Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.241
      1 /*	$NetBSD: kern_synch.c,v 1.241 2008/04/30 12:44:27 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*-
     35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.241 2008/04/30 12:44:27 ad Exp $");
     72 
     73 #include "opt_kstack.h"
     74 #include "opt_lockdebug.h"
     75 #include "opt_multiprocessor.h"
     76 #include "opt_perfctrs.h"
     77 
     78 #define	__MUTEX_PRIVATE
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/kernel.h>
     84 #if defined(PERFCTRS)
     85 #include <sys/pmc.h>
     86 #endif
     87 #include <sys/cpu.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/sched.h>
     90 #include <sys/syscall_stats.h>
     91 #include <sys/sleepq.h>
     92 #include <sys/lockdebug.h>
     93 #include <sys/evcnt.h>
     94 #include <sys/intr.h>
     95 #include <sys/lwpctl.h>
     96 #include <sys/atomic.h>
     97 #include <sys/simplelock.h>
     98 
     99 #include <uvm/uvm_extern.h>
    100 
    101 #include <dev/lockstat.h>
    102 
    103 static u_int	sched_unsleep(struct lwp *, bool);
    104 static void	sched_changepri(struct lwp *, pri_t);
    105 static void	sched_lendpri(struct lwp *, pri_t);
    106 
    107 syncobj_t sleep_syncobj = {
    108 	SOBJ_SLEEPQ_SORTED,
    109 	sleepq_unsleep,
    110 	sleepq_changepri,
    111 	sleepq_lendpri,
    112 	syncobj_noowner,
    113 };
    114 
    115 syncobj_t sched_syncobj = {
    116 	SOBJ_SLEEPQ_SORTED,
    117 	sched_unsleep,
    118 	sched_changepri,
    119 	sched_lendpri,
    120 	syncobj_noowner,
    121 };
    122 
    123 callout_t 	sched_pstats_ch;
    124 unsigned	sched_pstats_ticks;
    125 kcondvar_t	lbolt;			/* once a second sleep address */
    126 
    127 /* Preemption event counters */
    128 static struct evcnt kpreempt_ev_crit;
    129 static struct evcnt kpreempt_ev_klock;
    130 static struct evcnt kpreempt_ev_ipl;
    131 static struct evcnt kpreempt_ev_immed;
    132 
    133 /*
    134  * During autoconfiguration or after a panic, a sleep will simply lower the
    135  * priority briefly to allow interrupts, then return.  The priority to be
    136  * used (safepri) is machine-dependent, thus this value is initialized and
    137  * maintained in the machine-dependent layers.  This priority will typically
    138  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    139  * it can be made higher to block network software interrupts after panics.
    140  */
    141 int	safepri;
    142 
    143 void
    144 sched_init(void)
    145 {
    146 
    147 	cv_init(&lbolt, "lbolt");
    148 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    149 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    150 
    151 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    152 	   "kpreempt", "defer: critical section");
    153 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    154 	   "kpreempt", "defer: kernel_lock");
    155 	evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
    156 	   "kpreempt", "defer: IPL");
    157 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    158 	   "kpreempt", "immediate");
    159 
    160 	sched_pstats(NULL);
    161 }
    162 
    163 /*
    164  * OBSOLETE INTERFACE
    165  *
    166  * General sleep call.  Suspends the current process until a wakeup is
    167  * performed on the specified identifier.  The process will then be made
    168  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    169  * means no timeout).  If pri includes PCATCH flag, signals are checked
    170  * before and after sleeping, else signals are not checked.  Returns 0 if
    171  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    172  * signal needs to be delivered, ERESTART is returned if the current system
    173  * call should be restarted if possible, and EINTR is returned if the system
    174  * call should be interrupted by the signal (return EINTR).
    175  *
    176  * The interlock is held until we are on a sleep queue. The interlock will
    177  * be locked before returning back to the caller unless the PNORELOCK flag
    178  * is specified, in which case the interlock will always be unlocked upon
    179  * return.
    180  */
    181 int
    182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    183 	volatile struct simplelock *interlock)
    184 {
    185 	struct lwp *l = curlwp;
    186 	sleepq_t *sq;
    187 	int error;
    188 
    189 	KASSERT((l->l_pflag & LP_INTR) == 0);
    190 
    191 	if (sleepq_dontsleep(l)) {
    192 		(void)sleepq_abort(NULL, 0);
    193 		if ((priority & PNORELOCK) != 0)
    194 			simple_unlock(interlock);
    195 		return 0;
    196 	}
    197 
    198 	l->l_kpriority = true;
    199 	sq = sleeptab_lookup(&sleeptab, ident);
    200 	sleepq_enter(sq, l);
    201 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    202 
    203 	if (interlock != NULL) {
    204 		KASSERT(simple_lock_held(interlock));
    205 		simple_unlock(interlock);
    206 	}
    207 
    208 	error = sleepq_block(timo, priority & PCATCH);
    209 
    210 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    211 		simple_lock(interlock);
    212 
    213 	return error;
    214 }
    215 
    216 int
    217 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    218 	kmutex_t *mtx)
    219 {
    220 	struct lwp *l = curlwp;
    221 	sleepq_t *sq;
    222 	int error;
    223 
    224 	KASSERT((l->l_pflag & LP_INTR) == 0);
    225 
    226 	if (sleepq_dontsleep(l)) {
    227 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    228 		return 0;
    229 	}
    230 
    231 	l->l_kpriority = true;
    232 	sq = sleeptab_lookup(&sleeptab, ident);
    233 	sleepq_enter(sq, l);
    234 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    235 	mutex_exit(mtx);
    236 	error = sleepq_block(timo, priority & PCATCH);
    237 
    238 	if ((priority & PNORELOCK) == 0)
    239 		mutex_enter(mtx);
    240 
    241 	return error;
    242 }
    243 
    244 /*
    245  * General sleep call for situations where a wake-up is not expected.
    246  */
    247 int
    248 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    249 {
    250 	struct lwp *l = curlwp;
    251 	sleepq_t *sq;
    252 	int error;
    253 
    254 	if (sleepq_dontsleep(l))
    255 		return sleepq_abort(NULL, 0);
    256 
    257 	if (mtx != NULL)
    258 		mutex_exit(mtx);
    259 	l->l_kpriority = true;
    260 	sq = sleeptab_lookup(&sleeptab, l);
    261 	sleepq_enter(sq, l);
    262 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    263 	error = sleepq_block(timo, intr);
    264 	if (mtx != NULL)
    265 		mutex_enter(mtx);
    266 
    267 	return error;
    268 }
    269 
    270 /*
    271  * OBSOLETE INTERFACE
    272  *
    273  * Make all processes sleeping on the specified identifier runnable.
    274  */
    275 void
    276 wakeup(wchan_t ident)
    277 {
    278 	sleepq_t *sq;
    279 
    280 	if (cold)
    281 		return;
    282 
    283 	sq = sleeptab_lookup(&sleeptab, ident);
    284 	sleepq_wake(sq, ident, (u_int)-1);
    285 }
    286 
    287 /*
    288  * OBSOLETE INTERFACE
    289  *
    290  * Make the highest priority process first in line on the specified
    291  * identifier runnable.
    292  */
    293 void
    294 wakeup_one(wchan_t ident)
    295 {
    296 	sleepq_t *sq;
    297 
    298 	if (cold)
    299 		return;
    300 
    301 	sq = sleeptab_lookup(&sleeptab, ident);
    302 	sleepq_wake(sq, ident, 1);
    303 }
    304 
    305 
    306 /*
    307  * General yield call.  Puts the current process back on its run queue and
    308  * performs a voluntary context switch.  Should only be called when the
    309  * current process explicitly requests it (eg sched_yield(2)).
    310  */
    311 void
    312 yield(void)
    313 {
    314 	struct lwp *l = curlwp;
    315 
    316 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    317 	lwp_lock(l);
    318 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    319 	KASSERT(l->l_stat == LSONPROC);
    320 	l->l_kpriority = false;
    321 	(void)mi_switch(l);
    322 	KERNEL_LOCK(l->l_biglocks, l);
    323 }
    324 
    325 /*
    326  * General preemption call.  Puts the current process back on its run queue
    327  * and performs an involuntary context switch.
    328  */
    329 void
    330 preempt(void)
    331 {
    332 	struct lwp *l = curlwp;
    333 
    334 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    335 	lwp_lock(l);
    336 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    337 	KASSERT(l->l_stat == LSONPROC);
    338 	l->l_kpriority = false;
    339 	l->l_nivcsw++;
    340 	(void)mi_switch(l);
    341 	KERNEL_LOCK(l->l_biglocks, l);
    342 }
    343 
    344 /*
    345  * Handle a request made by another agent to preempt the current LWP
    346  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    347  *
    348  * Character addresses for lockstat only.
    349  */
    350 static char	in_critical_section;
    351 static char	kernel_lock_held;
    352 static char	spl_raised;
    353 static char	is_softint;
    354 
    355 bool
    356 kpreempt(uintptr_t where)
    357 {
    358 	uintptr_t failed;
    359 	lwp_t *l;
    360 	int s, dop;
    361 
    362 	l = curlwp;
    363 	failed = 0;
    364 	while ((dop = l->l_dopreempt) != 0) {
    365 		if (l->l_stat != LSONPROC) {
    366 			/*
    367 			 * About to block (or die), let it happen.
    368 			 * Doesn't really count as "preemption has
    369 			 * been blocked", since we're going to
    370 			 * context switch.
    371 			 */
    372 			l->l_dopreempt = 0;
    373 			return true;
    374 		}
    375 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    376 			/* Can't preempt idle loop, don't count as failure. */
    377 		    	l->l_dopreempt = 0;
    378 		    	return true;
    379 		}
    380 		if (__predict_false(l->l_nopreempt != 0)) {
    381 			/* LWP holds preemption disabled, explicitly. */
    382 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    383 				kpreempt_ev_crit.ev_count++;
    384 			}
    385 			failed = (uintptr_t)&in_critical_section;
    386 			break;
    387 		}
    388 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    389 		    	/* Can't preempt soft interrupts yet. */
    390 		    	l->l_dopreempt = 0;
    391 		    	failed = (uintptr_t)&is_softint;
    392 		    	break;
    393 		}
    394 		s = splsched();
    395 		if (__predict_false(l->l_blcnt != 0 ||
    396 		    curcpu()->ci_biglock_wanted != NULL)) {
    397 			/* Hold or want kernel_lock, code is not MT safe. */
    398 			splx(s);
    399 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    400 				kpreempt_ev_klock.ev_count++;
    401 			}
    402 			failed = (uintptr_t)&kernel_lock_held;
    403 			break;
    404 		}
    405 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    406 			/*
    407 			 * It may be that the IPL is too high.
    408 			 * kpreempt_enter() can schedule an
    409 			 * interrupt to retry later.
    410 			 */
    411 			splx(s);
    412 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    413 				kpreempt_ev_ipl.ev_count++;
    414 			}
    415 			failed = (uintptr_t)&spl_raised;
    416 			break;
    417 		}
    418 		/* Do it! */
    419 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    420 			kpreempt_ev_immed.ev_count++;
    421 		}
    422 		lwp_lock(l);
    423 		mi_switch(l);
    424 		l->l_nopreempt++;
    425 		splx(s);
    426 
    427 		/* Take care of any MD cleanup. */
    428 		cpu_kpreempt_exit(where);
    429 		l->l_nopreempt--;
    430 	}
    431 
    432 	/* Record preemption failure for reporting via lockstat. */
    433 	if (__predict_false(failed)) {
    434 		int lsflag = 0;
    435 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    436 		LOCKSTAT_ENTER(lsflag);
    437 		/* Might recurse, make it atomic. */
    438 		if (__predict_false(lsflag)) {
    439 			if (where == 0) {
    440 				where = (uintptr_t)__builtin_return_address(0);
    441 			}
    442 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    443 			    NULL, (void *)where) == NULL) {
    444 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    445 				l->l_pfaillock = failed;
    446 			}
    447 		}
    448 		LOCKSTAT_EXIT(lsflag);
    449 	}
    450 
    451 	return failed;
    452 }
    453 
    454 /*
    455  * Return true if preemption is explicitly disabled.
    456  */
    457 bool
    458 kpreempt_disabled(void)
    459 {
    460 	lwp_t *l;
    461 
    462 	l = curlwp;
    463 
    464 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    465 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    466 }
    467 
    468 /*
    469  * Disable kernel preemption.
    470  */
    471 void
    472 kpreempt_disable(void)
    473 {
    474 
    475 	KPREEMPT_DISABLE(curlwp);
    476 }
    477 
    478 /*
    479  * Reenable kernel preemption.
    480  */
    481 void
    482 kpreempt_enable(void)
    483 {
    484 
    485 	KPREEMPT_ENABLE(curlwp);
    486 }
    487 
    488 /*
    489  * Compute the amount of time during which the current lwp was running.
    490  *
    491  * - update l_rtime unless it's an idle lwp.
    492  */
    493 
    494 void
    495 updatertime(lwp_t *l, const struct bintime *now)
    496 {
    497 
    498 	if ((l->l_flag & LW_IDLE) != 0)
    499 		return;
    500 
    501 	/* rtime += now - stime */
    502 	bintime_add(&l->l_rtime, now);
    503 	bintime_sub(&l->l_rtime, &l->l_stime);
    504 }
    505 
    506 /*
    507  * The machine independent parts of context switch.
    508  *
    509  * Returns 1 if another LWP was actually run.
    510  */
    511 int
    512 mi_switch(lwp_t *l)
    513 {
    514 	struct cpu_info *ci, *tci = NULL;
    515 	struct schedstate_percpu *spc;
    516 	struct lwp *newl;
    517 	int retval, oldspl;
    518 	struct bintime bt;
    519 	bool returning;
    520 
    521 	KASSERT(lwp_locked(l, NULL));
    522 	KASSERT(kpreempt_disabled());
    523 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    524 
    525 #ifdef KSTACK_CHECK_MAGIC
    526 	kstack_check_magic(l);
    527 #endif
    528 
    529 	binuptime(&bt);
    530 
    531 	KASSERT(l->l_cpu == curcpu());
    532 	ci = l->l_cpu;
    533 	spc = &ci->ci_schedstate;
    534 	returning = false;
    535 	newl = NULL;
    536 
    537 	/*
    538 	 * If we have been asked to switch to a specific LWP, then there
    539 	 * is no need to inspect the run queues.  If a soft interrupt is
    540 	 * blocking, then return to the interrupted thread without adjusting
    541 	 * VM context or its start time: neither have been changed in order
    542 	 * to take the interrupt.
    543 	 */
    544 	if (l->l_switchto != NULL) {
    545 		if ((l->l_pflag & LP_INTR) != 0) {
    546 			returning = true;
    547 			softint_block(l);
    548 			if ((l->l_flag & LW_TIMEINTR) != 0)
    549 				updatertime(l, &bt);
    550 		}
    551 		newl = l->l_switchto;
    552 		l->l_switchto = NULL;
    553 	}
    554 #ifndef __HAVE_FAST_SOFTINTS
    555 	else if (ci->ci_data.cpu_softints != 0) {
    556 		/* There are pending soft interrupts, so pick one. */
    557 		newl = softint_picklwp();
    558 		newl->l_stat = LSONPROC;
    559 		newl->l_flag |= LW_RUNNING;
    560 	}
    561 #endif	/* !__HAVE_FAST_SOFTINTS */
    562 
    563 	/* Count time spent in current system call */
    564 	if (!returning) {
    565 		SYSCALL_TIME_SLEEP(l);
    566 
    567 		/*
    568 		 * XXXSMP If we are using h/w performance counters,
    569 		 * save context.
    570 		 */
    571 #if PERFCTRS
    572 		if (PMC_ENABLED(l->l_proc)) {
    573 			pmc_save_context(l->l_proc);
    574 		}
    575 #endif
    576 		updatertime(l, &bt);
    577 	}
    578 
    579 	/*
    580 	 * If on the CPU and we have gotten this far, then we must yield.
    581 	 */
    582 	KASSERT(l->l_stat != LSRUN);
    583 	if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
    584 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    585 
    586 		if (l->l_target_cpu == l->l_cpu) {
    587 			l->l_target_cpu = NULL;
    588 		} else {
    589 			tci = l->l_target_cpu;
    590 		}
    591 
    592 		if (__predict_false(tci != NULL)) {
    593 			/* Double-lock the runqueues */
    594 			spc_dlock(ci, tci);
    595 		} else {
    596 			/* Lock the runqueue */
    597 			spc_lock(ci);
    598 		}
    599 
    600 		if ((l->l_flag & LW_IDLE) == 0) {
    601 			l->l_stat = LSRUN;
    602 			if (__predict_false(tci != NULL)) {
    603 				/*
    604 				 * Set the new CPU, lock and unset the
    605 				 * l_target_cpu - thread will be enqueued
    606 				 * to the runqueue of target CPU.
    607 				 */
    608 				l->l_cpu = tci;
    609 				lwp_setlock(l, tci->ci_schedstate.spc_mutex);
    610 				l->l_target_cpu = NULL;
    611 			} else {
    612 				lwp_setlock(l, spc->spc_mutex);
    613 			}
    614 			sched_enqueue(l, true);
    615 		} else {
    616 			KASSERT(tci == NULL);
    617 			l->l_stat = LSIDL;
    618 		}
    619 	} else {
    620 		/* Lock the runqueue */
    621 		spc_lock(ci);
    622 	}
    623 
    624 	/*
    625 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    626 	 * If no LWP is runnable, select the idle LWP.
    627 	 *
    628 	 * Note that spc_lwplock might not necessary be held, and
    629 	 * new thread would be unlocked after setting the LWP-lock.
    630 	 */
    631 	if (newl == NULL) {
    632 		newl = sched_nextlwp();
    633 		if (newl != NULL) {
    634 			sched_dequeue(newl);
    635 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    636 			newl->l_stat = LSONPROC;
    637 			newl->l_cpu = ci;
    638 			newl->l_flag |= LW_RUNNING;
    639 			lwp_setlock(newl, spc->spc_lwplock);
    640 		} else {
    641 			newl = ci->ci_data.cpu_idlelwp;
    642 			newl->l_stat = LSONPROC;
    643 			newl->l_flag |= LW_RUNNING;
    644 		}
    645 		/*
    646 		 * Only clear want_resched if there are no
    647 		 * pending (slow) software interrupts.
    648 		 */
    649 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    650 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    651 		spc->spc_curpriority = lwp_eprio(newl);
    652 	}
    653 
    654 	/* Items that must be updated with the CPU locked. */
    655 	if (!returning) {
    656 		/* Update the new LWP's start time. */
    657 		newl->l_stime = bt;
    658 
    659 		/*
    660 		 * ci_curlwp changes when a fast soft interrupt occurs.
    661 		 * We use cpu_onproc to keep track of which kernel or
    662 		 * user thread is running 'underneath' the software
    663 		 * interrupt.  This is important for time accounting,
    664 		 * itimers and forcing user threads to preempt (aston).
    665 		 */
    666 		ci->ci_data.cpu_onproc = newl;
    667 	}
    668 
    669 	/*
    670 	 * Preemption related tasks.  Must be done with the current
    671 	 * CPU locked.
    672 	 */
    673 	cpu_did_resched(l);
    674 	l->l_dopreempt = 0;
    675 	if (__predict_false(l->l_pfailaddr != 0)) {
    676 		LOCKSTAT_FLAG(lsflag);
    677 		LOCKSTAT_ENTER(lsflag);
    678 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    679 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    680 		    1, l->l_pfailtime, l->l_pfailaddr);
    681 		LOCKSTAT_EXIT(lsflag);
    682 		l->l_pfailtime = 0;
    683 		l->l_pfaillock = 0;
    684 		l->l_pfailaddr = 0;
    685 	}
    686 
    687 	if (l != newl) {
    688 		struct lwp *prevlwp;
    689 
    690 		/* Release all locks, but leave the current LWP locked */
    691 		if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
    692 			/*
    693 			 * In case of migration, drop the local runqueue
    694 			 * lock, thread is on other runqueue now.
    695 			 */
    696 			if (__predict_false(tci != NULL))
    697 				spc_unlock(ci);
    698 			/*
    699 			 * Drop spc_lwplock, if the current LWP has been moved
    700 			 * to the run queue (it is now locked by spc_mutex).
    701 			 */
    702 			mutex_spin_exit(spc->spc_lwplock);
    703 		} else {
    704 			/*
    705 			 * Otherwise, drop the spc_mutex, we are done with the
    706 			 * run queues.
    707 			 */
    708 			mutex_spin_exit(spc->spc_mutex);
    709 			KASSERT(tci == NULL);
    710 		}
    711 
    712 		/*
    713 		 * Mark that context switch is going to be perfomed
    714 		 * for this LWP, to protect it from being switched
    715 		 * to on another CPU.
    716 		 */
    717 		KASSERT(l->l_ctxswtch == 0);
    718 		l->l_ctxswtch = 1;
    719 		l->l_ncsw++;
    720 		l->l_flag &= ~LW_RUNNING;
    721 
    722 		/*
    723 		 * Increase the count of spin-mutexes before the release
    724 		 * of the last lock - we must remain at IPL_SCHED during
    725 		 * the context switch.
    726 		 */
    727 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    728 		ci->ci_mtx_count--;
    729 		lwp_unlock(l);
    730 
    731 		/* Count the context switch on this CPU. */
    732 		ci->ci_data.cpu_nswtch++;
    733 
    734 		/* Update status for lwpctl, if present. */
    735 		if (l->l_lwpctl != NULL)
    736 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    737 
    738 		/*
    739 		 * Save old VM context, unless a soft interrupt
    740 		 * handler is blocking.
    741 		 */
    742 		if (!returning)
    743 			pmap_deactivate(l);
    744 
    745 		/*
    746 		 * We may need to spin-wait for if 'newl' is still
    747 		 * context switching on another CPU.
    748 		 */
    749 		if (newl->l_ctxswtch != 0) {
    750 			u_int count;
    751 			count = SPINLOCK_BACKOFF_MIN;
    752 			while (newl->l_ctxswtch)
    753 				SPINLOCK_BACKOFF(count);
    754 		}
    755 
    756 		/* Switch to the new LWP.. */
    757 		prevlwp = cpu_switchto(l, newl, returning);
    758 		ci = curcpu();
    759 
    760 		/*
    761 		 * Switched away - we have new curlwp.
    762 		 * Restore VM context and IPL.
    763 		 */
    764 		pmap_activate(l);
    765 		if (prevlwp != NULL) {
    766 			/* Normalize the count of the spin-mutexes */
    767 			ci->ci_mtx_count++;
    768 			/* Unmark the state of context switch */
    769 			membar_exit();
    770 			prevlwp->l_ctxswtch = 0;
    771 		}
    772 
    773 		/* Update status for lwpctl, if present. */
    774 		if (l->l_lwpctl != NULL) {
    775 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    776 			l->l_lwpctl->lc_pctr++;
    777 		}
    778 
    779 		KASSERT(l->l_cpu == ci);
    780 		splx(oldspl);
    781 		retval = 1;
    782 	} else {
    783 		/* Nothing to do - just unlock and return. */
    784 		KASSERT(tci == NULL);
    785 		spc_unlock(ci);
    786 		lwp_unlock(l);
    787 		retval = 0;
    788 	}
    789 
    790 	KASSERT(l == curlwp);
    791 	KASSERT(l->l_stat == LSONPROC);
    792 
    793 	/*
    794 	 * XXXSMP If we are using h/w performance counters, restore context.
    795 	 * XXXSMP preemption problem.
    796 	 */
    797 #if PERFCTRS
    798 	if (PMC_ENABLED(l->l_proc)) {
    799 		pmc_restore_context(l->l_proc);
    800 	}
    801 #endif
    802 	SYSCALL_TIME_WAKEUP(l);
    803 	LOCKDEBUG_BARRIER(NULL, 1);
    804 
    805 	return retval;
    806 }
    807 
    808 /*
    809  * Change process state to be runnable, placing it on the run queue if it is
    810  * in memory, and awakening the swapper if it isn't in memory.
    811  *
    812  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    813  */
    814 void
    815 setrunnable(struct lwp *l)
    816 {
    817 	struct proc *p = l->l_proc;
    818 	struct cpu_info *ci;
    819 	sigset_t *ss;
    820 
    821 	KASSERT((l->l_flag & LW_IDLE) == 0);
    822 	KASSERT(mutex_owned(p->p_lock));
    823 	KASSERT(lwp_locked(l, NULL));
    824 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    825 
    826 	switch (l->l_stat) {
    827 	case LSSTOP:
    828 		/*
    829 		 * If we're being traced (possibly because someone attached us
    830 		 * while we were stopped), check for a signal from the debugger.
    831 		 */
    832 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    833 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    834 				ss = &l->l_sigpend.sp_set;
    835 			else
    836 				ss = &p->p_sigpend.sp_set;
    837 			sigaddset(ss, p->p_xstat);
    838 			signotify(l);
    839 		}
    840 		p->p_nrlwps++;
    841 		break;
    842 	case LSSUSPENDED:
    843 		l->l_flag &= ~LW_WSUSPEND;
    844 		p->p_nrlwps++;
    845 		cv_broadcast(&p->p_lwpcv);
    846 		break;
    847 	case LSSLEEP:
    848 		KASSERT(l->l_wchan != NULL);
    849 		break;
    850 	default:
    851 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    852 	}
    853 
    854 	/*
    855 	 * If the LWP was sleeping interruptably, then it's OK to start it
    856 	 * again.  If not, mark it as still sleeping.
    857 	 */
    858 	if (l->l_wchan != NULL) {
    859 		l->l_stat = LSSLEEP;
    860 		/* lwp_unsleep() will release the lock. */
    861 		lwp_unsleep(l, true);
    862 		return;
    863 	}
    864 
    865 	/*
    866 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    867 	 * about to call mi_switch(), in which case it will yield.
    868 	 */
    869 	if ((l->l_flag & LW_RUNNING) != 0) {
    870 		l->l_stat = LSONPROC;
    871 		l->l_slptime = 0;
    872 		lwp_unlock(l);
    873 		return;
    874 	}
    875 
    876 	/*
    877 	 * Look for a CPU to run.
    878 	 * Set the LWP runnable.
    879 	 */
    880 	ci = sched_takecpu(l);
    881 	l->l_cpu = ci;
    882 	spc_lock(ci);
    883 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    884 	sched_setrunnable(l);
    885 	l->l_stat = LSRUN;
    886 	l->l_slptime = 0;
    887 
    888 	/*
    889 	 * If thread is swapped out - wake the swapper to bring it back in.
    890 	 * Otherwise, enter it into a run queue.
    891 	 */
    892 	if (l->l_flag & LW_INMEM) {
    893 		sched_enqueue(l, false);
    894 		resched_cpu(l);
    895 		lwp_unlock(l);
    896 	} else {
    897 		lwp_unlock(l);
    898 		uvm_kick_scheduler();
    899 	}
    900 }
    901 
    902 /*
    903  * suspendsched:
    904  *
    905  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    906  */
    907 void
    908 suspendsched(void)
    909 {
    910 	CPU_INFO_ITERATOR cii;
    911 	struct cpu_info *ci;
    912 	struct lwp *l;
    913 	struct proc *p;
    914 
    915 	/*
    916 	 * We do this by process in order not to violate the locking rules.
    917 	 */
    918 	mutex_enter(proc_lock);
    919 	PROCLIST_FOREACH(p, &allproc) {
    920 		if ((p->p_flag & PK_MARKER) != 0)
    921 			continue;
    922 
    923 		mutex_enter(p->p_lock);
    924 		if ((p->p_flag & PK_SYSTEM) != 0) {
    925 			mutex_exit(p->p_lock);
    926 			continue;
    927 		}
    928 
    929 		p->p_stat = SSTOP;
    930 
    931 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    932 			if (l == curlwp)
    933 				continue;
    934 
    935 			lwp_lock(l);
    936 
    937 			/*
    938 			 * Set L_WREBOOT so that the LWP will suspend itself
    939 			 * when it tries to return to user mode.  We want to
    940 			 * try and get to get as many LWPs as possible to
    941 			 * the user / kernel boundary, so that they will
    942 			 * release any locks that they hold.
    943 			 */
    944 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    945 
    946 			if (l->l_stat == LSSLEEP &&
    947 			    (l->l_flag & LW_SINTR) != 0) {
    948 				/* setrunnable() will release the lock. */
    949 				setrunnable(l);
    950 				continue;
    951 			}
    952 
    953 			lwp_unlock(l);
    954 		}
    955 
    956 		mutex_exit(p->p_lock);
    957 	}
    958 	mutex_exit(proc_lock);
    959 
    960 	/*
    961 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    962 	 * They'll trap into the kernel and suspend themselves in userret().
    963 	 */
    964 	for (CPU_INFO_FOREACH(cii, ci)) {
    965 		spc_lock(ci);
    966 		cpu_need_resched(ci, RESCHED_IMMED);
    967 		spc_unlock(ci);
    968 	}
    969 }
    970 
    971 /*
    972  * sched_unsleep:
    973  *
    974  *	The is called when the LWP has not been awoken normally but instead
    975  *	interrupted: for example, if the sleep timed out.  Because of this,
    976  *	it's not a valid action for running or idle LWPs.
    977  */
    978 static u_int
    979 sched_unsleep(struct lwp *l, bool cleanup)
    980 {
    981 
    982 	lwp_unlock(l);
    983 	panic("sched_unsleep");
    984 }
    985 
    986 void
    987 resched_cpu(struct lwp *l)
    988 {
    989 	struct cpu_info *ci;
    990 
    991 	/*
    992 	 * XXXSMP
    993 	 * Since l->l_cpu persists across a context switch,
    994 	 * this gives us *very weak* processor affinity, in
    995 	 * that we notify the CPU on which the process last
    996 	 * ran that it should try to switch.
    997 	 *
    998 	 * This does not guarantee that the process will run on
    999 	 * that processor next, because another processor might
   1000 	 * grab it the next time it performs a context switch.
   1001 	 *
   1002 	 * This also does not handle the case where its last
   1003 	 * CPU is running a higher-priority process, but every
   1004 	 * other CPU is running a lower-priority process.  There
   1005 	 * are ways to handle this situation, but they're not
   1006 	 * currently very pretty, and we also need to weigh the
   1007 	 * cost of moving a process from one CPU to another.
   1008 	 */
   1009 	ci = l->l_cpu;
   1010 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1011 		cpu_need_resched(ci, 0);
   1012 }
   1013 
   1014 static void
   1015 sched_changepri(struct lwp *l, pri_t pri)
   1016 {
   1017 
   1018 	KASSERT(lwp_locked(l, NULL));
   1019 
   1020 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1021 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1022 		sched_dequeue(l);
   1023 		l->l_priority = pri;
   1024 		sched_enqueue(l, false);
   1025 	} else {
   1026 		l->l_priority = pri;
   1027 	}
   1028 	resched_cpu(l);
   1029 }
   1030 
   1031 static void
   1032 sched_lendpri(struct lwp *l, pri_t pri)
   1033 {
   1034 
   1035 	KASSERT(lwp_locked(l, NULL));
   1036 
   1037 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1038 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1039 		sched_dequeue(l);
   1040 		l->l_inheritedprio = pri;
   1041 		sched_enqueue(l, false);
   1042 	} else {
   1043 		l->l_inheritedprio = pri;
   1044 	}
   1045 	resched_cpu(l);
   1046 }
   1047 
   1048 struct lwp *
   1049 syncobj_noowner(wchan_t wchan)
   1050 {
   1051 
   1052 	return NULL;
   1053 }
   1054 
   1055 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
   1056 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
   1057 
   1058 /*
   1059  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
   1060  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
   1061  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
   1062  *
   1063  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
   1064  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
   1065  *
   1066  * If you dont want to bother with the faster/more-accurate formula, you
   1067  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
   1068  * (more general) method of calculating the %age of CPU used by a process.
   1069  */
   1070 #define	CCPU_SHIFT	(FSHIFT + 1)
   1071 
   1072 /*
   1073  * sched_pstats:
   1074  *
   1075  * Update process statistics and check CPU resource allocation.
   1076  * Call scheduler-specific hook to eventually adjust process/LWP
   1077  * priorities.
   1078  */
   1079 /* ARGSUSED */
   1080 void
   1081 sched_pstats(void *arg)
   1082 {
   1083 	struct rlimit *rlim;
   1084 	struct lwp *l;
   1085 	struct proc *p;
   1086 	int sig, clkhz;
   1087 	long runtm;
   1088 
   1089 	sched_pstats_ticks++;
   1090 
   1091 	mutex_enter(proc_lock);
   1092 	PROCLIST_FOREACH(p, &allproc) {
   1093 		if ((p->p_flag & PK_MARKER) != 0)
   1094 			continue;
   1095 
   1096 		/*
   1097 		 * Increment time in/out of memory and sleep time (if
   1098 		 * sleeping).  We ignore overflow; with 16-bit int's
   1099 		 * (remember them?) overflow takes 45 days.
   1100 		 */
   1101 		mutex_enter(p->p_lock);
   1102 		mutex_spin_enter(&p->p_stmutex);
   1103 		runtm = p->p_rtime.sec;
   1104 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1105 			if ((l->l_flag & LW_IDLE) != 0)
   1106 				continue;
   1107 			lwp_lock(l);
   1108 			runtm += l->l_rtime.sec;
   1109 			l->l_swtime++;
   1110 			sched_pstats_hook(l);
   1111 			lwp_unlock(l);
   1112 
   1113 			/*
   1114 			 * p_pctcpu is only for ps.
   1115 			 */
   1116 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1117 			if (l->l_slptime < 1) {
   1118 				clkhz = stathz != 0 ? stathz : hz;
   1119 #if	(FSHIFT >= CCPU_SHIFT)
   1120 				l->l_pctcpu += (clkhz == 100) ?
   1121 				    ((fixpt_t)l->l_cpticks) <<
   1122 				        (FSHIFT - CCPU_SHIFT) :
   1123 				    100 * (((fixpt_t) p->p_cpticks)
   1124 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
   1125 #else
   1126 				l->l_pctcpu += ((FSCALE - ccpu) *
   1127 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
   1128 #endif
   1129 				l->l_cpticks = 0;
   1130 			}
   1131 		}
   1132 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1133 		mutex_spin_exit(&p->p_stmutex);
   1134 
   1135 		/*
   1136 		 * Check if the process exceeds its CPU resource allocation.
   1137 		 * If over max, kill it.
   1138 		 */
   1139 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1140 		sig = 0;
   1141 		if (runtm >= rlim->rlim_cur) {
   1142 			if (runtm >= rlim->rlim_max)
   1143 				sig = SIGKILL;
   1144 			else {
   1145 				sig = SIGXCPU;
   1146 				if (rlim->rlim_cur < rlim->rlim_max)
   1147 					rlim->rlim_cur += 5;
   1148 			}
   1149 		}
   1150 		mutex_exit(p->p_lock);
   1151 		if (sig)
   1152 			psignal(p, sig);
   1153 	}
   1154 	mutex_exit(proc_lock);
   1155 	uvm_meter();
   1156 	cv_wakeup(&lbolt);
   1157 	callout_schedule(&sched_pstats_ch, hz);
   1158 }
   1159