Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.230.2.5
      1 /*	$NetBSD: kern_synch.c,v 1.230.2.5 2010/03/11 15:04:17 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
      5  *    The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     11  * Daniel Sieger.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*-
     36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     37  *	The Regents of the University of California.  All rights reserved.
     38  * (c) UNIX System Laboratories, Inc.
     39  * All or some portions of this file are derived from material licensed
     40  * to the University of California by American Telephone and Telegraph
     41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     42  * the permission of UNIX System Laboratories, Inc.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. Neither the name of the University nor the names of its contributors
     53  *    may be used to endorse or promote products derived from this software
     54  *    without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     66  * SUCH DAMAGE.
     67  *
     68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.230.2.5 2010/03/11 15:04:17 yamt Exp $");
     73 
     74 #include "opt_kstack.h"
     75 #include "opt_perfctrs.h"
     76 #include "opt_sa.h"
     77 #include "opt_dtrace.h"
     78 
     79 #define	__MUTEX_PRIVATE
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/proc.h>
     84 #include <sys/kernel.h>
     85 #if defined(PERFCTRS)
     86 #include <sys/pmc.h>
     87 #endif
     88 #include <sys/cpu.h>
     89 #include <sys/resourcevar.h>
     90 #include <sys/sched.h>
     91 #include <sys/sa.h>
     92 #include <sys/savar.h>
     93 #include <sys/syscall_stats.h>
     94 #include <sys/sleepq.h>
     95 #include <sys/lockdebug.h>
     96 #include <sys/evcnt.h>
     97 #include <sys/intr.h>
     98 #include <sys/lwpctl.h>
     99 #include <sys/atomic.h>
    100 #include <sys/simplelock.h>
    101 
    102 #include <uvm/uvm_extern.h>
    103 
    104 #include <dev/lockstat.h>
    105 
    106 #include <sys/dtrace_bsd.h>
    107 int                             dtrace_vtime_active=0;
    108 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
    109 
    110 static void	sched_unsleep(struct lwp *, bool);
    111 static void	sched_changepri(struct lwp *, pri_t);
    112 static void	sched_lendpri(struct lwp *, pri_t);
    113 static void	resched_cpu(struct lwp *);
    114 
    115 syncobj_t sleep_syncobj = {
    116 	SOBJ_SLEEPQ_SORTED,
    117 	sleepq_unsleep,
    118 	sleepq_changepri,
    119 	sleepq_lendpri,
    120 	syncobj_noowner,
    121 };
    122 
    123 syncobj_t sched_syncobj = {
    124 	SOBJ_SLEEPQ_SORTED,
    125 	sched_unsleep,
    126 	sched_changepri,
    127 	sched_lendpri,
    128 	syncobj_noowner,
    129 };
    130 
    131 callout_t 	sched_pstats_ch;
    132 unsigned	sched_pstats_ticks;
    133 kcondvar_t	lbolt;			/* once a second sleep address */
    134 
    135 /* Preemption event counters */
    136 static struct evcnt kpreempt_ev_crit;
    137 static struct evcnt kpreempt_ev_klock;
    138 static struct evcnt kpreempt_ev_immed;
    139 
    140 /*
    141  * During autoconfiguration or after a panic, a sleep will simply lower the
    142  * priority briefly to allow interrupts, then return.  The priority to be
    143  * used (safepri) is machine-dependent, thus this value is initialized and
    144  * maintained in the machine-dependent layers.  This priority will typically
    145  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    146  * it can be made higher to block network software interrupts after panics.
    147  */
    148 int	safepri;
    149 
    150 void
    151 synch_init(void)
    152 {
    153 
    154 	cv_init(&lbolt, "lbolt");
    155 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    156 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    157 
    158 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    159 	   "kpreempt", "defer: critical section");
    160 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    161 	   "kpreempt", "defer: kernel_lock");
    162 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    163 	   "kpreempt", "immediate");
    164 
    165 	sched_pstats(NULL);
    166 }
    167 
    168 /*
    169  * OBSOLETE INTERFACE
    170  *
    171  * General sleep call.  Suspends the current LWP until a wakeup is
    172  * performed on the specified identifier.  The LWP will then be made
    173  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    174  * means no timeout).  If pri includes PCATCH flag, signals are checked
    175  * before and after sleeping, else signals are not checked.  Returns 0 if
    176  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    177  * signal needs to be delivered, ERESTART is returned if the current system
    178  * call should be restarted if possible, and EINTR is returned if the system
    179  * call should be interrupted by the signal (return EINTR).
    180  *
    181  * The interlock is held until we are on a sleep queue. The interlock will
    182  * be locked before returning back to the caller unless the PNORELOCK flag
    183  * is specified, in which case the interlock will always be unlocked upon
    184  * return.
    185  */
    186 int
    187 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    188 	volatile struct simplelock *interlock)
    189 {
    190 	struct lwp *l = curlwp;
    191 	sleepq_t *sq;
    192 	kmutex_t *mp;
    193 	int error;
    194 
    195 	KASSERT((l->l_pflag & LP_INTR) == 0);
    196 	KASSERT(ident != &lbolt);
    197 
    198 	if (sleepq_dontsleep(l)) {
    199 		(void)sleepq_abort(NULL, 0);
    200 		if ((priority & PNORELOCK) != 0)
    201 			simple_unlock(interlock);
    202 		return 0;
    203 	}
    204 
    205 	l->l_kpriority = true;
    206 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    207 	sleepq_enter(sq, l, mp);
    208 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    209 
    210 	if (interlock != NULL) {
    211 		KASSERT(simple_lock_held(interlock));
    212 		simple_unlock(interlock);
    213 	}
    214 
    215 	error = sleepq_block(timo, priority & PCATCH);
    216 
    217 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    218 		simple_lock(interlock);
    219 
    220 	return error;
    221 }
    222 
    223 int
    224 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    225 	kmutex_t *mtx)
    226 {
    227 	struct lwp *l = curlwp;
    228 	sleepq_t *sq;
    229 	kmutex_t *mp;
    230 	int error;
    231 
    232 	KASSERT((l->l_pflag & LP_INTR) == 0);
    233 	KASSERT(ident != &lbolt);
    234 
    235 	if (sleepq_dontsleep(l)) {
    236 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    237 		return 0;
    238 	}
    239 
    240 	l->l_kpriority = true;
    241 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    242 	sleepq_enter(sq, l, mp);
    243 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    244 	mutex_exit(mtx);
    245 	error = sleepq_block(timo, priority & PCATCH);
    246 
    247 	if ((priority & PNORELOCK) == 0)
    248 		mutex_enter(mtx);
    249 
    250 	return error;
    251 }
    252 
    253 /*
    254  * General sleep call for situations where a wake-up is not expected.
    255  */
    256 int
    257 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    258 {
    259 	struct lwp *l = curlwp;
    260 	kmutex_t *mp;
    261 	sleepq_t *sq;
    262 	int error;
    263 
    264 	if (sleepq_dontsleep(l))
    265 		return sleepq_abort(NULL, 0);
    266 
    267 	if (mtx != NULL)
    268 		mutex_exit(mtx);
    269 	l->l_kpriority = true;
    270 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    271 	sleepq_enter(sq, l, mp);
    272 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    273 	error = sleepq_block(timo, intr);
    274 	if (mtx != NULL)
    275 		mutex_enter(mtx);
    276 
    277 	return error;
    278 }
    279 
    280 #ifdef KERN_SA
    281 /*
    282  * sa_awaken:
    283  *
    284  *	We believe this lwp is an SA lwp. If it's yielding,
    285  * let it know it needs to wake up.
    286  *
    287  *	We are called and exit with the lwp locked. We are
    288  * called in the middle of wakeup operations, so we need
    289  * to not touch the locks at all.
    290  */
    291 void
    292 sa_awaken(struct lwp *l)
    293 {
    294 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    295 
    296 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    297 		l->l_flag &= ~LW_SA_IDLE;
    298 }
    299 #endif /* KERN_SA */
    300 
    301 /*
    302  * OBSOLETE INTERFACE
    303  *
    304  * Make all LWPs sleeping on the specified identifier runnable.
    305  */
    306 void
    307 wakeup(wchan_t ident)
    308 {
    309 	sleepq_t *sq;
    310 	kmutex_t *mp;
    311 
    312 	if (__predict_false(cold))
    313 		return;
    314 
    315 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    316 	sleepq_wake(sq, ident, (u_int)-1, mp);
    317 }
    318 
    319 /*
    320  * OBSOLETE INTERFACE
    321  *
    322  * Make the highest priority LWP first in line on the specified
    323  * identifier runnable.
    324  */
    325 void
    326 wakeup_one(wchan_t ident)
    327 {
    328 	sleepq_t *sq;
    329 	kmutex_t *mp;
    330 
    331 	if (__predict_false(cold))
    332 		return;
    333 
    334 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    335 	sleepq_wake(sq, ident, 1, mp);
    336 }
    337 
    338 
    339 /*
    340  * General yield call.  Puts the current LWP back on its run queue and
    341  * performs a voluntary context switch.  Should only be called when the
    342  * current LWP explicitly requests it (eg sched_yield(2)).
    343  */
    344 void
    345 yield(void)
    346 {
    347 	struct lwp *l = curlwp;
    348 
    349 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    350 	lwp_lock(l);
    351 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    352 	KASSERT(l->l_stat == LSONPROC);
    353 	l->l_kpriority = false;
    354 	(void)mi_switch(l);
    355 	KERNEL_LOCK(l->l_biglocks, l);
    356 }
    357 
    358 /*
    359  * General preemption call.  Puts the current LWP back on its run queue
    360  * and performs an involuntary context switch.
    361  */
    362 void
    363 preempt(void)
    364 {
    365 	struct lwp *l = curlwp;
    366 
    367 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    368 	lwp_lock(l);
    369 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    370 	KASSERT(l->l_stat == LSONPROC);
    371 	l->l_kpriority = false;
    372 	l->l_nivcsw++;
    373 	(void)mi_switch(l);
    374 	KERNEL_LOCK(l->l_biglocks, l);
    375 }
    376 
    377 /*
    378  * Handle a request made by another agent to preempt the current LWP
    379  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    380  *
    381  * Character addresses for lockstat only.
    382  */
    383 static char	in_critical_section;
    384 static char	kernel_lock_held;
    385 static char	is_softint;
    386 static char	cpu_kpreempt_enter_fail;
    387 
    388 bool
    389 kpreempt(uintptr_t where)
    390 {
    391 	uintptr_t failed;
    392 	lwp_t *l;
    393 	int s, dop, lsflag;
    394 
    395 	l = curlwp;
    396 	failed = 0;
    397 	while ((dop = l->l_dopreempt) != 0) {
    398 		if (l->l_stat != LSONPROC) {
    399 			/*
    400 			 * About to block (or die), let it happen.
    401 			 * Doesn't really count as "preemption has
    402 			 * been blocked", since we're going to
    403 			 * context switch.
    404 			 */
    405 			l->l_dopreempt = 0;
    406 			return true;
    407 		}
    408 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    409 			/* Can't preempt idle loop, don't count as failure. */
    410 			l->l_dopreempt = 0;
    411 			return true;
    412 		}
    413 		if (__predict_false(l->l_nopreempt != 0)) {
    414 			/* LWP holds preemption disabled, explicitly. */
    415 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    416 				kpreempt_ev_crit.ev_count++;
    417 			}
    418 			failed = (uintptr_t)&in_critical_section;
    419 			break;
    420 		}
    421 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    422 			/* Can't preempt soft interrupts yet. */
    423 			l->l_dopreempt = 0;
    424 			failed = (uintptr_t)&is_softint;
    425 			break;
    426 		}
    427 		s = splsched();
    428 		if (__predict_false(l->l_blcnt != 0 ||
    429 		    curcpu()->ci_biglock_wanted != NULL)) {
    430 			/* Hold or want kernel_lock, code is not MT safe. */
    431 			splx(s);
    432 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    433 				kpreempt_ev_klock.ev_count++;
    434 			}
    435 			failed = (uintptr_t)&kernel_lock_held;
    436 			break;
    437 		}
    438 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    439 			/*
    440 			 * It may be that the IPL is too high.
    441 			 * kpreempt_enter() can schedule an
    442 			 * interrupt to retry later.
    443 			 */
    444 			splx(s);
    445 			failed = (uintptr_t)&cpu_kpreempt_enter_fail;
    446 			break;
    447 		}
    448 		/* Do it! */
    449 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    450 			kpreempt_ev_immed.ev_count++;
    451 		}
    452 		lwp_lock(l);
    453 		mi_switch(l);
    454 		l->l_nopreempt++;
    455 		splx(s);
    456 
    457 		/* Take care of any MD cleanup. */
    458 		cpu_kpreempt_exit(where);
    459 		l->l_nopreempt--;
    460 	}
    461 
    462 	if (__predict_true(!failed)) {
    463 		return false;
    464 	}
    465 
    466 	/* Record preemption failure for reporting via lockstat. */
    467 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    468 	lsflag = 0;
    469 	LOCKSTAT_ENTER(lsflag);
    470 	if (__predict_false(lsflag)) {
    471 		if (where == 0) {
    472 			where = (uintptr_t)__builtin_return_address(0);
    473 		}
    474 		/* Preemption is on, might recurse, so make it atomic. */
    475 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
    476 		    (void *)where) == NULL) {
    477 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    478 			l->l_pfaillock = failed;
    479 		}
    480 	}
    481 	LOCKSTAT_EXIT(lsflag);
    482 	return true;
    483 }
    484 
    485 /*
    486  * Return true if preemption is explicitly disabled.
    487  */
    488 bool
    489 kpreempt_disabled(void)
    490 {
    491 	const lwp_t *l = curlwp;
    492 
    493 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    494 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    495 }
    496 
    497 /*
    498  * Disable kernel preemption.
    499  */
    500 void
    501 kpreempt_disable(void)
    502 {
    503 
    504 	KPREEMPT_DISABLE(curlwp);
    505 }
    506 
    507 /*
    508  * Reenable kernel preemption.
    509  */
    510 void
    511 kpreempt_enable(void)
    512 {
    513 
    514 	KPREEMPT_ENABLE(curlwp);
    515 }
    516 
    517 /*
    518  * Compute the amount of time during which the current lwp was running.
    519  *
    520  * - update l_rtime unless it's an idle lwp.
    521  */
    522 
    523 void
    524 updatertime(lwp_t *l, const struct bintime *now)
    525 {
    526 
    527 	if (__predict_false(l->l_flag & LW_IDLE))
    528 		return;
    529 
    530 	/* rtime += now - stime */
    531 	bintime_add(&l->l_rtime, now);
    532 	bintime_sub(&l->l_rtime, &l->l_stime);
    533 }
    534 
    535 /*
    536  * Select next LWP from the current CPU to run..
    537  */
    538 static inline lwp_t *
    539 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    540 {
    541 	lwp_t *newl;
    542 
    543 	/*
    544 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    545 	 * If no LWP is runnable, select the idle LWP.
    546 	 *
    547 	 * Note that spc_lwplock might not necessary be held, and
    548 	 * new thread would be unlocked after setting the LWP-lock.
    549 	 */
    550 	newl = sched_nextlwp();
    551 	if (newl != NULL) {
    552 		sched_dequeue(newl);
    553 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    554 		KASSERT(newl->l_cpu == ci);
    555 		newl->l_stat = LSONPROC;
    556 		newl->l_pflag |= LP_RUNNING;
    557 		lwp_setlock(newl, spc->spc_lwplock);
    558 	} else {
    559 		newl = ci->ci_data.cpu_idlelwp;
    560 		newl->l_stat = LSONPROC;
    561 		newl->l_pflag |= LP_RUNNING;
    562 	}
    563 
    564 	/*
    565 	 * Only clear want_resched if there are no pending (slow)
    566 	 * software interrupts.
    567 	 */
    568 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    569 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    570 	spc->spc_curpriority = lwp_eprio(newl);
    571 
    572 	return newl;
    573 }
    574 
    575 /*
    576  * The machine independent parts of context switch.
    577  *
    578  * Returns 1 if another LWP was actually run.
    579  */
    580 int
    581 mi_switch(lwp_t *l)
    582 {
    583 	struct cpu_info *ci;
    584 	struct schedstate_percpu *spc;
    585 	struct lwp *newl;
    586 	int retval, oldspl;
    587 	struct bintime bt;
    588 	bool returning;
    589 
    590 	KASSERT(lwp_locked(l, NULL));
    591 	KASSERT(kpreempt_disabled());
    592 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    593 
    594 	kstack_check_magic(l);
    595 
    596 	binuptime(&bt);
    597 
    598 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
    599 	KASSERT(l->l_cpu == curcpu());
    600 	ci = l->l_cpu;
    601 	spc = &ci->ci_schedstate;
    602 	returning = false;
    603 	newl = NULL;
    604 
    605 	/*
    606 	 * If we have been asked to switch to a specific LWP, then there
    607 	 * is no need to inspect the run queues.  If a soft interrupt is
    608 	 * blocking, then return to the interrupted thread without adjusting
    609 	 * VM context or its start time: neither have been changed in order
    610 	 * to take the interrupt.
    611 	 */
    612 	if (l->l_switchto != NULL) {
    613 		if ((l->l_pflag & LP_INTR) != 0) {
    614 			returning = true;
    615 			softint_block(l);
    616 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    617 				updatertime(l, &bt);
    618 		}
    619 		newl = l->l_switchto;
    620 		l->l_switchto = NULL;
    621 	}
    622 #ifndef __HAVE_FAST_SOFTINTS
    623 	else if (ci->ci_data.cpu_softints != 0) {
    624 		/* There are pending soft interrupts, so pick one. */
    625 		newl = softint_picklwp();
    626 		newl->l_stat = LSONPROC;
    627 		newl->l_pflag |= LP_RUNNING;
    628 	}
    629 #endif	/* !__HAVE_FAST_SOFTINTS */
    630 
    631 	/* Count time spent in current system call */
    632 	if (!returning) {
    633 		SYSCALL_TIME_SLEEP(l);
    634 
    635 		/*
    636 		 * XXXSMP If we are using h/w performance counters,
    637 		 * save context.
    638 		 */
    639 #if PERFCTRS
    640 		if (PMC_ENABLED(l->l_proc)) {
    641 			pmc_save_context(l->l_proc);
    642 		}
    643 #endif
    644 		updatertime(l, &bt);
    645 	}
    646 
    647 	/* Lock the runqueue */
    648 	KASSERT(l->l_stat != LSRUN);
    649 	mutex_spin_enter(spc->spc_mutex);
    650 
    651 	/*
    652 	 * If on the CPU and we have gotten this far, then we must yield.
    653 	 */
    654 	if (l->l_stat == LSONPROC && l != newl) {
    655 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    656 		if ((l->l_flag & LW_IDLE) == 0) {
    657 			l->l_stat = LSRUN;
    658 			lwp_setlock(l, spc->spc_mutex);
    659 			sched_enqueue(l, true);
    660 			/* Handle migration case */
    661 			KASSERT(spc->spc_migrating == NULL);
    662 			if (l->l_target_cpu !=  NULL) {
    663 				spc->spc_migrating = l;
    664 			}
    665 		} else
    666 			l->l_stat = LSIDL;
    667 	}
    668 
    669 	/* Pick new LWP to run. */
    670 	if (newl == NULL) {
    671 		newl = nextlwp(ci, spc);
    672 	}
    673 
    674 	/* Items that must be updated with the CPU locked. */
    675 	if (!returning) {
    676 		/* Update the new LWP's start time. */
    677 		newl->l_stime = bt;
    678 
    679 		/*
    680 		 * ci_curlwp changes when a fast soft interrupt occurs.
    681 		 * We use cpu_onproc to keep track of which kernel or
    682 		 * user thread is running 'underneath' the software
    683 		 * interrupt.  This is important for time accounting,
    684 		 * itimers and forcing user threads to preempt (aston).
    685 		 */
    686 		ci->ci_data.cpu_onproc = newl;
    687 	}
    688 
    689 	/*
    690 	 * Preemption related tasks.  Must be done with the current
    691 	 * CPU locked.
    692 	 */
    693 	cpu_did_resched(l);
    694 	l->l_dopreempt = 0;
    695 	if (__predict_false(l->l_pfailaddr != 0)) {
    696 		LOCKSTAT_FLAG(lsflag);
    697 		LOCKSTAT_ENTER(lsflag);
    698 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    699 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    700 		    1, l->l_pfailtime, l->l_pfailaddr);
    701 		LOCKSTAT_EXIT(lsflag);
    702 		l->l_pfailtime = 0;
    703 		l->l_pfaillock = 0;
    704 		l->l_pfailaddr = 0;
    705 	}
    706 
    707 	if (l != newl) {
    708 		struct lwp *prevlwp;
    709 
    710 		/* Release all locks, but leave the current LWP locked */
    711 		if (l->l_mutex == spc->spc_mutex) {
    712 			/*
    713 			 * Drop spc_lwplock, if the current LWP has been moved
    714 			 * to the run queue (it is now locked by spc_mutex).
    715 			 */
    716 			mutex_spin_exit(spc->spc_lwplock);
    717 		} else {
    718 			/*
    719 			 * Otherwise, drop the spc_mutex, we are done with the
    720 			 * run queues.
    721 			 */
    722 			mutex_spin_exit(spc->spc_mutex);
    723 		}
    724 
    725 		/*
    726 		 * Mark that context switch is going to be performed
    727 		 * for this LWP, to protect it from being switched
    728 		 * to on another CPU.
    729 		 */
    730 		KASSERT(l->l_ctxswtch == 0);
    731 		l->l_ctxswtch = 1;
    732 		l->l_ncsw++;
    733 		KASSERT((l->l_pflag & LP_RUNNING) != 0);
    734 		l->l_pflag &= ~LP_RUNNING;
    735 
    736 		/*
    737 		 * Increase the count of spin-mutexes before the release
    738 		 * of the last lock - we must remain at IPL_SCHED during
    739 		 * the context switch.
    740 		 */
    741 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    742 		ci->ci_mtx_count--;
    743 		lwp_unlock(l);
    744 
    745 		/* Count the context switch on this CPU. */
    746 		ci->ci_data.cpu_nswtch++;
    747 
    748 		/* Update status for lwpctl, if present. */
    749 		if (l->l_lwpctl != NULL)
    750 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    751 
    752 		/*
    753 		 * Save old VM context, unless a soft interrupt
    754 		 * handler is blocking.
    755 		 */
    756 		if (!returning)
    757 			pmap_deactivate(l);
    758 
    759 		/*
    760 		 * We may need to spin-wait if 'newl' is still
    761 		 * context switching on another CPU.
    762 		 */
    763 		if (__predict_false(newl->l_ctxswtch != 0)) {
    764 			u_int count;
    765 			count = SPINLOCK_BACKOFF_MIN;
    766 			while (newl->l_ctxswtch)
    767 				SPINLOCK_BACKOFF(count);
    768 		}
    769 
    770 		/*
    771 		 * If DTrace has set the active vtime enum to anything
    772 		 * other than INACTIVE (0), then it should have set the
    773 		 * function to call.
    774 		 */
    775 		if (__predict_false(dtrace_vtime_active)) {
    776 			(*dtrace_vtime_switch_func)(newl);
    777 		}
    778 
    779 		/* Switch to the new LWP.. */
    780 		prevlwp = cpu_switchto(l, newl, returning);
    781 		ci = curcpu();
    782 
    783 		/*
    784 		 * Switched away - we have new curlwp.
    785 		 * Restore VM context and IPL.
    786 		 */
    787 		pmap_activate(l);
    788 		uvm_emap_switch(l);
    789 
    790 		if (prevlwp != NULL) {
    791 			/* Normalize the count of the spin-mutexes */
    792 			ci->ci_mtx_count++;
    793 			/* Unmark the state of context switch */
    794 			membar_exit();
    795 			prevlwp->l_ctxswtch = 0;
    796 		}
    797 
    798 		/* Update status for lwpctl, if present. */
    799 		if (l->l_lwpctl != NULL) {
    800 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    801 			l->l_lwpctl->lc_pctr++;
    802 		}
    803 
    804 		KASSERT(l->l_cpu == ci);
    805 		splx(oldspl);
    806 		retval = 1;
    807 	} else {
    808 		/* Nothing to do - just unlock and return. */
    809 		mutex_spin_exit(spc->spc_mutex);
    810 		lwp_unlock(l);
    811 		retval = 0;
    812 	}
    813 
    814 	KASSERT(l == curlwp);
    815 	KASSERT(l->l_stat == LSONPROC);
    816 
    817 	/*
    818 	 * XXXSMP If we are using h/w performance counters, restore context.
    819 	 * XXXSMP preemption problem.
    820 	 */
    821 #if PERFCTRS
    822 	if (PMC_ENABLED(l->l_proc)) {
    823 		pmc_restore_context(l->l_proc);
    824 	}
    825 #endif
    826 	SYSCALL_TIME_WAKEUP(l);
    827 	LOCKDEBUG_BARRIER(NULL, 1);
    828 
    829 	return retval;
    830 }
    831 
    832 /*
    833  * The machine independent parts of context switch to oblivion.
    834  * Does not return.  Call with the LWP unlocked.
    835  */
    836 void
    837 lwp_exit_switchaway(lwp_t *l)
    838 {
    839 	struct cpu_info *ci;
    840 	struct lwp *newl;
    841 	struct bintime bt;
    842 
    843 	ci = l->l_cpu;
    844 
    845 	KASSERT(kpreempt_disabled());
    846 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    847 	KASSERT(ci == curcpu());
    848 	LOCKDEBUG_BARRIER(NULL, 0);
    849 
    850 	kstack_check_magic(l);
    851 
    852 	/* Count time spent in current system call */
    853 	SYSCALL_TIME_SLEEP(l);
    854 	binuptime(&bt);
    855 	updatertime(l, &bt);
    856 
    857 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    858 	(void)splsched();
    859 
    860 	/*
    861 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    862 	 * If no LWP is runnable, select the idle LWP.
    863 	 *
    864 	 * Note that spc_lwplock might not necessary be held, and
    865 	 * new thread would be unlocked after setting the LWP-lock.
    866 	 */
    867 	spc_lock(ci);
    868 #ifndef __HAVE_FAST_SOFTINTS
    869 	if (ci->ci_data.cpu_softints != 0) {
    870 		/* There are pending soft interrupts, so pick one. */
    871 		newl = softint_picklwp();
    872 		newl->l_stat = LSONPROC;
    873 		newl->l_pflag |= LP_RUNNING;
    874 	} else
    875 #endif	/* !__HAVE_FAST_SOFTINTS */
    876 	{
    877 		newl = nextlwp(ci, &ci->ci_schedstate);
    878 	}
    879 
    880 	/* Update the new LWP's start time. */
    881 	newl->l_stime = bt;
    882 	l->l_pflag &= ~LP_RUNNING;
    883 
    884 	/*
    885 	 * ci_curlwp changes when a fast soft interrupt occurs.
    886 	 * We use cpu_onproc to keep track of which kernel or
    887 	 * user thread is running 'underneath' the software
    888 	 * interrupt.  This is important for time accounting,
    889 	 * itimers and forcing user threads to preempt (aston).
    890 	 */
    891 	ci->ci_data.cpu_onproc = newl;
    892 
    893 	/*
    894 	 * Preemption related tasks.  Must be done with the current
    895 	 * CPU locked.
    896 	 */
    897 	cpu_did_resched(l);
    898 
    899 	/* Unlock the run queue. */
    900 	spc_unlock(ci);
    901 
    902 	/* Count the context switch on this CPU. */
    903 	ci->ci_data.cpu_nswtch++;
    904 
    905 	/* Update status for lwpctl, if present. */
    906 	if (l->l_lwpctl != NULL)
    907 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    908 
    909 	/*
    910 	 * We may need to spin-wait if 'newl' is still
    911 	 * context switching on another CPU.
    912 	 */
    913 	if (__predict_false(newl->l_ctxswtch != 0)) {
    914 		u_int count;
    915 		count = SPINLOCK_BACKOFF_MIN;
    916 		while (newl->l_ctxswtch)
    917 			SPINLOCK_BACKOFF(count);
    918 	}
    919 
    920 	/*
    921 	 * If DTrace has set the active vtime enum to anything
    922 	 * other than INACTIVE (0), then it should have set the
    923 	 * function to call.
    924 	 */
    925 	if (__predict_false(dtrace_vtime_active)) {
    926 		(*dtrace_vtime_switch_func)(newl);
    927 	}
    928 
    929 	/* Switch to the new LWP.. */
    930 	(void)cpu_switchto(NULL, newl, false);
    931 
    932 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    933 	/* NOTREACHED */
    934 }
    935 
    936 /*
    937  * setrunnable: change LWP state to be runnable, placing it on the run queue.
    938  *
    939  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    940  */
    941 void
    942 setrunnable(struct lwp *l)
    943 {
    944 	struct proc *p = l->l_proc;
    945 	struct cpu_info *ci;
    946 
    947 	KASSERT((l->l_flag & LW_IDLE) == 0);
    948 	KASSERT(mutex_owned(p->p_lock));
    949 	KASSERT(lwp_locked(l, NULL));
    950 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    951 
    952 	switch (l->l_stat) {
    953 	case LSSTOP:
    954 		/*
    955 		 * If we're being traced (possibly because someone attached us
    956 		 * while we were stopped), check for a signal from the debugger.
    957 		 */
    958 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
    959 			signotify(l);
    960 		p->p_nrlwps++;
    961 		break;
    962 	case LSSUSPENDED:
    963 		l->l_flag &= ~LW_WSUSPEND;
    964 		p->p_nrlwps++;
    965 		cv_broadcast(&p->p_lwpcv);
    966 		break;
    967 	case LSSLEEP:
    968 		KASSERT(l->l_wchan != NULL);
    969 		break;
    970 	default:
    971 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    972 	}
    973 
    974 #ifdef KERN_SA
    975 	if (l->l_proc->p_sa)
    976 		sa_awaken(l);
    977 #endif /* KERN_SA */
    978 
    979 	/*
    980 	 * If the LWP was sleeping interruptably, then it's OK to start it
    981 	 * again.  If not, mark it as still sleeping.
    982 	 */
    983 	if (l->l_wchan != NULL) {
    984 		l->l_stat = LSSLEEP;
    985 		/* lwp_unsleep() will release the lock. */
    986 		lwp_unsleep(l, true);
    987 		return;
    988 	}
    989 
    990 	/*
    991 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    992 	 * about to call mi_switch(), in which case it will yield.
    993 	 */
    994 	if ((l->l_pflag & LP_RUNNING) != 0) {
    995 		l->l_stat = LSONPROC;
    996 		l->l_slptime = 0;
    997 		lwp_unlock(l);
    998 		return;
    999 	}
   1000 
   1001 	/*
   1002 	 * Look for a CPU to run.
   1003 	 * Set the LWP runnable.
   1004 	 */
   1005 	ci = sched_takecpu(l);
   1006 	l->l_cpu = ci;
   1007 	spc_lock(ci);
   1008 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
   1009 	sched_setrunnable(l);
   1010 	l->l_stat = LSRUN;
   1011 	l->l_slptime = 0;
   1012 
   1013 	sched_enqueue(l, false);
   1014 	resched_cpu(l);
   1015 	lwp_unlock(l);
   1016 }
   1017 
   1018 /*
   1019  * suspendsched:
   1020  *
   1021  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1022  */
   1023 void
   1024 suspendsched(void)
   1025 {
   1026 	CPU_INFO_ITERATOR cii;
   1027 	struct cpu_info *ci;
   1028 	struct lwp *l;
   1029 	struct proc *p;
   1030 
   1031 	/*
   1032 	 * We do this by process in order not to violate the locking rules.
   1033 	 */
   1034 	mutex_enter(proc_lock);
   1035 	PROCLIST_FOREACH(p, &allproc) {
   1036 		mutex_enter(p->p_lock);
   1037 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1038 			mutex_exit(p->p_lock);
   1039 			continue;
   1040 		}
   1041 
   1042 		p->p_stat = SSTOP;
   1043 
   1044 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1045 			if (l == curlwp)
   1046 				continue;
   1047 
   1048 			lwp_lock(l);
   1049 
   1050 			/*
   1051 			 * Set L_WREBOOT so that the LWP will suspend itself
   1052 			 * when it tries to return to user mode.  We want to
   1053 			 * try and get to get as many LWPs as possible to
   1054 			 * the user / kernel boundary, so that they will
   1055 			 * release any locks that they hold.
   1056 			 */
   1057 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1058 
   1059 			if (l->l_stat == LSSLEEP &&
   1060 			    (l->l_flag & LW_SINTR) != 0) {
   1061 				/* setrunnable() will release the lock. */
   1062 				setrunnable(l);
   1063 				continue;
   1064 			}
   1065 
   1066 			lwp_unlock(l);
   1067 		}
   1068 
   1069 		mutex_exit(p->p_lock);
   1070 	}
   1071 	mutex_exit(proc_lock);
   1072 
   1073 	/*
   1074 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1075 	 * They'll trap into the kernel and suspend themselves in userret().
   1076 	 */
   1077 	for (CPU_INFO_FOREACH(cii, ci)) {
   1078 		spc_lock(ci);
   1079 		cpu_need_resched(ci, RESCHED_IMMED);
   1080 		spc_unlock(ci);
   1081 	}
   1082 }
   1083 
   1084 /*
   1085  * sched_unsleep:
   1086  *
   1087  *	The is called when the LWP has not been awoken normally but instead
   1088  *	interrupted: for example, if the sleep timed out.  Because of this,
   1089  *	it's not a valid action for running or idle LWPs.
   1090  */
   1091 static void
   1092 sched_unsleep(struct lwp *l, bool cleanup)
   1093 {
   1094 
   1095 	lwp_unlock(l);
   1096 	panic("sched_unsleep");
   1097 }
   1098 
   1099 static void
   1100 resched_cpu(struct lwp *l)
   1101 {
   1102 	struct cpu_info *ci = l->l_cpu;
   1103 
   1104 	KASSERT(lwp_locked(l, NULL));
   1105 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1106 		cpu_need_resched(ci, 0);
   1107 }
   1108 
   1109 static void
   1110 sched_changepri(struct lwp *l, pri_t pri)
   1111 {
   1112 
   1113 	KASSERT(lwp_locked(l, NULL));
   1114 
   1115 	if (l->l_stat == LSRUN) {
   1116 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1117 		sched_dequeue(l);
   1118 		l->l_priority = pri;
   1119 		sched_enqueue(l, false);
   1120 	} else {
   1121 		l->l_priority = pri;
   1122 	}
   1123 	resched_cpu(l);
   1124 }
   1125 
   1126 static void
   1127 sched_lendpri(struct lwp *l, pri_t pri)
   1128 {
   1129 
   1130 	KASSERT(lwp_locked(l, NULL));
   1131 
   1132 	if (l->l_stat == LSRUN) {
   1133 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1134 		sched_dequeue(l);
   1135 		l->l_inheritedprio = pri;
   1136 		sched_enqueue(l, false);
   1137 	} else {
   1138 		l->l_inheritedprio = pri;
   1139 	}
   1140 	resched_cpu(l);
   1141 }
   1142 
   1143 struct lwp *
   1144 syncobj_noowner(wchan_t wchan)
   1145 {
   1146 
   1147 	return NULL;
   1148 }
   1149 
   1150 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1151 const fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;
   1152 
   1153 /*
   1154  * sched_pstats:
   1155  *
   1156  * Update process statistics and check CPU resource allocation.
   1157  * Call scheduler-specific hook to eventually adjust process/LWP
   1158  * priorities.
   1159  */
   1160 void
   1161 sched_pstats(void *arg)
   1162 {
   1163 	const int clkhz = (stathz != 0 ? stathz : hz);
   1164 	static bool backwards;
   1165 	struct rlimit *rlim;
   1166 	struct lwp *l;
   1167 	struct proc *p;
   1168 	long runtm;
   1169 	fixpt_t lpctcpu;
   1170 	u_int lcpticks;
   1171 	int sig;
   1172 
   1173 	sched_pstats_ticks++;
   1174 
   1175 	mutex_enter(proc_lock);
   1176 	PROCLIST_FOREACH(p, &allproc) {
   1177 		/* Increment sleep time (if sleeping), ignore overflow. */
   1178 		mutex_enter(p->p_lock);
   1179 		runtm = p->p_rtime.sec;
   1180 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1181 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1182 				continue;
   1183 			lwp_lock(l);
   1184 			runtm += l->l_rtime.sec;
   1185 			l->l_swtime++;
   1186 			sched_lwp_stats(l);
   1187 			lwp_unlock(l);
   1188 
   1189 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1190 			if (l->l_slptime != 0)
   1191 				continue;
   1192 
   1193 			lpctcpu = l->l_pctcpu;
   1194 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1195 			lpctcpu += ((FSCALE - ccpu) *
   1196 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1197 			l->l_pctcpu = lpctcpu;
   1198 		}
   1199 		/* Calculating p_pctcpu only for ps(1) */
   1200 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1201 
   1202 		/*
   1203 		 * Check if the process exceeds its CPU resource allocation.
   1204 		 * If over max, kill it.
   1205 		 */
   1206 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1207 		sig = 0;
   1208 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1209 			if (runtm >= rlim->rlim_max)
   1210 				sig = SIGKILL;
   1211 			else {
   1212 				sig = SIGXCPU;
   1213 				if (rlim->rlim_cur < rlim->rlim_max)
   1214 					rlim->rlim_cur += 5;
   1215 			}
   1216 		}
   1217 		mutex_exit(p->p_lock);
   1218 		if (__predict_false(runtm < 0)) {
   1219 			if (!backwards) {
   1220 				backwards = true;
   1221 				printf("WARNING: negative runtime; "
   1222 				    "monotonic clock has gone backwards\n");
   1223 			}
   1224 		} else if (__predict_false(sig)) {
   1225 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
   1226 			psignal(p, sig);
   1227 		}
   1228 	}
   1229 	mutex_exit(proc_lock);
   1230 	uvm_meter();
   1231 	cv_broadcast(&lbolt);
   1232 	callout_schedule(&sched_pstats_ch, hz);
   1233 }
   1234