgcount > highest) {
1522 hci = ci;
1523 highest = ci_rq->r_avgcount;
1524 }
1525 }
1526
1527 /* Update the worker */
1528 worker_ci = hci;
1529
1530 if (nocallout == NULL)
1531 callout_schedule(&balance_ch, balance_period);
1532 }
1533
1534 #else
1535
1536 struct cpu_info *
1537 sched_takecpu(struct lwp *l)
1538 {
1539
1540 return l->l_cpu;
1541 }
1542
1543 #endif /* MULTIPROCESSOR */
1544
1545 /*
1546 * Scheduler mill.
1547 */
1548 struct lwp *
1549 sched_nextlwp(void)
1550 {
1551 struct cpu_info *ci = curcpu();
1552 struct schedstate_percpu *spc;
1553 TAILQ_HEAD(, lwp) *q_head;
1554 runqueue_t *ci_rq;
1555 struct lwp *l;
1556
1557 spc = &ci->ci_schedstate;
1558 ci_rq = spc->spc_sched_info;
1559
1560 #ifdef MULTIPROCESSOR
1561 /* If runqueue is empty, try to catch some thread from other CPU */
1562 if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
1563 if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
1564 return NULL;
1565 } else if (ci_rq->r_count == 0) {
1566 /* Reset the counter, and call the balancer */
1567 ci_rq->r_avgcount = 0;
1568 sched_balance(ci);
1569
1570 /* The re-locking will be done inside */
1571 return sched_catchlwp();
1572 }
1573 #else
1574 if (ci_rq->r_count == 0)
1575 return NULL;
1576 #endif
1577
1578 /* Take the highest priority thread */
1579 KASSERT(ci_rq->r_bitmap[spc->spc_maxpriority >> BITMAP_SHIFT]);
1580 q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
1581 l = TAILQ_FIRST(q_head);
1582 KASSERT(l != NULL);
1583
1584 sched_oncpu(l);
1585 l->l_rticks = hardclock_ticks;
1586
1587 return l;
1588 }
1589
1590 bool
1591 sched_curcpu_runnable_p(void)
1592 {
1593 const struct cpu_info *ci = curcpu();
1594 const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
1595
1596 #ifndef __HAVE_FAST_SOFTINTS
1597 if (ci->ci_data.cpu_softints)
1598 return true;
1599 #endif
1600
1601 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
1602 return (ci_rq->r_count - ci_rq->r_mcount);
1603
1604 return ci_rq->r_count;
1605 }
1606
1607 /*
1608 * Debugging.
1609 */
1610
1611 #ifdef DDB
1612
1613 void
1614 sched_print_runqueue(void (*pr)(const char *, ...)
1615 __attribute__((__format__(__printf__,1,2))))
1616 {
1617 runqueue_t *ci_rq;
1618 struct schedstate_percpu *spc;
1619 struct lwp *l;
1620 struct proc *p;
1621 int i;
1622 struct cpu_info *ci;
1623 CPU_INFO_ITERATOR cii;
1624
1625 for (CPU_INFO_FOREACH(cii, ci)) {
1626 spc = &ci->ci_schedstate;
1627 ci_rq = spc->spc_sched_info;
1628
1629 (*pr)("Run-queue (CPU = %u):\n", ci->ci_index);
1630 (*pr)(" pid.lid = %d.%d, threads count = %u, "
1631 "avgcount = %u, highest pri = %d\n",
1632 #ifdef MULTIPROCESSOR
1633 ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1634 #else
1635 curlwp->l_proc->p_pid, curlwp->l_lid,
1636 #endif
1637 ci_rq->r_count, ci_rq->r_avgcount, spc->spc_maxpriority);
1638 i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1639 do {
1640 uint32_t q;
1641 q = ci_rq->r_bitmap[i];
1642 (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1643 } while (i--);
1644 }
1645
1646 (*pr)(" %5s %4s %4s %10s %3s %18s %4s %s\n",
1647 "LID", "PRI", "EPRI", "FL", "ST", "LWP", "CPU", "LRTIME");
1648
1649 PROCLIST_FOREACH(p, &allproc) {
1650 (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1651 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1652 ci = l->l_cpu;
1653 (*pr)(" | %5d %4u %4u 0x%8.8x %3s %18p %4u %u\n",
1654 (int)l->l_lid, l->l_priority, lwp_eprio(l),
1655 l->l_flag, l->l_stat == LSRUN ? "RQ" :
1656 (l->l_stat == LSSLEEP ? "SQ" : "-"),
1657 l, ci->ci_index,
1658 (u_int)(hardclock_ticks - l->l_rticks));
1659 }
1660 }
1661 }
1662
1663 #endif
1664