kern_synch.c revision 1.230.2.5 1 /* $NetBSD: kern_synch.c,v 1.230.2.5 2010/03/11 15:04:17 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.230.2.5 2010/03/11 15:04:17 yamt Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_sa.h"
77 #include "opt_dtrace.h"
78
79 #define __MUTEX_PRIVATE
80
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84 #include <sys/kernel.h>
85 #if defined(PERFCTRS)
86 #include <sys/pmc.h>
87 #endif
88 #include <sys/cpu.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/sa.h>
92 #include <sys/savar.h>
93 #include <sys/syscall_stats.h>
94 #include <sys/sleepq.h>
95 #include <sys/lockdebug.h>
96 #include <sys/evcnt.h>
97 #include <sys/intr.h>
98 #include <sys/lwpctl.h>
99 #include <sys/atomic.h>
100 #include <sys/simplelock.h>
101
102 #include <uvm/uvm_extern.h>
103
104 #include <dev/lockstat.h>
105
106 #include <sys/dtrace_bsd.h>
107 int dtrace_vtime_active=0;
108 dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
109
110 static void sched_unsleep(struct lwp *, bool);
111 static void sched_changepri(struct lwp *, pri_t);
112 static void sched_lendpri(struct lwp *, pri_t);
113 static void resched_cpu(struct lwp *);
114
115 syncobj_t sleep_syncobj = {
116 SOBJ_SLEEPQ_SORTED,
117 sleepq_unsleep,
118 sleepq_changepri,
119 sleepq_lendpri,
120 syncobj_noowner,
121 };
122
123 syncobj_t sched_syncobj = {
124 SOBJ_SLEEPQ_SORTED,
125 sched_unsleep,
126 sched_changepri,
127 sched_lendpri,
128 syncobj_noowner,
129 };
130
131 callout_t sched_pstats_ch;
132 unsigned sched_pstats_ticks;
133 kcondvar_t lbolt; /* once a second sleep address */
134
135 /* Preemption event counters */
136 static struct evcnt kpreempt_ev_crit;
137 static struct evcnt kpreempt_ev_klock;
138 static struct evcnt kpreempt_ev_immed;
139
140 /*
141 * During autoconfiguration or after a panic, a sleep will simply lower the
142 * priority briefly to allow interrupts, then return. The priority to be
143 * used (safepri) is machine-dependent, thus this value is initialized and
144 * maintained in the machine-dependent layers. This priority will typically
145 * be 0, or the lowest priority that is safe for use on the interrupt stack;
146 * it can be made higher to block network software interrupts after panics.
147 */
148 int safepri;
149
150 void
151 synch_init(void)
152 {
153
154 cv_init(&lbolt, "lbolt");
155 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
156 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
157
158 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
159 "kpreempt", "defer: critical section");
160 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
161 "kpreempt", "defer: kernel_lock");
162 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
163 "kpreempt", "immediate");
164
165 sched_pstats(NULL);
166 }
167
168 /*
169 * OBSOLETE INTERFACE
170 *
171 * General sleep call. Suspends the current LWP until a wakeup is
172 * performed on the specified identifier. The LWP will then be made
173 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
174 * means no timeout). If pri includes PCATCH flag, signals are checked
175 * before and after sleeping, else signals are not checked. Returns 0 if
176 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
177 * signal needs to be delivered, ERESTART is returned if the current system
178 * call should be restarted if possible, and EINTR is returned if the system
179 * call should be interrupted by the signal (return EINTR).
180 *
181 * The interlock is held until we are on a sleep queue. The interlock will
182 * be locked before returning back to the caller unless the PNORELOCK flag
183 * is specified, in which case the interlock will always be unlocked upon
184 * return.
185 */
186 int
187 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
188 volatile struct simplelock *interlock)
189 {
190 struct lwp *l = curlwp;
191 sleepq_t *sq;
192 kmutex_t *mp;
193 int error;
194
195 KASSERT((l->l_pflag & LP_INTR) == 0);
196 KASSERT(ident != &lbolt);
197
198 if (sleepq_dontsleep(l)) {
199 (void)sleepq_abort(NULL, 0);
200 if ((priority & PNORELOCK) != 0)
201 simple_unlock(interlock);
202 return 0;
203 }
204
205 l->l_kpriority = true;
206 sq = sleeptab_lookup(&sleeptab, ident, &mp);
207 sleepq_enter(sq, l, mp);
208 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
209
210 if (interlock != NULL) {
211 KASSERT(simple_lock_held(interlock));
212 simple_unlock(interlock);
213 }
214
215 error = sleepq_block(timo, priority & PCATCH);
216
217 if (interlock != NULL && (priority & PNORELOCK) == 0)
218 simple_lock(interlock);
219
220 return error;
221 }
222
223 int
224 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
225 kmutex_t *mtx)
226 {
227 struct lwp *l = curlwp;
228 sleepq_t *sq;
229 kmutex_t *mp;
230 int error;
231
232 KASSERT((l->l_pflag & LP_INTR) == 0);
233 KASSERT(ident != &lbolt);
234
235 if (sleepq_dontsleep(l)) {
236 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
237 return 0;
238 }
239
240 l->l_kpriority = true;
241 sq = sleeptab_lookup(&sleeptab, ident, &mp);
242 sleepq_enter(sq, l, mp);
243 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
244 mutex_exit(mtx);
245 error = sleepq_block(timo, priority & PCATCH);
246
247 if ((priority & PNORELOCK) == 0)
248 mutex_enter(mtx);
249
250 return error;
251 }
252
253 /*
254 * General sleep call for situations where a wake-up is not expected.
255 */
256 int
257 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
258 {
259 struct lwp *l = curlwp;
260 kmutex_t *mp;
261 sleepq_t *sq;
262 int error;
263
264 if (sleepq_dontsleep(l))
265 return sleepq_abort(NULL, 0);
266
267 if (mtx != NULL)
268 mutex_exit(mtx);
269 l->l_kpriority = true;
270 sq = sleeptab_lookup(&sleeptab, l, &mp);
271 sleepq_enter(sq, l, mp);
272 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
273 error = sleepq_block(timo, intr);
274 if (mtx != NULL)
275 mutex_enter(mtx);
276
277 return error;
278 }
279
280 #ifdef KERN_SA
281 /*
282 * sa_awaken:
283 *
284 * We believe this lwp is an SA lwp. If it's yielding,
285 * let it know it needs to wake up.
286 *
287 * We are called and exit with the lwp locked. We are
288 * called in the middle of wakeup operations, so we need
289 * to not touch the locks at all.
290 */
291 void
292 sa_awaken(struct lwp *l)
293 {
294 /* LOCK_ASSERT(lwp_locked(l, NULL)); */
295
296 if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
297 l->l_flag &= ~LW_SA_IDLE;
298 }
299 #endif /* KERN_SA */
300
301 /*
302 * OBSOLETE INTERFACE
303 *
304 * Make all LWPs sleeping on the specified identifier runnable.
305 */
306 void
307 wakeup(wchan_t ident)
308 {
309 sleepq_t *sq;
310 kmutex_t *mp;
311
312 if (__predict_false(cold))
313 return;
314
315 sq = sleeptab_lookup(&sleeptab, ident, &mp);
316 sleepq_wake(sq, ident, (u_int)-1, mp);
317 }
318
319 /*
320 * OBSOLETE INTERFACE
321 *
322 * Make the highest priority LWP first in line on the specified
323 * identifier runnable.
324 */
325 void
326 wakeup_one(wchan_t ident)
327 {
328 sleepq_t *sq;
329 kmutex_t *mp;
330
331 if (__predict_false(cold))
332 return;
333
334 sq = sleeptab_lookup(&sleeptab, ident, &mp);
335 sleepq_wake(sq, ident, 1, mp);
336 }
337
338
339 /*
340 * General yield call. Puts the current LWP back on its run queue and
341 * performs a voluntary context switch. Should only be called when the
342 * current LWP explicitly requests it (eg sched_yield(2)).
343 */
344 void
345 yield(void)
346 {
347 struct lwp *l = curlwp;
348
349 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
350 lwp_lock(l);
351 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
352 KASSERT(l->l_stat == LSONPROC);
353 l->l_kpriority = false;
354 (void)mi_switch(l);
355 KERNEL_LOCK(l->l_biglocks, l);
356 }
357
358 /*
359 * General preemption call. Puts the current LWP back on its run queue
360 * and performs an involuntary context switch.
361 */
362 void
363 preempt(void)
364 {
365 struct lwp *l = curlwp;
366
367 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
368 lwp_lock(l);
369 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
370 KASSERT(l->l_stat == LSONPROC);
371 l->l_kpriority = false;
372 l->l_nivcsw++;
373 (void)mi_switch(l);
374 KERNEL_LOCK(l->l_biglocks, l);
375 }
376
377 /*
378 * Handle a request made by another agent to preempt the current LWP
379 * in-kernel. Usually called when l_dopreempt may be non-zero.
380 *
381 * Character addresses for lockstat only.
382 */
383 static char in_critical_section;
384 static char kernel_lock_held;
385 static char is_softint;
386 static char cpu_kpreempt_enter_fail;
387
388 bool
389 kpreempt(uintptr_t where)
390 {
391 uintptr_t failed;
392 lwp_t *l;
393 int s, dop, lsflag;
394
395 l = curlwp;
396 failed = 0;
397 while ((dop = l->l_dopreempt) != 0) {
398 if (l->l_stat != LSONPROC) {
399 /*
400 * About to block (or die), let it happen.
401 * Doesn't really count as "preemption has
402 * been blocked", since we're going to
403 * context switch.
404 */
405 l->l_dopreempt = 0;
406 return true;
407 }
408 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
409 /* Can't preempt idle loop, don't count as failure. */
410 l->l_dopreempt = 0;
411 return true;
412 }
413 if (__predict_false(l->l_nopreempt != 0)) {
414 /* LWP holds preemption disabled, explicitly. */
415 if ((dop & DOPREEMPT_COUNTED) == 0) {
416 kpreempt_ev_crit.ev_count++;
417 }
418 failed = (uintptr_t)&in_critical_section;
419 break;
420 }
421 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
422 /* Can't preempt soft interrupts yet. */
423 l->l_dopreempt = 0;
424 failed = (uintptr_t)&is_softint;
425 break;
426 }
427 s = splsched();
428 if (__predict_false(l->l_blcnt != 0 ||
429 curcpu()->ci_biglock_wanted != NULL)) {
430 /* Hold or want kernel_lock, code is not MT safe. */
431 splx(s);
432 if ((dop & DOPREEMPT_COUNTED) == 0) {
433 kpreempt_ev_klock.ev_count++;
434 }
435 failed = (uintptr_t)&kernel_lock_held;
436 break;
437 }
438 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
439 /*
440 * It may be that the IPL is too high.
441 * kpreempt_enter() can schedule an
442 * interrupt to retry later.
443 */
444 splx(s);
445 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
446 break;
447 }
448 /* Do it! */
449 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
450 kpreempt_ev_immed.ev_count++;
451 }
452 lwp_lock(l);
453 mi_switch(l);
454 l->l_nopreempt++;
455 splx(s);
456
457 /* Take care of any MD cleanup. */
458 cpu_kpreempt_exit(where);
459 l->l_nopreempt--;
460 }
461
462 if (__predict_true(!failed)) {
463 return false;
464 }
465
466 /* Record preemption failure for reporting via lockstat. */
467 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
468 lsflag = 0;
469 LOCKSTAT_ENTER(lsflag);
470 if (__predict_false(lsflag)) {
471 if (where == 0) {
472 where = (uintptr_t)__builtin_return_address(0);
473 }
474 /* Preemption is on, might recurse, so make it atomic. */
475 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
476 (void *)where) == NULL) {
477 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
478 l->l_pfaillock = failed;
479 }
480 }
481 LOCKSTAT_EXIT(lsflag);
482 return true;
483 }
484
485 /*
486 * Return true if preemption is explicitly disabled.
487 */
488 bool
489 kpreempt_disabled(void)
490 {
491 const lwp_t *l = curlwp;
492
493 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
494 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
495 }
496
497 /*
498 * Disable kernel preemption.
499 */
500 void
501 kpreempt_disable(void)
502 {
503
504 KPREEMPT_DISABLE(curlwp);
505 }
506
507 /*
508 * Reenable kernel preemption.
509 */
510 void
511 kpreempt_enable(void)
512 {
513
514 KPREEMPT_ENABLE(curlwp);
515 }
516
517 /*
518 * Compute the amount of time during which the current lwp was running.
519 *
520 * - update l_rtime unless it's an idle lwp.
521 */
522
523 void
524 updatertime(lwp_t *l, const struct bintime *now)
525 {
526
527 if (__predict_false(l->l_flag & LW_IDLE))
528 return;
529
530 /* rtime += now - stime */
531 bintime_add(&l->l_rtime, now);
532 bintime_sub(&l->l_rtime, &l->l_stime);
533 }
534
535 /*
536 * Select next LWP from the current CPU to run..
537 */
538 static inline lwp_t *
539 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
540 {
541 lwp_t *newl;
542
543 /*
544 * Let sched_nextlwp() select the LWP to run the CPU next.
545 * If no LWP is runnable, select the idle LWP.
546 *
547 * Note that spc_lwplock might not necessary be held, and
548 * new thread would be unlocked after setting the LWP-lock.
549 */
550 newl = sched_nextlwp();
551 if (newl != NULL) {
552 sched_dequeue(newl);
553 KASSERT(lwp_locked(newl, spc->spc_mutex));
554 KASSERT(newl->l_cpu == ci);
555 newl->l_stat = LSONPROC;
556 newl->l_pflag |= LP_RUNNING;
557 lwp_setlock(newl, spc->spc_lwplock);
558 } else {
559 newl = ci->ci_data.cpu_idlelwp;
560 newl->l_stat = LSONPROC;
561 newl->l_pflag |= LP_RUNNING;
562 }
563
564 /*
565 * Only clear want_resched if there are no pending (slow)
566 * software interrupts.
567 */
568 ci->ci_want_resched = ci->ci_data.cpu_softints;
569 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
570 spc->spc_curpriority = lwp_eprio(newl);
571
572 return newl;
573 }
574
575 /*
576 * The machine independent parts of context switch.
577 *
578 * Returns 1 if another LWP was actually run.
579 */
580 int
581 mi_switch(lwp_t *l)
582 {
583 struct cpu_info *ci;
584 struct schedstate_percpu *spc;
585 struct lwp *newl;
586 int retval, oldspl;
587 struct bintime bt;
588 bool returning;
589
590 KASSERT(lwp_locked(l, NULL));
591 KASSERT(kpreempt_disabled());
592 LOCKDEBUG_BARRIER(l->l_mutex, 1);
593
594 kstack_check_magic(l);
595
596 binuptime(&bt);
597
598 KASSERT((l->l_pflag & LP_RUNNING) != 0);
599 KASSERT(l->l_cpu == curcpu());
600 ci = l->l_cpu;
601 spc = &ci->ci_schedstate;
602 returning = false;
603 newl = NULL;
604
605 /*
606 * If we have been asked to switch to a specific LWP, then there
607 * is no need to inspect the run queues. If a soft interrupt is
608 * blocking, then return to the interrupted thread without adjusting
609 * VM context or its start time: neither have been changed in order
610 * to take the interrupt.
611 */
612 if (l->l_switchto != NULL) {
613 if ((l->l_pflag & LP_INTR) != 0) {
614 returning = true;
615 softint_block(l);
616 if ((l->l_pflag & LP_TIMEINTR) != 0)
617 updatertime(l, &bt);
618 }
619 newl = l->l_switchto;
620 l->l_switchto = NULL;
621 }
622 #ifndef __HAVE_FAST_SOFTINTS
623 else if (ci->ci_data.cpu_softints != 0) {
624 /* There are pending soft interrupts, so pick one. */
625 newl = softint_picklwp();
626 newl->l_stat = LSONPROC;
627 newl->l_pflag |= LP_RUNNING;
628 }
629 #endif /* !__HAVE_FAST_SOFTINTS */
630
631 /* Count time spent in current system call */
632 if (!returning) {
633 SYSCALL_TIME_SLEEP(l);
634
635 /*
636 * XXXSMP If we are using h/w performance counters,
637 * save context.
638 */
639 #if PERFCTRS
640 if (PMC_ENABLED(l->l_proc)) {
641 pmc_save_context(l->l_proc);
642 }
643 #endif
644 updatertime(l, &bt);
645 }
646
647 /* Lock the runqueue */
648 KASSERT(l->l_stat != LSRUN);
649 mutex_spin_enter(spc->spc_mutex);
650
651 /*
652 * If on the CPU and we have gotten this far, then we must yield.
653 */
654 if (l->l_stat == LSONPROC && l != newl) {
655 KASSERT(lwp_locked(l, spc->spc_lwplock));
656 if ((l->l_flag & LW_IDLE) == 0) {
657 l->l_stat = LSRUN;
658 lwp_setlock(l, spc->spc_mutex);
659 sched_enqueue(l, true);
660 /* Handle migration case */
661 KASSERT(spc->spc_migrating == NULL);
662 if (l->l_target_cpu != NULL) {
663 spc->spc_migrating = l;
664 }
665 } else
666 l->l_stat = LSIDL;
667 }
668
669 /* Pick new LWP to run. */
670 if (newl == NULL) {
671 newl = nextlwp(ci, spc);
672 }
673
674 /* Items that must be updated with the CPU locked. */
675 if (!returning) {
676 /* Update the new LWP's start time. */
677 newl->l_stime = bt;
678
679 /*
680 * ci_curlwp changes when a fast soft interrupt occurs.
681 * We use cpu_onproc to keep track of which kernel or
682 * user thread is running 'underneath' the software
683 * interrupt. This is important for time accounting,
684 * itimers and forcing user threads to preempt (aston).
685 */
686 ci->ci_data.cpu_onproc = newl;
687 }
688
689 /*
690 * Preemption related tasks. Must be done with the current
691 * CPU locked.
692 */
693 cpu_did_resched(l);
694 l->l_dopreempt = 0;
695 if (__predict_false(l->l_pfailaddr != 0)) {
696 LOCKSTAT_FLAG(lsflag);
697 LOCKSTAT_ENTER(lsflag);
698 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
699 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
700 1, l->l_pfailtime, l->l_pfailaddr);
701 LOCKSTAT_EXIT(lsflag);
702 l->l_pfailtime = 0;
703 l->l_pfaillock = 0;
704 l->l_pfailaddr = 0;
705 }
706
707 if (l != newl) {
708 struct lwp *prevlwp;
709
710 /* Release all locks, but leave the current LWP locked */
711 if (l->l_mutex == spc->spc_mutex) {
712 /*
713 * Drop spc_lwplock, if the current LWP has been moved
714 * to the run queue (it is now locked by spc_mutex).
715 */
716 mutex_spin_exit(spc->spc_lwplock);
717 } else {
718 /*
719 * Otherwise, drop the spc_mutex, we are done with the
720 * run queues.
721 */
722 mutex_spin_exit(spc->spc_mutex);
723 }
724
725 /*
726 * Mark that context switch is going to be performed
727 * for this LWP, to protect it from being switched
728 * to on another CPU.
729 */
730 KASSERT(l->l_ctxswtch == 0);
731 l->l_ctxswtch = 1;
732 l->l_ncsw++;
733 KASSERT((l->l_pflag & LP_RUNNING) != 0);
734 l->l_pflag &= ~LP_RUNNING;
735
736 /*
737 * Increase the count of spin-mutexes before the release
738 * of the last lock - we must remain at IPL_SCHED during
739 * the context switch.
740 */
741 oldspl = MUTEX_SPIN_OLDSPL(ci);
742 ci->ci_mtx_count--;
743 lwp_unlock(l);
744
745 /* Count the context switch on this CPU. */
746 ci->ci_data.cpu_nswtch++;
747
748 /* Update status for lwpctl, if present. */
749 if (l->l_lwpctl != NULL)
750 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
751
752 /*
753 * Save old VM context, unless a soft interrupt
754 * handler is blocking.
755 */
756 if (!returning)
757 pmap_deactivate(l);
758
759 /*
760 * We may need to spin-wait if 'newl' is still
761 * context switching on another CPU.
762 */
763 if (__predict_false(newl->l_ctxswtch != 0)) {
764 u_int count;
765 count = SPINLOCK_BACKOFF_MIN;
766 while (newl->l_ctxswtch)
767 SPINLOCK_BACKOFF(count);
768 }
769
770 /*
771 * If DTrace has set the active vtime enum to anything
772 * other than INACTIVE (0), then it should have set the
773 * function to call.
774 */
775 if (__predict_false(dtrace_vtime_active)) {
776 (*dtrace_vtime_switch_func)(newl);
777 }
778
779 /* Switch to the new LWP.. */
780 prevlwp = cpu_switchto(l, newl, returning);
781 ci = curcpu();
782
783 /*
784 * Switched away - we have new curlwp.
785 * Restore VM context and IPL.
786 */
787 pmap_activate(l);
788 uvm_emap_switch(l);
789
790 if (prevlwp != NULL) {
791 /* Normalize the count of the spin-mutexes */
792 ci->ci_mtx_count++;
793 /* Unmark the state of context switch */
794 membar_exit();
795 prevlwp->l_ctxswtch = 0;
796 }
797
798 /* Update status for lwpctl, if present. */
799 if (l->l_lwpctl != NULL) {
800 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
801 l->l_lwpctl->lc_pctr++;
802 }
803
804 KASSERT(l->l_cpu == ci);
805 splx(oldspl);
806 retval = 1;
807 } else {
808 /* Nothing to do - just unlock and return. */
809 mutex_spin_exit(spc->spc_mutex);
810 lwp_unlock(l);
811 retval = 0;
812 }
813
814 KASSERT(l == curlwp);
815 KASSERT(l->l_stat == LSONPROC);
816
817 /*
818 * XXXSMP If we are using h/w performance counters, restore context.
819 * XXXSMP preemption problem.
820 */
821 #if PERFCTRS
822 if (PMC_ENABLED(l->l_proc)) {
823 pmc_restore_context(l->l_proc);
824 }
825 #endif
826 SYSCALL_TIME_WAKEUP(l);
827 LOCKDEBUG_BARRIER(NULL, 1);
828
829 return retval;
830 }
831
832 /*
833 * The machine independent parts of context switch to oblivion.
834 * Does not return. Call with the LWP unlocked.
835 */
836 void
837 lwp_exit_switchaway(lwp_t *l)
838 {
839 struct cpu_info *ci;
840 struct lwp *newl;
841 struct bintime bt;
842
843 ci = l->l_cpu;
844
845 KASSERT(kpreempt_disabled());
846 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
847 KASSERT(ci == curcpu());
848 LOCKDEBUG_BARRIER(NULL, 0);
849
850 kstack_check_magic(l);
851
852 /* Count time spent in current system call */
853 SYSCALL_TIME_SLEEP(l);
854 binuptime(&bt);
855 updatertime(l, &bt);
856
857 /* Must stay at IPL_SCHED even after releasing run queue lock. */
858 (void)splsched();
859
860 /*
861 * Let sched_nextlwp() select the LWP to run the CPU next.
862 * If no LWP is runnable, select the idle LWP.
863 *
864 * Note that spc_lwplock might not necessary be held, and
865 * new thread would be unlocked after setting the LWP-lock.
866 */
867 spc_lock(ci);
868 #ifndef __HAVE_FAST_SOFTINTS
869 if (ci->ci_data.cpu_softints != 0) {
870 /* There are pending soft interrupts, so pick one. */
871 newl = softint_picklwp();
872 newl->l_stat = LSONPROC;
873 newl->l_pflag |= LP_RUNNING;
874 } else
875 #endif /* !__HAVE_FAST_SOFTINTS */
876 {
877 newl = nextlwp(ci, &ci->ci_schedstate);
878 }
879
880 /* Update the new LWP's start time. */
881 newl->l_stime = bt;
882 l->l_pflag &= ~LP_RUNNING;
883
884 /*
885 * ci_curlwp changes when a fast soft interrupt occurs.
886 * We use cpu_onproc to keep track of which kernel or
887 * user thread is running 'underneath' the software
888 * interrupt. This is important for time accounting,
889 * itimers and forcing user threads to preempt (aston).
890 */
891 ci->ci_data.cpu_onproc = newl;
892
893 /*
894 * Preemption related tasks. Must be done with the current
895 * CPU locked.
896 */
897 cpu_did_resched(l);
898
899 /* Unlock the run queue. */
900 spc_unlock(ci);
901
902 /* Count the context switch on this CPU. */
903 ci->ci_data.cpu_nswtch++;
904
905 /* Update status for lwpctl, if present. */
906 if (l->l_lwpctl != NULL)
907 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
908
909 /*
910 * We may need to spin-wait if 'newl' is still
911 * context switching on another CPU.
912 */
913 if (__predict_false(newl->l_ctxswtch != 0)) {
914 u_int count;
915 count = SPINLOCK_BACKOFF_MIN;
916 while (newl->l_ctxswtch)
917 SPINLOCK_BACKOFF(count);
918 }
919
920 /*
921 * If DTrace has set the active vtime enum to anything
922 * other than INACTIVE (0), then it should have set the
923 * function to call.
924 */
925 if (__predict_false(dtrace_vtime_active)) {
926 (*dtrace_vtime_switch_func)(newl);
927 }
928
929 /* Switch to the new LWP.. */
930 (void)cpu_switchto(NULL, newl, false);
931
932 for (;;) continue; /* XXX: convince gcc about "noreturn" */
933 /* NOTREACHED */
934 }
935
936 /*
937 * setrunnable: change LWP state to be runnable, placing it on the run queue.
938 *
939 * Call with the process and LWP locked. Will return with the LWP unlocked.
940 */
941 void
942 setrunnable(struct lwp *l)
943 {
944 struct proc *p = l->l_proc;
945 struct cpu_info *ci;
946
947 KASSERT((l->l_flag & LW_IDLE) == 0);
948 KASSERT(mutex_owned(p->p_lock));
949 KASSERT(lwp_locked(l, NULL));
950 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
951
952 switch (l->l_stat) {
953 case LSSTOP:
954 /*
955 * If we're being traced (possibly because someone attached us
956 * while we were stopped), check for a signal from the debugger.
957 */
958 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
959 signotify(l);
960 p->p_nrlwps++;
961 break;
962 case LSSUSPENDED:
963 l->l_flag &= ~LW_WSUSPEND;
964 p->p_nrlwps++;
965 cv_broadcast(&p->p_lwpcv);
966 break;
967 case LSSLEEP:
968 KASSERT(l->l_wchan != NULL);
969 break;
970 default:
971 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
972 }
973
974 #ifdef KERN_SA
975 if (l->l_proc->p_sa)
976 sa_awaken(l);
977 #endif /* KERN_SA */
978
979 /*
980 * If the LWP was sleeping interruptably, then it's OK to start it
981 * again. If not, mark it as still sleeping.
982 */
983 if (l->l_wchan != NULL) {
984 l->l_stat = LSSLEEP;
985 /* lwp_unsleep() will release the lock. */
986 lwp_unsleep(l, true);
987 return;
988 }
989
990 /*
991 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
992 * about to call mi_switch(), in which case it will yield.
993 */
994 if ((l->l_pflag & LP_RUNNING) != 0) {
995 l->l_stat = LSONPROC;
996 l->l_slptime = 0;
997 lwp_unlock(l);
998 return;
999 }
1000
1001 /*
1002 * Look for a CPU to run.
1003 * Set the LWP runnable.
1004 */
1005 ci = sched_takecpu(l);
1006 l->l_cpu = ci;
1007 spc_lock(ci);
1008 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
1009 sched_setrunnable(l);
1010 l->l_stat = LSRUN;
1011 l->l_slptime = 0;
1012
1013 sched_enqueue(l, false);
1014 resched_cpu(l);
1015 lwp_unlock(l);
1016 }
1017
1018 /*
1019 * suspendsched:
1020 *
1021 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1022 */
1023 void
1024 suspendsched(void)
1025 {
1026 CPU_INFO_ITERATOR cii;
1027 struct cpu_info *ci;
1028 struct lwp *l;
1029 struct proc *p;
1030
1031 /*
1032 * We do this by process in order not to violate the locking rules.
1033 */
1034 mutex_enter(proc_lock);
1035 PROCLIST_FOREACH(p, &allproc) {
1036 mutex_enter(p->p_lock);
1037 if ((p->p_flag & PK_SYSTEM) != 0) {
1038 mutex_exit(p->p_lock);
1039 continue;
1040 }
1041
1042 p->p_stat = SSTOP;
1043
1044 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1045 if (l == curlwp)
1046 continue;
1047
1048 lwp_lock(l);
1049
1050 /*
1051 * Set L_WREBOOT so that the LWP will suspend itself
1052 * when it tries to return to user mode. We want to
1053 * try and get to get as many LWPs as possible to
1054 * the user / kernel boundary, so that they will
1055 * release any locks that they hold.
1056 */
1057 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1058
1059 if (l->l_stat == LSSLEEP &&
1060 (l->l_flag & LW_SINTR) != 0) {
1061 /* setrunnable() will release the lock. */
1062 setrunnable(l);
1063 continue;
1064 }
1065
1066 lwp_unlock(l);
1067 }
1068
1069 mutex_exit(p->p_lock);
1070 }
1071 mutex_exit(proc_lock);
1072
1073 /*
1074 * Kick all CPUs to make them preempt any LWPs running in user mode.
1075 * They'll trap into the kernel and suspend themselves in userret().
1076 */
1077 for (CPU_INFO_FOREACH(cii, ci)) {
1078 spc_lock(ci);
1079 cpu_need_resched(ci, RESCHED_IMMED);
1080 spc_unlock(ci);
1081 }
1082 }
1083
1084 /*
1085 * sched_unsleep:
1086 *
1087 * The is called when the LWP has not been awoken normally but instead
1088 * interrupted: for example, if the sleep timed out. Because of this,
1089 * it's not a valid action for running or idle LWPs.
1090 */
1091 static void
1092 sched_unsleep(struct lwp *l, bool cleanup)
1093 {
1094
1095 lwp_unlock(l);
1096 panic("sched_unsleep");
1097 }
1098
1099 static void
1100 resched_cpu(struct lwp *l)
1101 {
1102 struct cpu_info *ci = l->l_cpu;
1103
1104 KASSERT(lwp_locked(l, NULL));
1105 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1106 cpu_need_resched(ci, 0);
1107 }
1108
1109 static void
1110 sched_changepri(struct lwp *l, pri_t pri)
1111 {
1112
1113 KASSERT(lwp_locked(l, NULL));
1114
1115 if (l->l_stat == LSRUN) {
1116 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1117 sched_dequeue(l);
1118 l->l_priority = pri;
1119 sched_enqueue(l, false);
1120 } else {
1121 l->l_priority = pri;
1122 }
1123 resched_cpu(l);
1124 }
1125
1126 static void
1127 sched_lendpri(struct lwp *l, pri_t pri)
1128 {
1129
1130 KASSERT(lwp_locked(l, NULL));
1131
1132 if (l->l_stat == LSRUN) {
1133 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1134 sched_dequeue(l);
1135 l->l_inheritedprio = pri;
1136 sched_enqueue(l, false);
1137 } else {
1138 l->l_inheritedprio = pri;
1139 }
1140 resched_cpu(l);
1141 }
1142
1143 struct lwp *
1144 syncobj_noowner(wchan_t wchan)
1145 {
1146
1147 return NULL;
1148 }
1149
1150 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1151 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1152
1153 /*
1154 * sched_pstats:
1155 *
1156 * Update process statistics and check CPU resource allocation.
1157 * Call scheduler-specific hook to eventually adjust process/LWP
1158 * priorities.
1159 */
1160 void
1161 sched_pstats(void *arg)
1162 {
1163 const int clkhz = (stathz != 0 ? stathz : hz);
1164 static bool backwards;
1165 struct rlimit *rlim;
1166 struct lwp *l;
1167 struct proc *p;
1168 long runtm;
1169 fixpt_t lpctcpu;
1170 u_int lcpticks;
1171 int sig;
1172
1173 sched_pstats_ticks++;
1174
1175 mutex_enter(proc_lock);
1176 PROCLIST_FOREACH(p, &allproc) {
1177 /* Increment sleep time (if sleeping), ignore overflow. */
1178 mutex_enter(p->p_lock);
1179 runtm = p->p_rtime.sec;
1180 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1181 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1182 continue;
1183 lwp_lock(l);
1184 runtm += l->l_rtime.sec;
1185 l->l_swtime++;
1186 sched_lwp_stats(l);
1187 lwp_unlock(l);
1188
1189 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1190 if (l->l_slptime != 0)
1191 continue;
1192
1193 lpctcpu = l->l_pctcpu;
1194 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1195 lpctcpu += ((FSCALE - ccpu) *
1196 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1197 l->l_pctcpu = lpctcpu;
1198 }
1199 /* Calculating p_pctcpu only for ps(1) */
1200 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1201
1202 /*
1203 * Check if the process exceeds its CPU resource allocation.
1204 * If over max, kill it.
1205 */
1206 rlim = &p->p_rlimit[RLIMIT_CPU];
1207 sig = 0;
1208 if (__predict_false(runtm >= rlim->rlim_cur)) {
1209 if (runtm >= rlim->rlim_max)
1210 sig = SIGKILL;
1211 else {
1212 sig = SIGXCPU;
1213 if (rlim->rlim_cur < rlim->rlim_max)
1214 rlim->rlim_cur += 5;
1215 }
1216 }
1217 mutex_exit(p->p_lock);
1218 if (__predict_false(runtm < 0)) {
1219 if (!backwards) {
1220 backwards = true;
1221 printf("WARNING: negative runtime; "
1222 "monotonic clock has gone backwards\n");
1223 }
1224 } else if (__predict_false(sig)) {
1225 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1226 psignal(p, sig);
1227 }
1228 }
1229 mutex_exit(proc_lock);
1230 uvm_meter();
1231 cv_broadcast(&lbolt);
1232 callout_schedule(&sched_pstats_ch, hz);
1233 }
1234