kern_synch.c revision 1.231 1 /* $NetBSD: kern_synch.c,v 1.231 2008/04/28 15:36:01 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the NetBSD
23 * Foundation, Inc. and its contributors.
24 * 4. Neither the name of The NetBSD Foundation nor the names of its
25 * contributors may be used to endorse or promote products derived
26 * from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 */
40
41 /*
42 * Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 */
66
67 /*-
68 * Copyright (c) 1982, 1986, 1990, 1991, 1993
69 * The Regents of the University of California. All rights reserved.
70 * (c) UNIX System Laboratories, Inc.
71 * All or some portions of this file are derived from material licensed
72 * to the University of California by American Telephone and Telegraph
73 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
74 * the permission of UNIX System Laboratories, Inc.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the above copyright
80 * notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 * notice, this list of conditions and the following disclaimer in the
83 * documentation and/or other materials provided with the distribution.
84 * 3. Neither the name of the University nor the names of its contributors
85 * may be used to endorse or promote products derived from this software
86 * without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
89 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
90 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
91 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
92 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
93 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
94 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
95 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
96 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
97 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
98 * SUCH DAMAGE.
99 *
100 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
101 */
102
103 #include <sys/cdefs.h>
104 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.231 2008/04/28 15:36:01 ad Exp $");
105
106 #include "opt_kstack.h"
107 #include "opt_lockdebug.h"
108 #include "opt_multiprocessor.h"
109 #include "opt_perfctrs.h"
110 #include "opt_preemption.h"
111
112 #define __MUTEX_PRIVATE
113
114 #include <sys/param.h>
115 #include <sys/systm.h>
116 #include <sys/proc.h>
117 #include <sys/kernel.h>
118 #if defined(PERFCTRS)
119 #include <sys/pmc.h>
120 #endif
121 #include <sys/cpu.h>
122 #include <sys/resourcevar.h>
123 #include <sys/sched.h>
124 #include <sys/syscall_stats.h>
125 #include <sys/sleepq.h>
126 #include <sys/lockdebug.h>
127 #include <sys/evcnt.h>
128 #include <sys/intr.h>
129 #include <sys/lwpctl.h>
130 #include <sys/atomic.h>
131 #include <sys/simplelock.h>
132 #include <sys/bitops.h>
133 #include <sys/kmem.h>
134 #include <sys/sysctl.h>
135 #include <sys/idle.h>
136
137 #include <uvm/uvm_extern.h>
138
139 #include <dev/lockstat.h>
140
141 /*
142 * Priority related defintions.
143 */
144 #define PRI_TS_COUNT (NPRI_USER)
145 #define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
146 #define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
147
148 #define PRI_HIGHEST_TS (MAXPRI_USER)
149
150 /*
151 * Bits per map.
152 */
153 #define BITMAP_BITS (32)
154 #define BITMAP_SHIFT (5)
155 #define BITMAP_MSB (0x80000000U)
156 #define BITMAP_MASK (BITMAP_BITS - 1)
157
158 /*
159 * Structures, runqueue.
160 */
161
162 typedef struct {
163 TAILQ_HEAD(, lwp) q_head;
164 } queue_t;
165
166 typedef struct {
167 /* Lock and bitmap */
168 uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
169 /* Counters */
170 u_int r_count; /* Count of the threads */
171 u_int r_avgcount; /* Average count of threads */
172 u_int r_mcount; /* Count of migratable threads */
173 /* Runqueues */
174 queue_t r_rt_queue[PRI_RT_COUNT];
175 queue_t r_ts_queue[PRI_TS_COUNT];
176 } runqueue_t;
177
178 static u_int sched_unsleep(struct lwp *, bool);
179 static void sched_changepri(struct lwp *, pri_t);
180 static void sched_lendpri(struct lwp *, pri_t);
181 static void *sched_getrq(runqueue_t *, const pri_t);
182 #ifdef MULTIPROCESSOR
183 static lwp_t *sched_catchlwp(void);
184 static void sched_balance(void *);
185 #endif
186
187 syncobj_t sleep_syncobj = {
188 SOBJ_SLEEPQ_SORTED,
189 sleepq_unsleep,
190 sleepq_changepri,
191 sleepq_lendpri,
192 syncobj_noowner,
193 };
194
195 syncobj_t sched_syncobj = {
196 SOBJ_SLEEPQ_SORTED,
197 sched_unsleep,
198 sched_changepri,
199 sched_lendpri,
200 syncobj_noowner,
201 };
202
203 const int schedppq = 1;
204 callout_t sched_pstats_ch;
205 unsigned sched_pstats_ticks;
206 kcondvar_t lbolt; /* once a second sleep address */
207
208 /*
209 * Kernel preemption.
210 */
211 #ifdef PREEMPTION
212 int sched_kpreempt_pri = PRI_USER_RT;
213
214 static struct evcnt kpreempt_ev_crit;
215 static struct evcnt kpreempt_ev_klock;
216 static struct evcnt kpreempt_ev_ipl;
217 static struct evcnt kpreempt_ev_immed;
218 #else
219 int sched_kpreempt_pri = INT_MAX;
220 #endif
221 int sched_upreempt_pri = PRI_KERNEL;
222
223 /*
224 * Migration and balancing.
225 */
226 static u_int cacheht_time; /* Cache hotness time */
227 static u_int min_catch; /* Minimal LWP count for catching */
228 static u_int balance_period; /* Balance period */
229 static struct cpu_info *worker_ci; /* Victim CPU */
230 #ifdef MULTIPROCESSOR
231 static struct callout balance_ch; /* Callout of balancer */
232 #endif
233
234 /*
235 * During autoconfiguration or after a panic, a sleep will simply lower the
236 * priority briefly to allow interrupts, then return. The priority to be
237 * used (safepri) is machine-dependent, thus this value is initialized and
238 * maintained in the machine-dependent layers. This priority will typically
239 * be 0, or the lowest priority that is safe for use on the interrupt stack;
240 * it can be made higher to block network software interrupts after panics.
241 */
242 int safepri;
243
244 /*
245 * OBSOLETE INTERFACE
246 *
247 * General sleep call. Suspends the current process until a wakeup is
248 * performed on the specified identifier. The process will then be made
249 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
250 * means no timeout). If pri includes PCATCH flag, signals are checked
251 * before and after sleeping, else signals are not checked. Returns 0 if
252 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
253 * signal needs to be delivered, ERESTART is returned if the current system
254 * call should be restarted if possible, and EINTR is returned if the system
255 * call should be interrupted by the signal (return EINTR).
256 *
257 * The interlock is held until we are on a sleep queue. The interlock will
258 * be locked before returning back to the caller unless the PNORELOCK flag
259 * is specified, in which case the interlock will always be unlocked upon
260 * return.
261 */
262 int
263 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
264 volatile struct simplelock *interlock)
265 {
266 struct lwp *l = curlwp;
267 sleepq_t *sq;
268 int error;
269
270 KASSERT((l->l_pflag & LP_INTR) == 0);
271
272 if (sleepq_dontsleep(l)) {
273 (void)sleepq_abort(NULL, 0);
274 if ((priority & PNORELOCK) != 0)
275 simple_unlock(interlock);
276 return 0;
277 }
278
279 l->l_kpriority = true;
280 sq = sleeptab_lookup(&sleeptab, ident);
281 sleepq_enter(sq, l);
282 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
283
284 if (interlock != NULL) {
285 KASSERT(simple_lock_held(interlock));
286 simple_unlock(interlock);
287 }
288
289 error = sleepq_block(timo, priority & PCATCH);
290
291 if (interlock != NULL && (priority & PNORELOCK) == 0)
292 simple_lock(interlock);
293
294 return error;
295 }
296
297 int
298 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
299 kmutex_t *mtx)
300 {
301 struct lwp *l = curlwp;
302 sleepq_t *sq;
303 int error;
304
305 KASSERT((l->l_pflag & LP_INTR) == 0);
306
307 if (sleepq_dontsleep(l)) {
308 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
309 return 0;
310 }
311
312 l->l_kpriority = true;
313 sq = sleeptab_lookup(&sleeptab, ident);
314 sleepq_enter(sq, l);
315 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
316 mutex_exit(mtx);
317 error = sleepq_block(timo, priority & PCATCH);
318
319 if ((priority & PNORELOCK) == 0)
320 mutex_enter(mtx);
321
322 return error;
323 }
324
325 /*
326 * General sleep call for situations where a wake-up is not expected.
327 */
328 int
329 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
330 {
331 struct lwp *l = curlwp;
332 sleepq_t *sq;
333 int error;
334
335 if (sleepq_dontsleep(l))
336 return sleepq_abort(NULL, 0);
337
338 if (mtx != NULL)
339 mutex_exit(mtx);
340 l->l_kpriority = true;
341 sq = sleeptab_lookup(&sleeptab, l);
342 sleepq_enter(sq, l);
343 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
344 error = sleepq_block(timo, intr);
345 if (mtx != NULL)
346 mutex_enter(mtx);
347
348 return error;
349 }
350
351 /*
352 * OBSOLETE INTERFACE
353 *
354 * Make all processes sleeping on the specified identifier runnable.
355 */
356 void
357 wakeup(wchan_t ident)
358 {
359 sleepq_t *sq;
360
361 if (cold)
362 return;
363
364 sq = sleeptab_lookup(&sleeptab, ident);
365 sleepq_wake(sq, ident, (u_int)-1);
366 }
367
368 /*
369 * OBSOLETE INTERFACE
370 *
371 * Make the highest priority process first in line on the specified
372 * identifier runnable.
373 */
374 void
375 wakeup_one(wchan_t ident)
376 {
377 sleepq_t *sq;
378
379 if (cold)
380 return;
381
382 sq = sleeptab_lookup(&sleeptab, ident);
383 sleepq_wake(sq, ident, 1);
384 }
385
386
387 /*
388 * General yield call. Puts the current process back on its run queue and
389 * performs a voluntary context switch. Should only be called when the
390 * current process explicitly requests it (eg sched_yield(2)).
391 */
392 void
393 yield(void)
394 {
395 struct lwp *l = curlwp;
396
397 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
398 lwp_lock(l);
399 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
400 KASSERT(l->l_stat == LSONPROC);
401 l->l_kpriority = false;
402 (void)mi_switch(l);
403 KERNEL_LOCK(l->l_biglocks, l);
404 }
405
406 /*
407 * General preemption call. Puts the current process back on its run queue
408 * and performs an involuntary context switch.
409 */
410 void
411 preempt(void)
412 {
413 struct lwp *l = curlwp;
414
415 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
416 lwp_lock(l);
417 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
418 KASSERT(l->l_stat == LSONPROC);
419 l->l_kpriority = false;
420 l->l_nivcsw++;
421 (void)mi_switch(l);
422 KERNEL_LOCK(l->l_biglocks, l);
423 }
424
425 #ifdef PREEMPTION
426 /* XXX Yuck, for lockstat. */
427 static char in_critical_section;
428 static char kernel_lock_held;
429 static char spl_raised;
430 static char is_softint;
431
432 /*
433 * Handle a request made by another agent to preempt the current LWP
434 * in-kernel. Usually called when l_dopreempt may be non-zero.
435 */
436 bool
437 kpreempt(uintptr_t where)
438 {
439 uintptr_t failed;
440 lwp_t *l;
441 int s, dop;
442
443 l = curlwp;
444 failed = 0;
445 while ((dop = l->l_dopreempt) != 0) {
446 if (l->l_stat != LSONPROC) {
447 /*
448 * About to block (or die), let it happen.
449 * Doesn't really count as "preemption has
450 * been blocked", since we're going to
451 * context switch.
452 */
453 l->l_dopreempt = 0;
454 return true;
455 }
456 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
457 /* Can't preempt idle loop, don't count as failure. */
458 l->l_dopreempt = 0;
459 return true;
460 }
461 if (__predict_false(l->l_nopreempt != 0)) {
462 /* LWP holds preemption disabled, explicitly. */
463 if ((dop & DOPREEMPT_COUNTED) == 0) {
464 atomic_inc_64(&kpreempt_ev_crit.ev_count);
465 }
466 failed = (uintptr_t)&in_critical_section;
467 break;
468 }
469 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
470 /* Can't preempt soft interrupts yet. */
471 l->l_dopreempt = 0;
472 failed = (uintptr_t)&is_softint;
473 break;
474 }
475 s = splsched();
476 if (__predict_false(l->l_blcnt != 0 ||
477 curcpu()->ci_biglock_wanted != NULL)) {
478 /* Hold or want kernel_lock, code is not MT safe. */
479 splx(s);
480 if ((dop & DOPREEMPT_COUNTED) == 0) {
481 atomic_inc_64(&kpreempt_ev_klock.ev_count);
482 }
483 failed = (uintptr_t)&kernel_lock_held;
484 break;
485 }
486 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
487 /*
488 * It may be that the IPL is too high.
489 * kpreempt_enter() can schedule an
490 * interrupt to retry later.
491 */
492 splx(s);
493 if ((dop & DOPREEMPT_COUNTED) == 0) {
494 atomic_inc_64(&kpreempt_ev_ipl.ev_count);
495 }
496 failed = (uintptr_t)&spl_raised;
497 break;
498 }
499 /* Do it! */
500 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
501 atomic_inc_64(&kpreempt_ev_immed.ev_count);
502 }
503 lwp_lock(l);
504 mi_switch(l);
505 l->l_nopreempt++;
506 splx(s);
507
508 /* Take care of any MD cleanup. */
509 cpu_kpreempt_exit(where);
510 l->l_nopreempt--;
511 }
512
513 /* Record preemption failure for reporting via lockstat. */
514 if (__predict_false(failed)) {
515 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
516 int lsflag = 0;
517 LOCKSTAT_ENTER(lsflag);
518 /* Might recurse, make it atomic. */
519 if (__predict_false(lsflag)) {
520 if (where == 0) {
521 where = (uintptr_t)__builtin_return_address(0);
522 }
523 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
524 NULL, (void *)where) == NULL) {
525 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
526 l->l_pfaillock = failed;
527 }
528 }
529 LOCKSTAT_EXIT(lsflag);
530 }
531
532 return failed;
533 }
534
535 /*
536 * Return true if preemption is explicitly disabled.
537 */
538 bool
539 kpreempt_disabled(void)
540 {
541 lwp_t *l;
542
543 l = curlwp;
544
545 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
546 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
547 }
548 #else
549 bool
550 kpreempt(uintptr_t where)
551 {
552
553 panic("kpreempt");
554 return true;
555 }
556
557 bool
558 kpreempt_disabled(void)
559 {
560
561 return true;
562 }
563 #endif
564
565 /*
566 * Disable kernel preemption.
567 */
568 void
569 kpreempt_disable(void)
570 {
571
572 KPREEMPT_DISABLE(curlwp);
573 }
574
575 /*
576 * Reenable kernel preemption.
577 */
578 void
579 kpreempt_enable(void)
580 {
581
582 KPREEMPT_ENABLE(curlwp);
583 }
584
585 /*
586 * Compute the amount of time during which the current lwp was running.
587 *
588 * - update l_rtime unless it's an idle lwp.
589 */
590
591 void
592 updatertime(lwp_t *l, const struct bintime *now)
593 {
594
595 if ((l->l_flag & LW_IDLE) != 0)
596 return;
597
598 /* rtime += now - stime */
599 bintime_add(&l->l_rtime, now);
600 bintime_sub(&l->l_rtime, &l->l_stime);
601 }
602
603 /*
604 * The machine independent parts of context switch.
605 *
606 * Returns 1 if another LWP was actually run.
607 */
608 int
609 mi_switch(lwp_t *l)
610 {
611 struct cpu_info *ci, *tci = NULL;
612 struct schedstate_percpu *spc;
613 struct lwp *newl;
614 int retval, oldspl;
615 struct bintime bt;
616 bool returning;
617
618 KASSERT(lwp_locked(l, NULL));
619 KASSERT(kpreempt_disabled());
620 LOCKDEBUG_BARRIER(l->l_mutex, 1);
621
622 #ifdef KSTACK_CHECK_MAGIC
623 kstack_check_magic(l);
624 #endif
625
626 binuptime(&bt);
627
628 KASSERT(l->l_cpu == curcpu());
629 ci = l->l_cpu;
630 spc = &ci->ci_schedstate;
631 returning = false;
632 newl = NULL;
633
634 /*
635 * If we have been asked to switch to a specific LWP, then there
636 * is no need to inspect the run queues. If a soft interrupt is
637 * blocking, then return to the interrupted thread without adjusting
638 * VM context or its start time: neither have been changed in order
639 * to take the interrupt.
640 */
641 if (l->l_switchto != NULL) {
642 if ((l->l_pflag & LP_INTR) != 0) {
643 returning = true;
644 softint_block(l);
645 if ((l->l_flag & LW_TIMEINTR) != 0)
646 updatertime(l, &bt);
647 }
648 newl = l->l_switchto;
649 l->l_switchto = NULL;
650 }
651 #ifndef __HAVE_FAST_SOFTINTS
652 else if (ci->ci_data.cpu_softints != 0) {
653 /* There are pending soft interrupts, so pick one. */
654 newl = softint_picklwp();
655 newl->l_stat = LSONPROC;
656 newl->l_flag |= LW_RUNNING;
657 }
658 #endif /* !__HAVE_FAST_SOFTINTS */
659
660 /* Count time spent in current system call */
661 if (!returning) {
662 SYSCALL_TIME_SLEEP(l);
663
664 /*
665 * XXXSMP If we are using h/w performance counters,
666 * save context.
667 */
668 #if PERFCTRS
669 if (PMC_ENABLED(l->l_proc)) {
670 pmc_save_context(l->l_proc);
671 }
672 #endif
673 updatertime(l, &bt);
674 }
675
676 /*
677 * If on the CPU and we have gotten this far, then we must yield.
678 */
679 KASSERT(l->l_stat != LSRUN);
680 if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
681 KASSERT(lwp_locked(l, spc->spc_lwplock));
682
683 if (l->l_target_cpu == l->l_cpu) {
684 l->l_target_cpu = NULL;
685 } else {
686 tci = l->l_target_cpu;
687 }
688
689 if (__predict_false(tci != NULL)) {
690 /* Double-lock the runqueues */
691 spc_dlock(ci, tci);
692 } else {
693 /* Lock the runqueue */
694 spc_lock(ci);
695 }
696
697 if ((l->l_flag & LW_IDLE) == 0) {
698 l->l_stat = LSRUN;
699 if (__predict_false(tci != NULL)) {
700 /*
701 * Set the new CPU, lock and unset the
702 * l_target_cpu - thread will be enqueued
703 * to the runqueue of target CPU.
704 */
705 l->l_cpu = tci;
706 lwp_setlock(l, tci->ci_schedstate.spc_mutex);
707 l->l_target_cpu = NULL;
708 } else {
709 lwp_setlock(l, spc->spc_mutex);
710 }
711 sched_enqueue(l, true);
712 } else {
713 KASSERT(tci == NULL);
714 l->l_stat = LSIDL;
715 }
716 } else {
717 /* Lock the runqueue */
718 spc_lock(ci);
719 }
720
721 /*
722 * Let sched_nextlwp() select the LWP to run the CPU next.
723 * If no LWP is runnable, select the idle LWP.
724 *
725 * Note that spc_lwplock might not necessary be held, and
726 * new thread would be unlocked after setting the LWP-lock.
727 */
728 if (newl == NULL) {
729 newl = sched_nextlwp();
730 if (newl != NULL) {
731 sched_dequeue(newl);
732 KASSERT(lwp_locked(newl, spc->spc_mutex));
733 newl->l_stat = LSONPROC;
734 newl->l_cpu = ci;
735 newl->l_flag |= LW_RUNNING;
736 lwp_setlock(newl, spc->spc_lwplock);
737 } else {
738 newl = ci->ci_data.cpu_idlelwp;
739 newl->l_stat = LSONPROC;
740 newl->l_flag |= LW_RUNNING;
741 }
742 /*
743 * Only clear want_resched if there are no
744 * pending (slow) software interrupts.
745 */
746 ci->ci_want_resched = ci->ci_data.cpu_softints;
747 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
748 spc->spc_curpriority = lwp_eprio(newl);
749 }
750
751 /* Items that must be updated with the CPU locked. */
752 if (!returning) {
753 /* Update the new LWP's start time. */
754 newl->l_stime = bt;
755
756 /*
757 * ci_curlwp changes when a fast soft interrupt occurs.
758 * We use cpu_onproc to keep track of which kernel or
759 * user thread is running 'underneath' the software
760 * interrupt. This is important for time accounting,
761 * itimers and forcing user threads to preempt (aston).
762 */
763 ci->ci_data.cpu_onproc = newl;
764 }
765
766 /* Kernel preemption related tasks. */
767 l->l_dopreempt = 0;
768 if (__predict_false(l->l_pfailaddr != 0)) {
769 LOCKSTAT_FLAG(lsflag);
770 LOCKSTAT_ENTER(lsflag);
771 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
772 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
773 1, l->l_pfailtime, l->l_pfailaddr);
774 LOCKSTAT_EXIT(lsflag);
775 l->l_pfailtime = 0;
776 l->l_pfaillock = 0;
777 l->l_pfailaddr = 0;
778 }
779
780 if (l != newl) {
781 struct lwp *prevlwp;
782
783 /* Release all locks, but leave the current LWP locked */
784 if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
785 /*
786 * In case of migration, drop the local runqueue
787 * lock, thread is on other runqueue now.
788 */
789 if (__predict_false(tci != NULL))
790 spc_unlock(ci);
791 /*
792 * Drop spc_lwplock, if the current LWP has been moved
793 * to the run queue (it is now locked by spc_mutex).
794 */
795 mutex_spin_exit(spc->spc_lwplock);
796 } else {
797 /*
798 * Otherwise, drop the spc_mutex, we are done with the
799 * run queues.
800 */
801 mutex_spin_exit(spc->spc_mutex);
802 KASSERT(tci == NULL);
803 }
804
805 /*
806 * Mark that context switch is going to be perfomed
807 * for this LWP, to protect it from being switched
808 * to on another CPU.
809 */
810 KASSERT(l->l_ctxswtch == 0);
811 l->l_ctxswtch = 1;
812 l->l_ncsw++;
813 l->l_flag &= ~LW_RUNNING;
814
815 /*
816 * Increase the count of spin-mutexes before the release
817 * of the last lock - we must remain at IPL_SCHED during
818 * the context switch.
819 */
820 oldspl = MUTEX_SPIN_OLDSPL(ci);
821 ci->ci_mtx_count--;
822 lwp_unlock(l);
823
824 /* Count the context switch on this CPU. */
825 ci->ci_data.cpu_nswtch++;
826
827 /* Update status for lwpctl, if present. */
828 if (l->l_lwpctl != NULL)
829 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
830
831 /*
832 * Save old VM context, unless a soft interrupt
833 * handler is blocking.
834 */
835 if (!returning)
836 pmap_deactivate(l);
837
838 /*
839 * We may need to spin-wait for if 'newl' is still
840 * context switching on another CPU.
841 */
842 if (newl->l_ctxswtch != 0) {
843 u_int count;
844 count = SPINLOCK_BACKOFF_MIN;
845 while (newl->l_ctxswtch)
846 SPINLOCK_BACKOFF(count);
847 }
848
849 /* Switch to the new LWP.. */
850 prevlwp = cpu_switchto(l, newl, returning);
851 ci = curcpu();
852
853 /*
854 * Switched away - we have new curlwp.
855 * Restore VM context and IPL.
856 */
857 pmap_activate(l);
858 if (prevlwp != NULL) {
859 /* Normalize the count of the spin-mutexes */
860 ci->ci_mtx_count++;
861 /* Unmark the state of context switch */
862 membar_exit();
863 prevlwp->l_ctxswtch = 0;
864 }
865
866 /* Update status for lwpctl, if present. */
867 if (l->l_lwpctl != NULL) {
868 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
869 l->l_lwpctl->lc_pctr++;
870 }
871
872 KASSERT(l->l_cpu == ci);
873 splx(oldspl);
874 retval = 1;
875 } else {
876 /* Nothing to do - just unlock and return. */
877 KASSERT(tci == NULL);
878 spc_unlock(ci);
879 lwp_unlock(l);
880 retval = 0;
881 }
882
883 KASSERT(l == curlwp);
884 KASSERT(l->l_stat == LSONPROC);
885
886 /*
887 * XXXSMP If we are using h/w performance counters, restore context.
888 * XXXSMP preemption problem.
889 */
890 #if PERFCTRS
891 if (PMC_ENABLED(l->l_proc)) {
892 pmc_restore_context(l->l_proc);
893 }
894 #endif
895 SYSCALL_TIME_WAKEUP(l);
896 LOCKDEBUG_BARRIER(NULL, 1);
897
898 return retval;
899 }
900
901 /*
902 * Change process state to be runnable, placing it on the run queue if it is
903 * in memory, and awakening the swapper if it isn't in memory.
904 *
905 * Call with the process and LWP locked. Will return with the LWP unlocked.
906 */
907 void
908 setrunnable(struct lwp *l)
909 {
910 struct proc *p = l->l_proc;
911 struct cpu_info *ci;
912 sigset_t *ss;
913
914 KASSERT((l->l_flag & LW_IDLE) == 0);
915 KASSERT(mutex_owned(p->p_lock));
916 KASSERT(lwp_locked(l, NULL));
917 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
918
919 switch (l->l_stat) {
920 case LSSTOP:
921 /*
922 * If we're being traced (possibly because someone attached us
923 * while we were stopped), check for a signal from the debugger.
924 */
925 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
926 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
927 ss = &l->l_sigpend.sp_set;
928 else
929 ss = &p->p_sigpend.sp_set;
930 sigaddset(ss, p->p_xstat);
931 signotify(l);
932 }
933 p->p_nrlwps++;
934 break;
935 case LSSUSPENDED:
936 l->l_flag &= ~LW_WSUSPEND;
937 p->p_nrlwps++;
938 cv_broadcast(&p->p_lwpcv);
939 break;
940 case LSSLEEP:
941 KASSERT(l->l_wchan != NULL);
942 break;
943 default:
944 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
945 }
946
947 /*
948 * If the LWP was sleeping interruptably, then it's OK to start it
949 * again. If not, mark it as still sleeping.
950 */
951 if (l->l_wchan != NULL) {
952 l->l_stat = LSSLEEP;
953 /* lwp_unsleep() will release the lock. */
954 lwp_unsleep(l, true);
955 return;
956 }
957
958 /*
959 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
960 * about to call mi_switch(), in which case it will yield.
961 */
962 if ((l->l_flag & LW_RUNNING) != 0) {
963 l->l_stat = LSONPROC;
964 l->l_slptime = 0;
965 lwp_unlock(l);
966 return;
967 }
968
969 /*
970 * Look for a CPU to run.
971 * Set the LWP runnable.
972 */
973 ci = sched_takecpu(l);
974 l->l_cpu = ci;
975 if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
976 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
977 lwp_lock(l);
978 }
979 sched_setrunnable(l);
980 l->l_stat = LSRUN;
981 l->l_slptime = 0;
982
983 /*
984 * If thread is swapped out - wake the swapper to bring it back in.
985 * Otherwise, enter it into a run queue.
986 */
987 if (l->l_flag & LW_INMEM) {
988 sched_enqueue(l, false);
989 resched_cpu(l);
990 lwp_unlock(l);
991 } else {
992 lwp_unlock(l);
993 uvm_kick_scheduler();
994 }
995 }
996
997 /*
998 * suspendsched:
999 *
1000 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1001 */
1002 void
1003 suspendsched(void)
1004 {
1005 CPU_INFO_ITERATOR cii;
1006 struct cpu_info *ci;
1007 struct lwp *l;
1008 struct proc *p;
1009
1010 /*
1011 * We do this by process in order not to violate the locking rules.
1012 */
1013 mutex_enter(proc_lock);
1014 PROCLIST_FOREACH(p, &allproc) {
1015 mutex_enter(p->p_lock);
1016
1017 if ((p->p_flag & PK_SYSTEM) != 0) {
1018 mutex_exit(p->p_lock);
1019 continue;
1020 }
1021
1022 p->p_stat = SSTOP;
1023
1024 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1025 if (l == curlwp)
1026 continue;
1027
1028 lwp_lock(l);
1029
1030 /*
1031 * Set L_WREBOOT so that the LWP will suspend itself
1032 * when it tries to return to user mode. We want to
1033 * try and get to get as many LWPs as possible to
1034 * the user / kernel boundary, so that they will
1035 * release any locks that they hold.
1036 */
1037 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1038
1039 if (l->l_stat == LSSLEEP &&
1040 (l->l_flag & LW_SINTR) != 0) {
1041 /* setrunnable() will release the lock. */
1042 setrunnable(l);
1043 continue;
1044 }
1045
1046 lwp_unlock(l);
1047 }
1048
1049 mutex_exit(p->p_lock);
1050 }
1051 mutex_exit(proc_lock);
1052
1053 /*
1054 * Kick all CPUs to make them preempt any LWPs running in user mode.
1055 * They'll trap into the kernel and suspend themselves in userret().
1056 */
1057 for (CPU_INFO_FOREACH(cii, ci)) {
1058 spc_lock(ci);
1059 cpu_need_resched(ci, RESCHED_IMMED);
1060 spc_unlock(ci);
1061 }
1062 }
1063
1064 /*
1065 * sched_unsleep:
1066 *
1067 * The is called when the LWP has not been awoken normally but instead
1068 * interrupted: for example, if the sleep timed out. Because of this,
1069 * it's not a valid action for running or idle LWPs.
1070 */
1071 static u_int
1072 sched_unsleep(struct lwp *l, bool cleanup)
1073 {
1074
1075 lwp_unlock(l);
1076 panic("sched_unsleep");
1077 }
1078
1079 void
1080 resched_cpu(struct lwp *l)
1081 {
1082 struct cpu_info *ci;
1083
1084 /*
1085 * XXXSMP
1086 * Since l->l_cpu persists across a context switch,
1087 * this gives us *very weak* processor affinity, in
1088 * that we notify the CPU on which the process last
1089 * ran that it should try to switch.
1090 *
1091 * This does not guarantee that the process will run on
1092 * that processor next, because another processor might
1093 * grab it the next time it performs a context switch.
1094 *
1095 * This also does not handle the case where its last
1096 * CPU is running a higher-priority process, but every
1097 * other CPU is running a lower-priority process. There
1098 * are ways to handle this situation, but they're not
1099 * currently very pretty, and we also need to weigh the
1100 * cost of moving a process from one CPU to another.
1101 */
1102 ci = l->l_cpu;
1103 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1104 cpu_need_resched(ci, 0);
1105 }
1106
1107 static void
1108 sched_changepri(struct lwp *l, pri_t pri)
1109 {
1110
1111 KASSERT(lwp_locked(l, NULL));
1112
1113 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1114 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1115 sched_dequeue(l);
1116 l->l_priority = pri;
1117 sched_enqueue(l, false);
1118 } else {
1119 l->l_priority = pri;
1120 }
1121 resched_cpu(l);
1122 }
1123
1124 static void
1125 sched_lendpri(struct lwp *l, pri_t pri)
1126 {
1127
1128 KASSERT(lwp_locked(l, NULL));
1129
1130 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1131 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1132 sched_dequeue(l);
1133 l->l_inheritedprio = pri;
1134 sched_enqueue(l, false);
1135 } else {
1136 l->l_inheritedprio = pri;
1137 }
1138 resched_cpu(l);
1139 }
1140
1141 struct lwp *
1142 syncobj_noowner(wchan_t wchan)
1143 {
1144
1145 return NULL;
1146 }
1147
1148 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1149 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
1150
1151 /*
1152 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
1153 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
1154 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
1155 *
1156 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
1157 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
1158 *
1159 * If you dont want to bother with the faster/more-accurate formula, you
1160 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
1161 * (more general) method of calculating the %age of CPU used by a process.
1162 */
1163 #define CCPU_SHIFT (FSHIFT + 1)
1164
1165 /*
1166 * sched_pstats:
1167 *
1168 * Update process statistics and check CPU resource allocation.
1169 * Call scheduler-specific hook to eventually adjust process/LWP
1170 * priorities.
1171 */
1172 /* ARGSUSED */
1173 void
1174 sched_pstats(void *arg)
1175 {
1176 struct rlimit *rlim;
1177 struct lwp *l;
1178 struct proc *p;
1179 int sig, clkhz;
1180 long runtm;
1181
1182 sched_pstats_ticks++;
1183
1184 mutex_enter(proc_lock);
1185 PROCLIST_FOREACH(p, &allproc) {
1186 /*
1187 * Increment time in/out of memory and sleep time (if
1188 * sleeping). We ignore overflow; with 16-bit int's
1189 * (remember them?) overflow takes 45 days.
1190 */
1191 mutex_enter(p->p_lock);
1192 mutex_spin_enter(&p->p_stmutex);
1193 runtm = p->p_rtime.sec;
1194 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1195 if ((l->l_flag & LW_IDLE) != 0)
1196 continue;
1197 lwp_lock(l);
1198 runtm += l->l_rtime.sec;
1199 l->l_swtime++;
1200 sched_pstats_hook(l);
1201 lwp_unlock(l);
1202
1203 /*
1204 * p_pctcpu is only for ps.
1205 */
1206 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1207 if (l->l_slptime < 1) {
1208 clkhz = stathz != 0 ? stathz : hz;
1209 #if (FSHIFT >= CCPU_SHIFT)
1210 l->l_pctcpu += (clkhz == 100) ?
1211 ((fixpt_t)l->l_cpticks) <<
1212 (FSHIFT - CCPU_SHIFT) :
1213 100 * (((fixpt_t) p->p_cpticks)
1214 << (FSHIFT - CCPU_SHIFT)) / clkhz;
1215 #else
1216 l->l_pctcpu += ((FSCALE - ccpu) *
1217 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1218 #endif
1219 l->l_cpticks = 0;
1220 }
1221 }
1222 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1223 mutex_spin_exit(&p->p_stmutex);
1224
1225 /*
1226 * Check if the process exceeds its CPU resource allocation.
1227 * If over max, kill it.
1228 */
1229 rlim = &p->p_rlimit[RLIMIT_CPU];
1230 sig = 0;
1231 if (runtm >= rlim->rlim_cur) {
1232 if (runtm >= rlim->rlim_max)
1233 sig = SIGKILL;
1234 else {
1235 sig = SIGXCPU;
1236 if (rlim->rlim_cur < rlim->rlim_max)
1237 rlim->rlim_cur += 5;
1238 }
1239 }
1240 mutex_exit(p->p_lock);
1241 if (sig)
1242 psignal(p, sig);
1243 }
1244 mutex_exit(proc_lock);
1245 uvm_meter();
1246 cv_wakeup(&lbolt);
1247 callout_schedule(&sched_pstats_ch, hz);
1248 }
1249
1250 void
1251 sched_init(void)
1252 {
1253
1254 cv_init(&lbolt, "lbolt");
1255 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
1256 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
1257
1258 /* Balancing */
1259 worker_ci = curcpu();
1260 cacheht_time = mstohz(5); /* ~5 ms */
1261 balance_period = mstohz(300); /* ~300ms */
1262
1263 /* Minimal count of LWPs for catching: log2(count of CPUs) */
1264 min_catch = min(ilog2(ncpu), 4);
1265
1266 #ifdef PREEMPTION
1267 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_INTR, NULL,
1268 "kpreempt", "defer: critical section");
1269 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_INTR, NULL,
1270 "kpreempt", "defer: kernel_lock");
1271 evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_INTR, NULL,
1272 "kpreempt", "defer: IPL");
1273 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_INTR, NULL,
1274 "kpreempt", "immediate");
1275 #endif
1276
1277 /* Initialize balancing callout and run it */
1278 #ifdef MULTIPROCESSOR
1279 callout_init(&balance_ch, CALLOUT_MPSAFE);
1280 callout_setfunc(&balance_ch, sched_balance, NULL);
1281 callout_schedule(&balance_ch, balance_period);
1282 #endif
1283 sched_pstats(NULL);
1284 }
1285
1286 SYSCTL_SETUP(sysctl_sched_setup, "sysctl sched setup")
1287 {
1288 const struct sysctlnode *node = NULL;
1289
1290 sysctl_createv(clog, 0, NULL, NULL,
1291 CTLFLAG_PERMANENT,
1292 CTLTYPE_NODE, "kern", NULL,
1293 NULL, 0, NULL, 0,
1294 CTL_KERN, CTL_EOL);
1295 sysctl_createv(clog, 0, NULL, &node,
1296 CTLFLAG_PERMANENT,
1297 CTLTYPE_NODE, "sched",
1298 SYSCTL_DESCR("Scheduler options"),
1299 NULL, 0, NULL, 0,
1300 CTL_KERN, CTL_CREATE, CTL_EOL);
1301
1302 if (node == NULL)
1303 return;
1304
1305 sysctl_createv(clog, 0, &node, NULL,
1306 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1307 CTLTYPE_INT, "cacheht_time",
1308 SYSCTL_DESCR("Cache hotness time (in ticks)"),
1309 NULL, 0, &cacheht_time, 0,
1310 CTL_CREATE, CTL_EOL);
1311 sysctl_createv(clog, 0, &node, NULL,
1312 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1313 CTLTYPE_INT, "balance_period",
1314 SYSCTL_DESCR("Balance period (in ticks)"),
1315 NULL, 0, &balance_period, 0,
1316 CTL_CREATE, CTL_EOL);
1317 sysctl_createv(clog, 0, &node, NULL,
1318 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1319 CTLTYPE_INT, "min_catch",
1320 SYSCTL_DESCR("Minimal count of threads for catching"),
1321 NULL, 0, &min_catch, 0,
1322 CTL_CREATE, CTL_EOL);
1323 sysctl_createv(clog, 0, &node, NULL,
1324 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1325 CTLTYPE_INT, "timesoftints",
1326 SYSCTL_DESCR("Track CPU time for soft interrupts"),
1327 NULL, 0, &softint_timing, 0,
1328 CTL_CREATE, CTL_EOL);
1329 sysctl_createv(clog, 0, &node, NULL,
1330 #ifdef PREEMPTION
1331 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1332 #else
1333 CTLFLAG_PERMANENT,
1334 #endif
1335 CTLTYPE_INT, "kpreempt_pri",
1336 SYSCTL_DESCR("Minimum priority to trigger kernel preemption"),
1337 NULL, 0, &sched_kpreempt_pri, 0,
1338 CTL_CREATE, CTL_EOL);
1339 sysctl_createv(clog, 0, &node, NULL,
1340 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1341 CTLTYPE_INT, "upreempt_pri",
1342 SYSCTL_DESCR("Minimum priority to trigger user preemption"),
1343 NULL, 0, &sched_upreempt_pri, 0,
1344 CTL_CREATE, CTL_EOL);
1345 }
1346
1347 void
1348 sched_cpuattach(struct cpu_info *ci)
1349 {
1350 runqueue_t *ci_rq;
1351 void *rq_ptr;
1352 u_int i, size;
1353
1354 if (ci->ci_schedstate.spc_lwplock == NULL) {
1355 ci->ci_schedstate.spc_lwplock =
1356 mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1357 }
1358 if (ci == lwp0.l_cpu) {
1359 /* Initialize the scheduler structure of the primary LWP */
1360 lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
1361 }
1362 if (ci->ci_schedstate.spc_mutex != NULL) {
1363 /* Already initialized. */
1364 return;
1365 }
1366
1367 /* Allocate the run queue */
1368 size = roundup2(sizeof(runqueue_t), coherency_unit) + coherency_unit;
1369 rq_ptr = kmem_zalloc(size, KM_SLEEP);
1370 if (rq_ptr == NULL) {
1371 panic("sched_cpuattach: could not allocate the runqueue");
1372 }
1373 ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), coherency_unit));
1374
1375 /* Initialize run queues */
1376 ci->ci_schedstate.spc_mutex =
1377 mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
1378 for (i = 0; i < PRI_RT_COUNT; i++)
1379 TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
1380 for (i = 0; i < PRI_TS_COUNT; i++)
1381 TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
1382
1383 ci->ci_schedstate.spc_sched_info = ci_rq;
1384 }
1385
1386 /*
1387 * Control of the runqueue.
1388 */
1389
1390 static void *
1391 sched_getrq(runqueue_t *ci_rq, const pri_t prio)
1392 {
1393
1394 KASSERT(prio < PRI_COUNT);
1395 return (prio <= PRI_HIGHEST_TS) ?
1396 &ci_rq->r_ts_queue[prio].q_head :
1397 &ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
1398 }
1399
1400 void
1401 sched_enqueue(struct lwp *l, bool swtch)
1402 {
1403 runqueue_t *ci_rq;
1404 struct schedstate_percpu *spc;
1405 TAILQ_HEAD(, lwp) *q_head;
1406 const pri_t eprio = lwp_eprio(l);
1407 struct cpu_info *ci;
1408 int type;
1409
1410 ci = l->l_cpu;
1411 spc = &ci->ci_schedstate;
1412 ci_rq = spc->spc_sched_info;
1413 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1414
1415 /* Update the last run time on switch */
1416 if (__predict_true(swtch == true)) {
1417 l->l_rticks = hardclock_ticks;
1418 l->l_rticksum += (hardclock_ticks - l->l_rticks);
1419 } else if (l->l_rticks == 0)
1420 l->l_rticks = hardclock_ticks;
1421
1422 /* Enqueue the thread */
1423 q_head = sched_getrq(ci_rq, eprio);
1424 if (TAILQ_EMPTY(q_head)) {
1425 u_int i;
1426 uint32_t q;
1427
1428 /* Mark bit */
1429 i = eprio >> BITMAP_SHIFT;
1430 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
1431 KASSERT((ci_rq->r_bitmap[i] & q) == 0);
1432 ci_rq->r_bitmap[i] |= q;
1433 }
1434 TAILQ_INSERT_TAIL(q_head, l, l_runq);
1435 ci_rq->r_count++;
1436 if ((l->l_pflag & LP_BOUND) == 0)
1437 ci_rq->r_mcount++;
1438
1439 /*
1440 * Update the value of highest priority in the runqueue,
1441 * if priority of this thread is higher.
1442 */
1443 if (eprio > spc->spc_maxpriority)
1444 spc->spc_maxpriority = eprio;
1445
1446 sched_newts(l);
1447
1448 /*
1449 * Wake the chosen CPU or cause a preemption if the newly
1450 * enqueued thread has higher priority. Don't cause a
1451 * preemption if the thread is yielding (swtch).
1452 */
1453 if (!swtch && eprio > spc->spc_curpriority) {
1454 if (eprio >= sched_kpreempt_pri)
1455 type = RESCHED_KPREEMPT;
1456 else if (eprio >= sched_upreempt_pri)
1457 type = RESCHED_IMMED;
1458 else
1459 type = 0;
1460 cpu_need_resched(ci, type);
1461 }
1462 }
1463
1464 void
1465 sched_dequeue(struct lwp *l)
1466 {
1467 runqueue_t *ci_rq;
1468 TAILQ_HEAD(, lwp) *q_head;
1469 struct schedstate_percpu *spc;
1470 const pri_t eprio = lwp_eprio(l);
1471
1472 spc = & l->l_cpu->ci_schedstate;
1473 ci_rq = spc->spc_sched_info;
1474 KASSERT(lwp_locked(l, spc->spc_mutex));
1475
1476 KASSERT(eprio <= spc->spc_maxpriority);
1477 KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
1478 KASSERT(ci_rq->r_count > 0);
1479
1480 ci_rq->r_count--;
1481 if ((l->l_pflag & LP_BOUND) == 0)
1482 ci_rq->r_mcount--;
1483
1484 q_head = sched_getrq(ci_rq, eprio);
1485 TAILQ_REMOVE(q_head, l, l_runq);
1486 if (TAILQ_EMPTY(q_head)) {
1487 u_int i;
1488 uint32_t q;
1489
1490 /* Unmark bit */
1491 i = eprio >> BITMAP_SHIFT;
1492 q = BITMAP_MSB >> (eprio & BITMAP_MASK);
1493 KASSERT((ci_rq->r_bitmap[i] & q) != 0);
1494 ci_rq->r_bitmap[i] &= ~q;
1495
1496 /*
1497 * Update the value of highest priority in the runqueue, in a
1498 * case it was a last thread in the queue of highest priority.
1499 */
1500 if (eprio != spc->spc_maxpriority)
1501 return;
1502
1503 do {
1504 if (ci_rq->r_bitmap[i] != 0) {
1505 q = ffs(ci_rq->r_bitmap[i]);
1506 spc->spc_maxpriority =
1507 (i << BITMAP_SHIFT) + (BITMAP_BITS - q);
1508 return;
1509 }
1510 } while (i--);
1511
1512 /* If not found - set the lowest value */
1513 spc->spc_maxpriority = 0;
1514 }
1515 }
1516
1517 /*
1518 * Migration and balancing.
1519 */
1520
1521 #ifdef MULTIPROCESSOR
1522
1523 /* Estimate if LWP is cache-hot */
1524 static inline bool
1525 lwp_cache_hot(const struct lwp *l)
1526 {
1527
1528 if (l->l_slptime || l->l_rticks == 0)
1529 return false;
1530
1531 return (hardclock_ticks - l->l_rticks <= cacheht_time);
1532 }
1533
1534 /* Check if LWP can migrate to the chosen CPU */
1535 static inline bool
1536 sched_migratable(const struct lwp *l, struct cpu_info *ci)
1537 {
1538 const struct schedstate_percpu *spc = &ci->ci_schedstate;
1539
1540 /* CPU is offline */
1541 if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
1542 return false;
1543
1544 /* Affinity bind */
1545 if (__predict_false(l->l_flag & LW_AFFINITY))
1546 return CPU_ISSET(cpu_index(ci), &l->l_affinity);
1547
1548 /* Processor-set */
1549 return (spc->spc_psid == l->l_psid);
1550 }
1551
1552 /*
1553 * Estimate the migration of LWP to the other CPU.
1554 * Take and return the CPU, if migration is needed.
1555 */
1556 struct cpu_info *
1557 sched_takecpu(struct lwp *l)
1558 {
1559 struct cpu_info *ci, *tci, *first, *next;
1560 struct schedstate_percpu *spc;
1561 runqueue_t *ci_rq, *ici_rq;
1562 pri_t eprio, lpri, pri;
1563
1564 KASSERT(lwp_locked(l, NULL));
1565
1566 ci = l->l_cpu;
1567 spc = &ci->ci_schedstate;
1568 ci_rq = spc->spc_sched_info;
1569
1570 /* If thread is strictly bound, do not estimate other CPUs */
1571 if (l->l_pflag & LP_BOUND)
1572 return ci;
1573
1574 /* CPU of this thread is idling - run there */
1575 if (ci_rq->r_count == 0)
1576 return ci;
1577
1578 eprio = lwp_eprio(l);
1579
1580 /* Stay if thread is cache-hot */
1581 if (__predict_true(l->l_stat != LSIDL) &&
1582 lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
1583 return ci;
1584
1585 /* Run on current CPU if priority of thread is higher */
1586 ci = curcpu();
1587 spc = &ci->ci_schedstate;
1588 if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
1589 return ci;
1590
1591 /*
1592 * Look for the CPU with the lowest priority thread. In case of
1593 * equal priority, choose the CPU with the fewest of threads.
1594 */
1595 first = l->l_cpu;
1596 ci = first;
1597 tci = first;
1598 lpri = PRI_COUNT;
1599 do {
1600 next = CIRCLEQ_LOOP_NEXT(&cpu_queue, ci, ci_data.cpu_qchain);
1601 spc = &ci->ci_schedstate;
1602 ici_rq = spc->spc_sched_info;
1603 pri = max(spc->spc_curpriority, spc->spc_maxpriority);
1604 if (pri > lpri)
1605 continue;
1606
1607 if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
1608 continue;
1609
1610 if (!sched_migratable(l, ci))
1611 continue;
1612
1613 lpri = pri;
1614 tci = ci;
1615 ci_rq = ici_rq;
1616 } while (ci = next, ci != first);
1617
1618 return tci;
1619 }
1620
1621 /*
1622 * Tries to catch an LWP from the runqueue of other CPU.
1623 */
1624 static struct lwp *
1625 sched_catchlwp(void)
1626 {
1627 struct cpu_info *curci = curcpu(), *ci = worker_ci;
1628 struct schedstate_percpu *spc;
1629 TAILQ_HEAD(, lwp) *q_head;
1630 runqueue_t *ci_rq;
1631 struct lwp *l;
1632
1633 if (curci == ci)
1634 return NULL;
1635
1636 /* Lockless check */
1637 spc = &ci->ci_schedstate;
1638 ci_rq = spc->spc_sched_info;
1639 if (ci_rq->r_mcount < min_catch)
1640 return NULL;
1641
1642 /*
1643 * Double-lock the runqueues.
1644 */
1645 if (curci < ci) {
1646 spc_lock(ci);
1647 } else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
1648 const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
1649
1650 spc_unlock(curci);
1651 spc_lock(ci);
1652 spc_lock(curci);
1653
1654 if (cur_rq->r_count) {
1655 spc_unlock(ci);
1656 return NULL;
1657 }
1658 }
1659
1660 if (ci_rq->r_mcount < min_catch) {
1661 spc_unlock(ci);
1662 return NULL;
1663 }
1664
1665 /* Take the highest priority thread */
1666 q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
1667 l = TAILQ_FIRST(q_head);
1668
1669 for (;;) {
1670 /* Check the first and next result from the queue */
1671 if (l == NULL)
1672 break;
1673 KASSERT(l->l_stat == LSRUN);
1674 KASSERT(l->l_flag & LW_INMEM);
1675
1676 /* Look for threads, whose are allowed to migrate */
1677 if ((l->l_pflag & LP_BOUND) || lwp_cache_hot(l) ||
1678 !sched_migratable(l, curci)) {
1679 l = TAILQ_NEXT(l, l_runq);
1680 continue;
1681 }
1682
1683 /* Grab the thread, and move to the local run queue */
1684 sched_dequeue(l);
1685 l->l_cpu = curci;
1686 lwp_unlock_to(l, curci->ci_schedstate.spc_mutex);
1687 sched_enqueue(l, false);
1688 return l;
1689 }
1690 spc_unlock(ci);
1691
1692 return l;
1693 }
1694
1695 /*
1696 * Periodical calculations for balancing.
1697 */
1698 static void
1699 sched_balance(void *nocallout)
1700 {
1701 struct cpu_info *ci, *hci;
1702 runqueue_t *ci_rq;
1703 CPU_INFO_ITERATOR cii;
1704 u_int highest;
1705
1706 hci = curcpu();
1707 highest = 0;
1708
1709 /* Make lockless countings */
1710 for (CPU_INFO_FOREACH(cii, ci)) {
1711 ci_rq = ci->ci_schedstate.spc_sched_info;
1712
1713 /* Average count of the threads */
1714 ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
1715
1716 /* Look for CPU with the highest average */
1717 if (ci_rq->r_avgcount > highest) {
1718 hci = ci;
1719 highest = ci_rq->r_avgcount;
1720 }
1721 }
1722
1723 /* Update the worker */
1724 worker_ci = hci;
1725
1726 if (nocallout == NULL)
1727 callout_schedule(&balance_ch, balance_period);
1728 }
1729
1730 #else
1731
1732 struct cpu_info *
1733 sched_takecpu(struct lwp *l)
1734 {
1735
1736 return l->l_cpu;
1737 }
1738
1739 #endif /* MULTIPROCESSOR */
1740
1741 /*
1742 * Scheduler mill.
1743 */
1744 struct lwp *
1745 sched_nextlwp(void)
1746 {
1747 struct cpu_info *ci = curcpu();
1748 struct schedstate_percpu *spc;
1749 TAILQ_HEAD(, lwp) *q_head;
1750 runqueue_t *ci_rq;
1751 struct lwp *l;
1752
1753 spc = &ci->ci_schedstate;
1754 ci_rq = spc->spc_sched_info;
1755
1756 #ifdef MULTIPROCESSOR
1757 /* If runqueue is empty, try to catch some thread from other CPU */
1758 if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
1759 if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
1760 return NULL;
1761 } else if (ci_rq->r_count == 0) {
1762 /* Reset the counter, and call the balancer */
1763 ci_rq->r_avgcount = 0;
1764 sched_balance(ci);
1765
1766 /* The re-locking will be done inside */
1767 return sched_catchlwp();
1768 }
1769 #else
1770 if (ci_rq->r_count == 0)
1771 return NULL;
1772 #endif
1773
1774 /* Take the highest priority thread */
1775 KASSERT(ci_rq->r_bitmap[spc->spc_maxpriority >> BITMAP_SHIFT]);
1776 q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
1777 l = TAILQ_FIRST(q_head);
1778 KASSERT(l != NULL);
1779
1780 sched_oncpu(l);
1781 l->l_rticks = hardclock_ticks;
1782
1783 return l;
1784 }
1785
1786 bool
1787 sched_curcpu_runnable_p(void)
1788 {
1789 const struct cpu_info *ci;
1790 const runqueue_t *ci_rq;
1791 bool rv;
1792
1793 kpreempt_disable();
1794 ci = curcpu();
1795 ci_rq = ci->ci_schedstate.spc_sched_info;
1796
1797 #ifndef __HAVE_FAST_SOFTINTS
1798 if (ci->ci_data.cpu_softints) {
1799 kpreempt_enable();
1800 return true;
1801 }
1802 #endif
1803
1804 if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
1805 rv = (ci_rq->r_count - ci_rq->r_mcount);
1806 else
1807 rv = ci_rq->r_count != 0;
1808 kpreempt_enable();
1809
1810 return rv;
1811 }
1812
1813 /*
1814 * Debugging.
1815 */
1816
1817 #ifdef DDB
1818
1819 void
1820 sched_print_runqueue(void (*pr)(const char *, ...)
1821 __attribute__((__format__(__printf__,1,2))))
1822 {
1823 runqueue_t *ci_rq;
1824 struct schedstate_percpu *spc;
1825 struct lwp *l;
1826 struct proc *p;
1827 int i;
1828 struct cpu_info *ci;
1829 CPU_INFO_ITERATOR cii;
1830
1831 for (CPU_INFO_FOREACH(cii, ci)) {
1832 spc = &ci->ci_schedstate;
1833 ci_rq = spc->spc_sched_info;
1834
1835 (*pr)("Run-queue (CPU = %u):\n", ci->ci_index);
1836 (*pr)(" pid.lid = %d.%d, threads count = %u, "
1837 "avgcount = %u, highest pri = %d\n",
1838 #ifdef MULTIPROCESSOR
1839 ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
1840 #else
1841 curlwp->l_proc->p_pid, curlwp->l_lid,
1842 #endif
1843 ci_rq->r_count, ci_rq->r_avgcount, spc->spc_maxpriority);
1844 i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
1845 do {
1846 uint32_t q;
1847 q = ci_rq->r_bitmap[i];
1848 (*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
1849 } while (i--);
1850 }
1851
1852 (*pr)(" %5s %4s %4s %10s %3s %18s %4s %s\n",
1853 "LID", "PRI", "EPRI", "FL", "ST", "LWP", "CPU", "LRTIME");
1854
1855 PROCLIST_FOREACH(p, &allproc) {
1856 (*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
1857 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1858 ci = l->l_cpu;
1859 (*pr)(" | %5d %4u %4u 0x%8.8x %3s %18p %4u %u\n",
1860 (int)l->l_lid, l->l_priority, lwp_eprio(l),
1861 l->l_flag, l->l_stat == LSRUN ? "RQ" :
1862 (l->l_stat == LSSLEEP ? "SQ" : "-"),
1863 l, ci->ci_index,
1864 (u_int)(hardclock_ticks - l->l_rticks));
1865 }
1866 }
1867 }
1868
1869 #endif
1870