Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.241.2.4
      1 /*	$NetBSD: kern_synch.c,v 1.241.2.4 2008/06/29 03:30:17 wrstuden Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*-
     35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.241.2.4 2008/06/29 03:30:17 wrstuden Exp $");
     72 
     73 #include "opt_kstack.h"
     74 #include "opt_perfctrs.h"
     75 
     76 #define	__MUTEX_PRIVATE
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/kernel.h>
     82 #if defined(PERFCTRS)
     83 #include <sys/pmc.h>
     84 #endif
     85 #include <sys/cpu.h>
     86 #include <sys/resourcevar.h>
     87 #include <sys/sched.h>
     88 #include <sys/sa.h>
     89 #include <sys/savar.h>
     90 #include <sys/syscall_stats.h>
     91 #include <sys/sleepq.h>
     92 #include <sys/lockdebug.h>
     93 #include <sys/evcnt.h>
     94 #include <sys/intr.h>
     95 #include <sys/lwpctl.h>
     96 #include <sys/atomic.h>
     97 #include <sys/simplelock.h>
     98 
     99 #include <uvm/uvm_extern.h>
    100 
    101 #include <dev/lockstat.h>
    102 
    103 static u_int	sched_unsleep(struct lwp *, bool);
    104 static void	sched_changepri(struct lwp *, pri_t);
    105 static void	sched_lendpri(struct lwp *, pri_t);
    106 
    107 syncobj_t sleep_syncobj = {
    108 	SOBJ_SLEEPQ_SORTED,
    109 	sleepq_unsleep,
    110 	sleepq_changepri,
    111 	sleepq_lendpri,
    112 	syncobj_noowner,
    113 };
    114 
    115 syncobj_t sched_syncobj = {
    116 	SOBJ_SLEEPQ_SORTED,
    117 	sched_unsleep,
    118 	sched_changepri,
    119 	sched_lendpri,
    120 	syncobj_noowner,
    121 };
    122 
    123 callout_t 	sched_pstats_ch;
    124 unsigned	sched_pstats_ticks;
    125 kcondvar_t	lbolt;			/* once a second sleep address */
    126 
    127 /* Preemption event counters */
    128 static struct evcnt kpreempt_ev_crit;
    129 static struct evcnt kpreempt_ev_klock;
    130 static struct evcnt kpreempt_ev_ipl;
    131 static struct evcnt kpreempt_ev_immed;
    132 
    133 /*
    134  * During autoconfiguration or after a panic, a sleep will simply lower the
    135  * priority briefly to allow interrupts, then return.  The priority to be
    136  * used (safepri) is machine-dependent, thus this value is initialized and
    137  * maintained in the machine-dependent layers.  This priority will typically
    138  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    139  * it can be made higher to block network software interrupts after panics.
    140  */
    141 int	safepri;
    142 
    143 void
    144 sched_init(void)
    145 {
    146 
    147 	cv_init(&lbolt, "lbolt");
    148 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    149 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    150 
    151 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    152 	   "kpreempt", "defer: critical section");
    153 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    154 	   "kpreempt", "defer: kernel_lock");
    155 	evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
    156 	   "kpreempt", "defer: IPL");
    157 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    158 	   "kpreempt", "immediate");
    159 
    160 	sched_pstats(NULL);
    161 }
    162 
    163 /*
    164  * OBSOLETE INTERFACE
    165  *
    166  * General sleep call.  Suspends the current process until a wakeup is
    167  * performed on the specified identifier.  The process will then be made
    168  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    169  * means no timeout).  If pri includes PCATCH flag, signals are checked
    170  * before and after sleeping, else signals are not checked.  Returns 0 if
    171  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    172  * signal needs to be delivered, ERESTART is returned if the current system
    173  * call should be restarted if possible, and EINTR is returned if the system
    174  * call should be interrupted by the signal (return EINTR).
    175  *
    176  * The interlock is held until we are on a sleep queue. The interlock will
    177  * be locked before returning back to the caller unless the PNORELOCK flag
    178  * is specified, in which case the interlock will always be unlocked upon
    179  * return.
    180  */
    181 int
    182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    183 	volatile struct simplelock *interlock)
    184 {
    185 	struct lwp *l = curlwp;
    186 	sleepq_t *sq;
    187 	kmutex_t *mp;
    188 	int error;
    189 
    190 	KASSERT((l->l_pflag & LP_INTR) == 0);
    191 
    192 	if (sleepq_dontsleep(l)) {
    193 		(void)sleepq_abort(NULL, 0);
    194 		if ((priority & PNORELOCK) != 0)
    195 			simple_unlock(interlock);
    196 		return 0;
    197 	}
    198 
    199 	l->l_kpriority = true;
    200 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    201 	sleepq_enter(sq, l, mp);
    202 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    203 
    204 	if (interlock != NULL) {
    205 		KASSERT(simple_lock_held(interlock));
    206 		simple_unlock(interlock);
    207 	}
    208 
    209 	error = sleepq_block(timo, priority & PCATCH);
    210 
    211 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    212 		simple_lock(interlock);
    213 
    214 	return error;
    215 }
    216 
    217 int
    218 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    219 	kmutex_t *mtx)
    220 {
    221 	struct lwp *l = curlwp;
    222 	sleepq_t *sq;
    223 	kmutex_t *mp;
    224 	int error;
    225 
    226 	KASSERT((l->l_pflag & LP_INTR) == 0);
    227 
    228 	if (sleepq_dontsleep(l)) {
    229 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    230 		return 0;
    231 	}
    232 
    233 	l->l_kpriority = true;
    234 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    235 	sleepq_enter(sq, l, mp);
    236 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    237 	mutex_exit(mtx);
    238 	error = sleepq_block(timo, priority & PCATCH);
    239 
    240 	if ((priority & PNORELOCK) == 0)
    241 		mutex_enter(mtx);
    242 
    243 	return error;
    244 }
    245 
    246 /*
    247  * General sleep call for situations where a wake-up is not expected.
    248  */
    249 int
    250 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    251 {
    252 	struct lwp *l = curlwp;
    253 	kmutex_t *mp;
    254 	sleepq_t *sq;
    255 	int error;
    256 
    257 	if (sleepq_dontsleep(l))
    258 		return sleepq_abort(NULL, 0);
    259 
    260 	if (mtx != NULL)
    261 		mutex_exit(mtx);
    262 	l->l_kpriority = true;
    263 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    264 	sleepq_enter(sq, l, mp);
    265 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    266 	error = sleepq_block(timo, intr);
    267 	if (mtx != NULL)
    268 		mutex_enter(mtx);
    269 
    270 	return error;
    271 }
    272 
    273 /*
    274  * sa_awaken:
    275  *
    276  *	We believe this lwp is an SA lwp. If it's yielding,
    277  * let it know it needs to wake up.
    278  *
    279  *	We are called and exit with the lwp locked. We are
    280  * called in the middle of wakeup operations, so we need
    281  * to not touch the locks at all.
    282  */
    283 void
    284 sa_awaken(struct lwp *l)
    285 {
    286 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    287 
    288 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    289 		l->l_flag &= ~LW_SA_IDLE;
    290 }
    291 
    292 /*
    293  * OBSOLETE INTERFACE
    294  *
    295  * Make all processes sleeping on the specified identifier runnable.
    296  */
    297 void
    298 wakeup(wchan_t ident)
    299 {
    300 	sleepq_t *sq;
    301 	kmutex_t *mp;
    302 
    303 	if (cold)
    304 		return;
    305 
    306 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    307 	sleepq_wake(sq, ident, (u_int)-1, mp);
    308 }
    309 
    310 /*
    311  * OBSOLETE INTERFACE
    312  *
    313  * Make the highest priority process first in line on the specified
    314  * identifier runnable.
    315  */
    316 void
    317 wakeup_one(wchan_t ident)
    318 {
    319 	sleepq_t *sq;
    320 	kmutex_t *mp;
    321 
    322 	if (cold)
    323 		return;
    324 
    325 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    326 	sleepq_wake(sq, ident, 1, mp);
    327 }
    328 
    329 
    330 /*
    331  * General yield call.  Puts the current process back on its run queue and
    332  * performs a voluntary context switch.  Should only be called when the
    333  * current process explicitly requests it (eg sched_yield(2)).
    334  */
    335 void
    336 yield(void)
    337 {
    338 	struct lwp *l = curlwp;
    339 
    340 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    341 	lwp_lock(l);
    342 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    343 	KASSERT(l->l_stat == LSONPROC);
    344 	l->l_kpriority = false;
    345 	(void)mi_switch(l);
    346 	KERNEL_LOCK(l->l_biglocks, l);
    347 }
    348 
    349 /*
    350  * General preemption call.  Puts the current process back on its run queue
    351  * and performs an involuntary context switch.
    352  */
    353 void
    354 preempt(void)
    355 {
    356 	struct lwp *l = curlwp;
    357 
    358 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    359 	lwp_lock(l);
    360 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    361 	KASSERT(l->l_stat == LSONPROC);
    362 	l->l_kpriority = false;
    363 	l->l_nivcsw++;
    364 	(void)mi_switch(l);
    365 	KERNEL_LOCK(l->l_biglocks, l);
    366 }
    367 
    368 /*
    369  * Handle a request made by another agent to preempt the current LWP
    370  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    371  *
    372  * Character addresses for lockstat only.
    373  */
    374 static char	in_critical_section;
    375 static char	kernel_lock_held;
    376 static char	spl_raised;
    377 static char	is_softint;
    378 
    379 bool
    380 kpreempt(uintptr_t where)
    381 {
    382 	uintptr_t failed;
    383 	lwp_t *l;
    384 	int s, dop;
    385 
    386 	l = curlwp;
    387 	failed = 0;
    388 	while ((dop = l->l_dopreempt) != 0) {
    389 		if (l->l_stat != LSONPROC) {
    390 			/*
    391 			 * About to block (or die), let it happen.
    392 			 * Doesn't really count as "preemption has
    393 			 * been blocked", since we're going to
    394 			 * context switch.
    395 			 */
    396 			l->l_dopreempt = 0;
    397 			return true;
    398 		}
    399 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    400 			/* Can't preempt idle loop, don't count as failure. */
    401 		    	l->l_dopreempt = 0;
    402 		    	return true;
    403 		}
    404 		if (__predict_false(l->l_nopreempt != 0)) {
    405 			/* LWP holds preemption disabled, explicitly. */
    406 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    407 				kpreempt_ev_crit.ev_count++;
    408 			}
    409 			failed = (uintptr_t)&in_critical_section;
    410 			break;
    411 		}
    412 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    413 		    	/* Can't preempt soft interrupts yet. */
    414 		    	l->l_dopreempt = 0;
    415 		    	failed = (uintptr_t)&is_softint;
    416 		    	break;
    417 		}
    418 		s = splsched();
    419 		if (__predict_false(l->l_blcnt != 0 ||
    420 		    curcpu()->ci_biglock_wanted != NULL)) {
    421 			/* Hold or want kernel_lock, code is not MT safe. */
    422 			splx(s);
    423 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    424 				kpreempt_ev_klock.ev_count++;
    425 			}
    426 			failed = (uintptr_t)&kernel_lock_held;
    427 			break;
    428 		}
    429 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    430 			/*
    431 			 * It may be that the IPL is too high.
    432 			 * kpreempt_enter() can schedule an
    433 			 * interrupt to retry later.
    434 			 */
    435 			splx(s);
    436 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    437 				kpreempt_ev_ipl.ev_count++;
    438 			}
    439 			failed = (uintptr_t)&spl_raised;
    440 			break;
    441 		}
    442 		/* Do it! */
    443 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    444 			kpreempt_ev_immed.ev_count++;
    445 		}
    446 		lwp_lock(l);
    447 		mi_switch(l);
    448 		l->l_nopreempt++;
    449 		splx(s);
    450 
    451 		/* Take care of any MD cleanup. */
    452 		cpu_kpreempt_exit(where);
    453 		l->l_nopreempt--;
    454 	}
    455 
    456 	/* Record preemption failure for reporting via lockstat. */
    457 	if (__predict_false(failed)) {
    458 		int lsflag = 0;
    459 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    460 		LOCKSTAT_ENTER(lsflag);
    461 		/* Might recurse, make it atomic. */
    462 		if (__predict_false(lsflag)) {
    463 			if (where == 0) {
    464 				where = (uintptr_t)__builtin_return_address(0);
    465 			}
    466 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    467 			    NULL, (void *)where) == NULL) {
    468 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    469 				l->l_pfaillock = failed;
    470 			}
    471 		}
    472 		LOCKSTAT_EXIT(lsflag);
    473 	}
    474 
    475 	return failed;
    476 }
    477 
    478 /*
    479  * Return true if preemption is explicitly disabled.
    480  */
    481 bool
    482 kpreempt_disabled(void)
    483 {
    484 	lwp_t *l;
    485 
    486 	l = curlwp;
    487 
    488 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    489 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    490 }
    491 
    492 /*
    493  * Disable kernel preemption.
    494  */
    495 void
    496 kpreempt_disable(void)
    497 {
    498 
    499 	KPREEMPT_DISABLE(curlwp);
    500 }
    501 
    502 /*
    503  * Reenable kernel preemption.
    504  */
    505 void
    506 kpreempt_enable(void)
    507 {
    508 
    509 	KPREEMPT_ENABLE(curlwp);
    510 }
    511 
    512 /*
    513  * Compute the amount of time during which the current lwp was running.
    514  *
    515  * - update l_rtime unless it's an idle lwp.
    516  */
    517 
    518 void
    519 updatertime(lwp_t *l, const struct bintime *now)
    520 {
    521 
    522 	if ((l->l_flag & LW_IDLE) != 0)
    523 		return;
    524 
    525 	/* rtime += now - stime */
    526 	bintime_add(&l->l_rtime, now);
    527 	bintime_sub(&l->l_rtime, &l->l_stime);
    528 }
    529 
    530 /*
    531  * Select next LWP from the current CPU to run..
    532  */
    533 static inline lwp_t *
    534 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    535 {
    536 	lwp_t *newl;
    537 
    538 	/*
    539 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    540 	 * If no LWP is runnable, select the idle LWP.
    541 	 *
    542 	 * Note that spc_lwplock might not necessary be held, and
    543 	 * new thread would be unlocked after setting the LWP-lock.
    544 	 */
    545 	newl = sched_nextlwp();
    546 	if (newl != NULL) {
    547 		sched_dequeue(newl);
    548 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    549 		newl->l_stat = LSONPROC;
    550 		newl->l_cpu = ci;
    551 		newl->l_pflag |= LP_RUNNING;
    552 		lwp_setlock(newl, spc->spc_lwplock);
    553 	} else {
    554 		newl = ci->ci_data.cpu_idlelwp;
    555 		newl->l_stat = LSONPROC;
    556 		newl->l_pflag |= LP_RUNNING;
    557 	}
    558 
    559 	/*
    560 	 * Only clear want_resched if there are no pending (slow)
    561 	 * software interrupts.
    562 	 */
    563 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    564 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    565 	spc->spc_curpriority = lwp_eprio(newl);
    566 
    567 	return newl;
    568 }
    569 
    570 /*
    571  * The machine independent parts of context switch.
    572  *
    573  * Returns 1 if another LWP was actually run.
    574  */
    575 int
    576 mi_switch(lwp_t *l)
    577 {
    578 	struct cpu_info *ci;
    579 	struct schedstate_percpu *spc;
    580 	struct lwp *newl;
    581 	int retval, oldspl;
    582 	struct bintime bt;
    583 	bool returning;
    584 
    585 	KASSERT(lwp_locked(l, NULL));
    586 	KASSERT(kpreempt_disabled());
    587 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    588 
    589 #ifdef KSTACK_CHECK_MAGIC
    590 	kstack_check_magic(l);
    591 #endif
    592 
    593 	binuptime(&bt);
    594 
    595 	KASSERT(l->l_cpu == curcpu());
    596 	ci = l->l_cpu;
    597 	spc = &ci->ci_schedstate;
    598 	returning = false;
    599 	newl = NULL;
    600 
    601 	/*
    602 	 * If we have been asked to switch to a specific LWP, then there
    603 	 * is no need to inspect the run queues.  If a soft interrupt is
    604 	 * blocking, then return to the interrupted thread without adjusting
    605 	 * VM context or its start time: neither have been changed in order
    606 	 * to take the interrupt.
    607 	 */
    608 	if (l->l_switchto != NULL) {
    609 		if ((l->l_pflag & LP_INTR) != 0) {
    610 			returning = true;
    611 			softint_block(l);
    612 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    613 				updatertime(l, &bt);
    614 		}
    615 		newl = l->l_switchto;
    616 		l->l_switchto = NULL;
    617 	}
    618 #ifndef __HAVE_FAST_SOFTINTS
    619 	else if (ci->ci_data.cpu_softints != 0) {
    620 		/* There are pending soft interrupts, so pick one. */
    621 		newl = softint_picklwp();
    622 		newl->l_stat = LSONPROC;
    623 		newl->l_pflag |= LP_RUNNING;
    624 	}
    625 #endif	/* !__HAVE_FAST_SOFTINTS */
    626 
    627 	/* Count time spent in current system call */
    628 	if (!returning) {
    629 		SYSCALL_TIME_SLEEP(l);
    630 
    631 		/*
    632 		 * XXXSMP If we are using h/w performance counters,
    633 		 * save context.
    634 		 */
    635 #if PERFCTRS
    636 		if (PMC_ENABLED(l->l_proc)) {
    637 			pmc_save_context(l->l_proc);
    638 		}
    639 #endif
    640 		updatertime(l, &bt);
    641 	}
    642 
    643 	/* Lock the runqueue */
    644 	KASSERT(l->l_stat != LSRUN);
    645 	mutex_spin_enter(spc->spc_mutex);
    646 
    647 	/*
    648 	 * If on the CPU and we have gotten this far, then we must yield.
    649 	 */
    650 	if (l->l_stat == LSONPROC && l != newl) {
    651 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    652 		if ((l->l_flag & LW_IDLE) == 0) {
    653 			l->l_stat = LSRUN;
    654 			lwp_setlock(l, spc->spc_mutex);
    655 			sched_enqueue(l, true);
    656 			/* Handle migration case */
    657 			KASSERT(spc->spc_migrating == NULL);
    658 			if (l->l_target_cpu !=  NULL) {
    659 				spc->spc_migrating = l;
    660 			}
    661 		} else
    662 			l->l_stat = LSIDL;
    663 	}
    664 
    665 	/* Pick new LWP to run. */
    666 	if (newl == NULL) {
    667 		newl = nextlwp(ci, spc);
    668 	}
    669 
    670 	/* Items that must be updated with the CPU locked. */
    671 	if (!returning) {
    672 		/* Update the new LWP's start time. */
    673 		newl->l_stime = bt;
    674 
    675 		/*
    676 		 * ci_curlwp changes when a fast soft interrupt occurs.
    677 		 * We use cpu_onproc to keep track of which kernel or
    678 		 * user thread is running 'underneath' the software
    679 		 * interrupt.  This is important for time accounting,
    680 		 * itimers and forcing user threads to preempt (aston).
    681 		 */
    682 		ci->ci_data.cpu_onproc = newl;
    683 	}
    684 
    685 	/*
    686 	 * Preemption related tasks.  Must be done with the current
    687 	 * CPU locked.
    688 	 */
    689 	cpu_did_resched(l);
    690 	l->l_dopreempt = 0;
    691 	if (__predict_false(l->l_pfailaddr != 0)) {
    692 		LOCKSTAT_FLAG(lsflag);
    693 		LOCKSTAT_ENTER(lsflag);
    694 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    695 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    696 		    1, l->l_pfailtime, l->l_pfailaddr);
    697 		LOCKSTAT_EXIT(lsflag);
    698 		l->l_pfailtime = 0;
    699 		l->l_pfaillock = 0;
    700 		l->l_pfailaddr = 0;
    701 	}
    702 
    703 	if (l != newl) {
    704 		struct lwp *prevlwp;
    705 
    706 		/* Release all locks, but leave the current LWP locked */
    707 		if (l->l_mutex == spc->spc_mutex) {
    708 			/*
    709 			 * Drop spc_lwplock, if the current LWP has been moved
    710 			 * to the run queue (it is now locked by spc_mutex).
    711 			 */
    712 			mutex_spin_exit(spc->spc_lwplock);
    713 		} else {
    714 			/*
    715 			 * Otherwise, drop the spc_mutex, we are done with the
    716 			 * run queues.
    717 			 */
    718 			mutex_spin_exit(spc->spc_mutex);
    719 		}
    720 
    721 		/*
    722 		 * Mark that context switch is going to be perfomed
    723 		 * for this LWP, to protect it from being switched
    724 		 * to on another CPU.
    725 		 */
    726 		KASSERT(l->l_ctxswtch == 0);
    727 		l->l_ctxswtch = 1;
    728 		l->l_ncsw++;
    729 		l->l_pflag &= ~LP_RUNNING;
    730 
    731 		/*
    732 		 * Increase the count of spin-mutexes before the release
    733 		 * of the last lock - we must remain at IPL_SCHED during
    734 		 * the context switch.
    735 		 */
    736 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    737 		ci->ci_mtx_count--;
    738 		lwp_unlock(l);
    739 
    740 		/* Count the context switch on this CPU. */
    741 		ci->ci_data.cpu_nswtch++;
    742 
    743 		/* Update status for lwpctl, if present. */
    744 		if (l->l_lwpctl != NULL)
    745 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    746 
    747 		/*
    748 		 * Save old VM context, unless a soft interrupt
    749 		 * handler is blocking.
    750 		 */
    751 		if (!returning)
    752 			pmap_deactivate(l);
    753 
    754 		/*
    755 		 * We may need to spin-wait for if 'newl' is still
    756 		 * context switching on another CPU.
    757 		 */
    758 		if (newl->l_ctxswtch != 0) {
    759 			u_int count;
    760 			count = SPINLOCK_BACKOFF_MIN;
    761 			while (newl->l_ctxswtch)
    762 				SPINLOCK_BACKOFF(count);
    763 		}
    764 
    765 		/* Switch to the new LWP.. */
    766 		prevlwp = cpu_switchto(l, newl, returning);
    767 		ci = curcpu();
    768 
    769 		/*
    770 		 * Switched away - we have new curlwp.
    771 		 * Restore VM context and IPL.
    772 		 */
    773 		pmap_activate(l);
    774 		if (prevlwp != NULL) {
    775 			/* Normalize the count of the spin-mutexes */
    776 			ci->ci_mtx_count++;
    777 			/* Unmark the state of context switch */
    778 			membar_exit();
    779 			prevlwp->l_ctxswtch = 0;
    780 		}
    781 
    782 		/* Update status for lwpctl, if present. */
    783 		if (l->l_lwpctl != NULL) {
    784 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    785 			l->l_lwpctl->lc_pctr++;
    786 		}
    787 
    788 		KASSERT(l->l_cpu == ci);
    789 		splx(oldspl);
    790 		retval = 1;
    791 	} else {
    792 		/* Nothing to do - just unlock and return. */
    793 		mutex_spin_exit(spc->spc_mutex);
    794 		lwp_unlock(l);
    795 		retval = 0;
    796 	}
    797 
    798 	KASSERT(l == curlwp);
    799 	KASSERT(l->l_stat == LSONPROC);
    800 
    801 	/*
    802 	 * XXXSMP If we are using h/w performance counters, restore context.
    803 	 * XXXSMP preemption problem.
    804 	 */
    805 #if PERFCTRS
    806 	if (PMC_ENABLED(l->l_proc)) {
    807 		pmc_restore_context(l->l_proc);
    808 	}
    809 #endif
    810 	SYSCALL_TIME_WAKEUP(l);
    811 	LOCKDEBUG_BARRIER(NULL, 1);
    812 
    813 	return retval;
    814 }
    815 
    816 /*
    817  * The machine independent parts of context switch to oblivion.
    818  * Does not return.  Call with the LWP unlocked.
    819  */
    820 void
    821 lwp_exit_switchaway(lwp_t *l)
    822 {
    823 	struct cpu_info *ci;
    824 	struct lwp *newl;
    825 	struct bintime bt;
    826 
    827 	ci = l->l_cpu;
    828 
    829 	KASSERT(kpreempt_disabled());
    830 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    831 	KASSERT(ci == curcpu());
    832 	LOCKDEBUG_BARRIER(NULL, 0);
    833 
    834 #ifdef KSTACK_CHECK_MAGIC
    835 	kstack_check_magic(l);
    836 #endif
    837 
    838 	/* Count time spent in current system call */
    839 	SYSCALL_TIME_SLEEP(l);
    840 	binuptime(&bt);
    841 	updatertime(l, &bt);
    842 
    843 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    844 	(void)splsched();
    845 
    846 	/*
    847 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    848 	 * If no LWP is runnable, select the idle LWP.
    849 	 *
    850 	 * Note that spc_lwplock might not necessary be held, and
    851 	 * new thread would be unlocked after setting the LWP-lock.
    852 	 */
    853 	spc_lock(ci);
    854 #ifndef __HAVE_FAST_SOFTINTS
    855 	if (ci->ci_data.cpu_softints != 0) {
    856 		/* There are pending soft interrupts, so pick one. */
    857 		newl = softint_picklwp();
    858 		newl->l_stat = LSONPROC;
    859 		newl->l_pflag |= LP_RUNNING;
    860 	} else
    861 #endif	/* !__HAVE_FAST_SOFTINTS */
    862 	{
    863 		newl = nextlwp(ci, &ci->ci_schedstate);
    864 	}
    865 
    866 	/* Update the new LWP's start time. */
    867 	newl->l_stime = bt;
    868 	l->l_pflag &= ~LP_RUNNING;
    869 
    870 	/*
    871 	 * ci_curlwp changes when a fast soft interrupt occurs.
    872 	 * We use cpu_onproc to keep track of which kernel or
    873 	 * user thread is running 'underneath' the software
    874 	 * interrupt.  This is important for time accounting,
    875 	 * itimers and forcing user threads to preempt (aston).
    876 	 */
    877 	ci->ci_data.cpu_onproc = newl;
    878 
    879 	/*
    880 	 * Preemption related tasks.  Must be done with the current
    881 	 * CPU locked.
    882 	 */
    883 	cpu_did_resched(l);
    884 
    885 	/* Unlock the run queue. */
    886 	spc_unlock(ci);
    887 
    888 	/* Count the context switch on this CPU. */
    889 	ci->ci_data.cpu_nswtch++;
    890 
    891 	/* Update status for lwpctl, if present. */
    892 	if (l->l_lwpctl != NULL)
    893 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    894 
    895 	/*
    896 	 * We may need to spin-wait for if 'newl' is still
    897 	 * context switching on another CPU.
    898 	 */
    899 	if (newl->l_ctxswtch != 0) {
    900 		u_int count;
    901 		count = SPINLOCK_BACKOFF_MIN;
    902 		while (newl->l_ctxswtch)
    903 			SPINLOCK_BACKOFF(count);
    904 	}
    905 
    906 	/* Switch to the new LWP.. */
    907 	(void)cpu_switchto(NULL, newl, false);
    908 
    909 	/* NOTREACHED */
    910 }
    911 
    912 /*
    913  * Change process state to be runnable, placing it on the run queue if it is
    914  * in memory, and awakening the swapper if it isn't in memory.
    915  *
    916  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    917  */
    918 void
    919 setrunnable(struct lwp *l)
    920 {
    921 	struct proc *p = l->l_proc;
    922 	struct cpu_info *ci;
    923 	sigset_t *ss;
    924 
    925 	KASSERT((l->l_flag & LW_IDLE) == 0);
    926 	KASSERT(mutex_owned(p->p_lock));
    927 	KASSERT(lwp_locked(l, NULL));
    928 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    929 
    930 	switch (l->l_stat) {
    931 	case LSSTOP:
    932 		/*
    933 		 * If we're being traced (possibly because someone attached us
    934 		 * while we were stopped), check for a signal from the debugger.
    935 		 */
    936 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    937 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    938 				ss = &l->l_sigpend.sp_set;
    939 			else
    940 				ss = &p->p_sigpend.sp_set;
    941 			sigaddset(ss, p->p_xstat);
    942 			signotify(l);
    943 		}
    944 		p->p_nrlwps++;
    945 		break;
    946 	case LSSUSPENDED:
    947 		l->l_flag &= ~LW_WSUSPEND;
    948 		p->p_nrlwps++;
    949 		cv_broadcast(&p->p_lwpcv);
    950 		break;
    951 	case LSSLEEP:
    952 		KASSERT(l->l_wchan != NULL);
    953 		break;
    954 	default:
    955 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    956 	}
    957 
    958 	if (l->l_proc->p_sa)
    959 		sa_awaken(l);
    960 
    961 	/*
    962 	 * If the LWP was sleeping interruptably, then it's OK to start it
    963 	 * again.  If not, mark it as still sleeping.
    964 	 */
    965 	if (l->l_wchan != NULL) {
    966 		l->l_stat = LSSLEEP;
    967 		/* lwp_unsleep() will release the lock. */
    968 		lwp_unsleep(l, true);
    969 		return;
    970 	}
    971 
    972 	/*
    973 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    974 	 * about to call mi_switch(), in which case it will yield.
    975 	 */
    976 	if ((l->l_pflag & LP_RUNNING) != 0) {
    977 		l->l_stat = LSONPROC;
    978 		l->l_slptime = 0;
    979 		lwp_unlock(l);
    980 		return;
    981 	}
    982 
    983 	/*
    984 	 * Look for a CPU to run.
    985 	 * Set the LWP runnable.
    986 	 */
    987 	ci = sched_takecpu(l);
    988 	l->l_cpu = ci;
    989 	spc_lock(ci);
    990 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    991 	sched_setrunnable(l);
    992 	l->l_stat = LSRUN;
    993 	l->l_slptime = 0;
    994 
    995 	/*
    996 	 * If thread is swapped out - wake the swapper to bring it back in.
    997 	 * Otherwise, enter it into a run queue.
    998 	 */
    999 	if (l->l_flag & LW_INMEM) {
   1000 		sched_enqueue(l, false);
   1001 		resched_cpu(l);
   1002 		lwp_unlock(l);
   1003 	} else {
   1004 		lwp_unlock(l);
   1005 		uvm_kick_scheduler();
   1006 	}
   1007 }
   1008 
   1009 /*
   1010  * suspendsched:
   1011  *
   1012  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1013  */
   1014 void
   1015 suspendsched(void)
   1016 {
   1017 	CPU_INFO_ITERATOR cii;
   1018 	struct cpu_info *ci;
   1019 	struct lwp *l;
   1020 	struct proc *p;
   1021 
   1022 	/*
   1023 	 * We do this by process in order not to violate the locking rules.
   1024 	 */
   1025 	mutex_enter(proc_lock);
   1026 	PROCLIST_FOREACH(p, &allproc) {
   1027 		if ((p->p_flag & PK_MARKER) != 0)
   1028 			continue;
   1029 
   1030 		mutex_enter(p->p_lock);
   1031 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1032 			mutex_exit(p->p_lock);
   1033 			continue;
   1034 		}
   1035 
   1036 		p->p_stat = SSTOP;
   1037 
   1038 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1039 			if (l == curlwp)
   1040 				continue;
   1041 
   1042 			lwp_lock(l);
   1043 
   1044 			/*
   1045 			 * Set L_WREBOOT so that the LWP will suspend itself
   1046 			 * when it tries to return to user mode.  We want to
   1047 			 * try and get to get as many LWPs as possible to
   1048 			 * the user / kernel boundary, so that they will
   1049 			 * release any locks that they hold.
   1050 			 */
   1051 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1052 
   1053 			if (l->l_stat == LSSLEEP &&
   1054 			    (l->l_flag & LW_SINTR) != 0) {
   1055 				/* setrunnable() will release the lock. */
   1056 				setrunnable(l);
   1057 				continue;
   1058 			}
   1059 
   1060 			lwp_unlock(l);
   1061 		}
   1062 
   1063 		mutex_exit(p->p_lock);
   1064 	}
   1065 	mutex_exit(proc_lock);
   1066 
   1067 	/*
   1068 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1069 	 * They'll trap into the kernel and suspend themselves in userret().
   1070 	 */
   1071 	for (CPU_INFO_FOREACH(cii, ci)) {
   1072 		spc_lock(ci);
   1073 		cpu_need_resched(ci, RESCHED_IMMED);
   1074 		spc_unlock(ci);
   1075 	}
   1076 }
   1077 
   1078 /*
   1079  * sched_unsleep:
   1080  *
   1081  *	The is called when the LWP has not been awoken normally but instead
   1082  *	interrupted: for example, if the sleep timed out.  Because of this,
   1083  *	it's not a valid action for running or idle LWPs.
   1084  */
   1085 static u_int
   1086 sched_unsleep(struct lwp *l, bool cleanup)
   1087 {
   1088 
   1089 	lwp_unlock(l);
   1090 	panic("sched_unsleep");
   1091 }
   1092 
   1093 void
   1094 resched_cpu(struct lwp *l)
   1095 {
   1096 	struct cpu_info *ci;
   1097 
   1098 	/*
   1099 	 * XXXSMP
   1100 	 * Since l->l_cpu persists across a context switch,
   1101 	 * this gives us *very weak* processor affinity, in
   1102 	 * that we notify the CPU on which the process last
   1103 	 * ran that it should try to switch.
   1104 	 *
   1105 	 * This does not guarantee that the process will run on
   1106 	 * that processor next, because another processor might
   1107 	 * grab it the next time it performs a context switch.
   1108 	 *
   1109 	 * This also does not handle the case where its last
   1110 	 * CPU is running a higher-priority process, but every
   1111 	 * other CPU is running a lower-priority process.  There
   1112 	 * are ways to handle this situation, but they're not
   1113 	 * currently very pretty, and we also need to weigh the
   1114 	 * cost of moving a process from one CPU to another.
   1115 	 */
   1116 	ci = l->l_cpu;
   1117 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1118 		cpu_need_resched(ci, 0);
   1119 }
   1120 
   1121 static void
   1122 sched_changepri(struct lwp *l, pri_t pri)
   1123 {
   1124 
   1125 	KASSERT(lwp_locked(l, NULL));
   1126 
   1127 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1128 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1129 		sched_dequeue(l);
   1130 		l->l_priority = pri;
   1131 		sched_enqueue(l, false);
   1132 	} else {
   1133 		l->l_priority = pri;
   1134 	}
   1135 	resched_cpu(l);
   1136 }
   1137 
   1138 static void
   1139 sched_lendpri(struct lwp *l, pri_t pri)
   1140 {
   1141 
   1142 	KASSERT(lwp_locked(l, NULL));
   1143 
   1144 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1145 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1146 		sched_dequeue(l);
   1147 		l->l_inheritedprio = pri;
   1148 		sched_enqueue(l, false);
   1149 	} else {
   1150 		l->l_inheritedprio = pri;
   1151 	}
   1152 	resched_cpu(l);
   1153 }
   1154 
   1155 struct lwp *
   1156 syncobj_noowner(wchan_t wchan)
   1157 {
   1158 
   1159 	return NULL;
   1160 }
   1161 
   1162 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
   1163 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
   1164 
   1165 /*
   1166  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
   1167  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
   1168  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
   1169  *
   1170  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
   1171  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
   1172  *
   1173  * If you dont want to bother with the faster/more-accurate formula, you
   1174  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
   1175  * (more general) method of calculating the %age of CPU used by a process.
   1176  */
   1177 #define	CCPU_SHIFT	(FSHIFT + 1)
   1178 
   1179 /*
   1180  * sched_pstats:
   1181  *
   1182  * Update process statistics and check CPU resource allocation.
   1183  * Call scheduler-specific hook to eventually adjust process/LWP
   1184  * priorities.
   1185  */
   1186 /* ARGSUSED */
   1187 void
   1188 sched_pstats(void *arg)
   1189 {
   1190 	struct rlimit *rlim;
   1191 	struct lwp *l;
   1192 	struct proc *p;
   1193 	int sig, clkhz;
   1194 	long runtm;
   1195 
   1196 	sched_pstats_ticks++;
   1197 
   1198 	mutex_enter(proc_lock);
   1199 	PROCLIST_FOREACH(p, &allproc) {
   1200 		if ((p->p_flag & PK_MARKER) != 0)
   1201 			continue;
   1202 
   1203 		/*
   1204 		 * Increment time in/out of memory and sleep time (if
   1205 		 * sleeping).  We ignore overflow; with 16-bit int's
   1206 		 * (remember them?) overflow takes 45 days.
   1207 		 */
   1208 		mutex_enter(p->p_lock);
   1209 		mutex_spin_enter(&p->p_stmutex);
   1210 		runtm = p->p_rtime.sec;
   1211 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1212 			if ((l->l_flag & LW_IDLE) != 0)
   1213 				continue;
   1214 			lwp_lock(l);
   1215 			runtm += l->l_rtime.sec;
   1216 			l->l_swtime++;
   1217 			sched_lwp_stats(l);
   1218 			lwp_unlock(l);
   1219 
   1220 			/*
   1221 			 * p_pctcpu is only for ps.
   1222 			 */
   1223 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1224 			if (l->l_slptime < 1) {
   1225 				clkhz = stathz != 0 ? stathz : hz;
   1226 #if	(FSHIFT >= CCPU_SHIFT)
   1227 				l->l_pctcpu += (clkhz == 100) ?
   1228 				    ((fixpt_t)l->l_cpticks) <<
   1229 				        (FSHIFT - CCPU_SHIFT) :
   1230 				    100 * (((fixpt_t) p->p_cpticks)
   1231 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
   1232 #else
   1233 				l->l_pctcpu += ((FSCALE - ccpu) *
   1234 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
   1235 #endif
   1236 				l->l_cpticks = 0;
   1237 			}
   1238 		}
   1239 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1240 		mutex_spin_exit(&p->p_stmutex);
   1241 
   1242 		/*
   1243 		 * Check if the process exceeds its CPU resource allocation.
   1244 		 * If over max, kill it.
   1245 		 */
   1246 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1247 		sig = 0;
   1248 		if (runtm >= rlim->rlim_cur) {
   1249 			if (runtm >= rlim->rlim_max)
   1250 				sig = SIGKILL;
   1251 			else {
   1252 				sig = SIGXCPU;
   1253 				if (rlim->rlim_cur < rlim->rlim_max)
   1254 					rlim->rlim_cur += 5;
   1255 			}
   1256 		}
   1257 		mutex_exit(p->p_lock);
   1258 		if (sig)
   1259 			psignal(p, sig);
   1260 	}
   1261 	mutex_exit(proc_lock);
   1262 	uvm_meter();
   1263 	cv_wakeup(&lbolt);
   1264 	callout_schedule(&sched_pstats_ch, hz);
   1265 }
   1266