kern_synch.c revision 1.243 1 /* $NetBSD: kern_synch.c,v 1.243 2008/05/19 17:06:02 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*-
35 * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.243 2008/05/19 17:06:02 ad Exp $");
72
73 #include "opt_kstack.h"
74 #include "opt_perfctrs.h"
75
76 #define __MUTEX_PRIVATE
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/kernel.h>
82 #if defined(PERFCTRS)
83 #include <sys/pmc.h>
84 #endif
85 #include <sys/cpu.h>
86 #include <sys/resourcevar.h>
87 #include <sys/sched.h>
88 #include <sys/syscall_stats.h>
89 #include <sys/sleepq.h>
90 #include <sys/lockdebug.h>
91 #include <sys/evcnt.h>
92 #include <sys/intr.h>
93 #include <sys/lwpctl.h>
94 #include <sys/atomic.h>
95 #include <sys/simplelock.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #include <dev/lockstat.h>
100
101 static u_int sched_unsleep(struct lwp *, bool);
102 static void sched_changepri(struct lwp *, pri_t);
103 static void sched_lendpri(struct lwp *, pri_t);
104
105 syncobj_t sleep_syncobj = {
106 SOBJ_SLEEPQ_SORTED,
107 sleepq_unsleep,
108 sleepq_changepri,
109 sleepq_lendpri,
110 syncobj_noowner,
111 };
112
113 syncobj_t sched_syncobj = {
114 SOBJ_SLEEPQ_SORTED,
115 sched_unsleep,
116 sched_changepri,
117 sched_lendpri,
118 syncobj_noowner,
119 };
120
121 callout_t sched_pstats_ch;
122 unsigned sched_pstats_ticks;
123 kcondvar_t lbolt; /* once a second sleep address */
124
125 /* Preemption event counters */
126 static struct evcnt kpreempt_ev_crit;
127 static struct evcnt kpreempt_ev_klock;
128 static struct evcnt kpreempt_ev_ipl;
129 static struct evcnt kpreempt_ev_immed;
130
131 /*
132 * During autoconfiguration or after a panic, a sleep will simply lower the
133 * priority briefly to allow interrupts, then return. The priority to be
134 * used (safepri) is machine-dependent, thus this value is initialized and
135 * maintained in the machine-dependent layers. This priority will typically
136 * be 0, or the lowest priority that is safe for use on the interrupt stack;
137 * it can be made higher to block network software interrupts after panics.
138 */
139 int safepri;
140
141 void
142 sched_init(void)
143 {
144
145 cv_init(&lbolt, "lbolt");
146 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
147 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
148
149 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
150 "kpreempt", "defer: critical section");
151 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
152 "kpreempt", "defer: kernel_lock");
153 evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
154 "kpreempt", "defer: IPL");
155 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
156 "kpreempt", "immediate");
157
158 sched_pstats(NULL);
159 }
160
161 /*
162 * OBSOLETE INTERFACE
163 *
164 * General sleep call. Suspends the current process until a wakeup is
165 * performed on the specified identifier. The process will then be made
166 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
167 * means no timeout). If pri includes PCATCH flag, signals are checked
168 * before and after sleeping, else signals are not checked. Returns 0 if
169 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
170 * signal needs to be delivered, ERESTART is returned if the current system
171 * call should be restarted if possible, and EINTR is returned if the system
172 * call should be interrupted by the signal (return EINTR).
173 *
174 * The interlock is held until we are on a sleep queue. The interlock will
175 * be locked before returning back to the caller unless the PNORELOCK flag
176 * is specified, in which case the interlock will always be unlocked upon
177 * return.
178 */
179 int
180 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
181 volatile struct simplelock *interlock)
182 {
183 struct lwp *l = curlwp;
184 sleepq_t *sq;
185 int error;
186
187 KASSERT((l->l_pflag & LP_INTR) == 0);
188
189 if (sleepq_dontsleep(l)) {
190 (void)sleepq_abort(NULL, 0);
191 if ((priority & PNORELOCK) != 0)
192 simple_unlock(interlock);
193 return 0;
194 }
195
196 l->l_kpriority = true;
197 sq = sleeptab_lookup(&sleeptab, ident);
198 sleepq_enter(sq, l);
199 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
200
201 if (interlock != NULL) {
202 KASSERT(simple_lock_held(interlock));
203 simple_unlock(interlock);
204 }
205
206 error = sleepq_block(timo, priority & PCATCH);
207
208 if (interlock != NULL && (priority & PNORELOCK) == 0)
209 simple_lock(interlock);
210
211 return error;
212 }
213
214 int
215 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
216 kmutex_t *mtx)
217 {
218 struct lwp *l = curlwp;
219 sleepq_t *sq;
220 int error;
221
222 KASSERT((l->l_pflag & LP_INTR) == 0);
223
224 if (sleepq_dontsleep(l)) {
225 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
226 return 0;
227 }
228
229 l->l_kpriority = true;
230 sq = sleeptab_lookup(&sleeptab, ident);
231 sleepq_enter(sq, l);
232 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
233 mutex_exit(mtx);
234 error = sleepq_block(timo, priority & PCATCH);
235
236 if ((priority & PNORELOCK) == 0)
237 mutex_enter(mtx);
238
239 return error;
240 }
241
242 /*
243 * General sleep call for situations where a wake-up is not expected.
244 */
245 int
246 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
247 {
248 struct lwp *l = curlwp;
249 sleepq_t *sq;
250 int error;
251
252 if (sleepq_dontsleep(l))
253 return sleepq_abort(NULL, 0);
254
255 if (mtx != NULL)
256 mutex_exit(mtx);
257 l->l_kpriority = true;
258 sq = sleeptab_lookup(&sleeptab, l);
259 sleepq_enter(sq, l);
260 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
261 error = sleepq_block(timo, intr);
262 if (mtx != NULL)
263 mutex_enter(mtx);
264
265 return error;
266 }
267
268 /*
269 * OBSOLETE INTERFACE
270 *
271 * Make all processes sleeping on the specified identifier runnable.
272 */
273 void
274 wakeup(wchan_t ident)
275 {
276 sleepq_t *sq;
277
278 if (cold)
279 return;
280
281 sq = sleeptab_lookup(&sleeptab, ident);
282 sleepq_wake(sq, ident, (u_int)-1);
283 }
284
285 /*
286 * OBSOLETE INTERFACE
287 *
288 * Make the highest priority process first in line on the specified
289 * identifier runnable.
290 */
291 void
292 wakeup_one(wchan_t ident)
293 {
294 sleepq_t *sq;
295
296 if (cold)
297 return;
298
299 sq = sleeptab_lookup(&sleeptab, ident);
300 sleepq_wake(sq, ident, 1);
301 }
302
303
304 /*
305 * General yield call. Puts the current process back on its run queue and
306 * performs a voluntary context switch. Should only be called when the
307 * current process explicitly requests it (eg sched_yield(2)).
308 */
309 void
310 yield(void)
311 {
312 struct lwp *l = curlwp;
313
314 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
315 lwp_lock(l);
316 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
317 KASSERT(l->l_stat == LSONPROC);
318 l->l_kpriority = false;
319 (void)mi_switch(l);
320 KERNEL_LOCK(l->l_biglocks, l);
321 }
322
323 /*
324 * General preemption call. Puts the current process back on its run queue
325 * and performs an involuntary context switch.
326 */
327 void
328 preempt(void)
329 {
330 struct lwp *l = curlwp;
331
332 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
333 lwp_lock(l);
334 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
335 KASSERT(l->l_stat == LSONPROC);
336 l->l_kpriority = false;
337 l->l_nivcsw++;
338 (void)mi_switch(l);
339 KERNEL_LOCK(l->l_biglocks, l);
340 }
341
342 /*
343 * Handle a request made by another agent to preempt the current LWP
344 * in-kernel. Usually called when l_dopreempt may be non-zero.
345 *
346 * Character addresses for lockstat only.
347 */
348 static char in_critical_section;
349 static char kernel_lock_held;
350 static char spl_raised;
351 static char is_softint;
352
353 bool
354 kpreempt(uintptr_t where)
355 {
356 uintptr_t failed;
357 lwp_t *l;
358 int s, dop;
359
360 l = curlwp;
361 failed = 0;
362 while ((dop = l->l_dopreempt) != 0) {
363 if (l->l_stat != LSONPROC) {
364 /*
365 * About to block (or die), let it happen.
366 * Doesn't really count as "preemption has
367 * been blocked", since we're going to
368 * context switch.
369 */
370 l->l_dopreempt = 0;
371 return true;
372 }
373 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
374 /* Can't preempt idle loop, don't count as failure. */
375 l->l_dopreempt = 0;
376 return true;
377 }
378 if (__predict_false(l->l_nopreempt != 0)) {
379 /* LWP holds preemption disabled, explicitly. */
380 if ((dop & DOPREEMPT_COUNTED) == 0) {
381 kpreempt_ev_crit.ev_count++;
382 }
383 failed = (uintptr_t)&in_critical_section;
384 break;
385 }
386 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
387 /* Can't preempt soft interrupts yet. */
388 l->l_dopreempt = 0;
389 failed = (uintptr_t)&is_softint;
390 break;
391 }
392 s = splsched();
393 if (__predict_false(l->l_blcnt != 0 ||
394 curcpu()->ci_biglock_wanted != NULL)) {
395 /* Hold or want kernel_lock, code is not MT safe. */
396 splx(s);
397 if ((dop & DOPREEMPT_COUNTED) == 0) {
398 kpreempt_ev_klock.ev_count++;
399 }
400 failed = (uintptr_t)&kernel_lock_held;
401 break;
402 }
403 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
404 /*
405 * It may be that the IPL is too high.
406 * kpreempt_enter() can schedule an
407 * interrupt to retry later.
408 */
409 splx(s);
410 if ((dop & DOPREEMPT_COUNTED) == 0) {
411 kpreempt_ev_ipl.ev_count++;
412 }
413 failed = (uintptr_t)&spl_raised;
414 break;
415 }
416 /* Do it! */
417 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
418 kpreempt_ev_immed.ev_count++;
419 }
420 lwp_lock(l);
421 mi_switch(l);
422 l->l_nopreempt++;
423 splx(s);
424
425 /* Take care of any MD cleanup. */
426 cpu_kpreempt_exit(where);
427 l->l_nopreempt--;
428 }
429
430 /* Record preemption failure for reporting via lockstat. */
431 if (__predict_false(failed)) {
432 int lsflag = 0;
433 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
434 LOCKSTAT_ENTER(lsflag);
435 /* Might recurse, make it atomic. */
436 if (__predict_false(lsflag)) {
437 if (where == 0) {
438 where = (uintptr_t)__builtin_return_address(0);
439 }
440 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
441 NULL, (void *)where) == NULL) {
442 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
443 l->l_pfaillock = failed;
444 }
445 }
446 LOCKSTAT_EXIT(lsflag);
447 }
448
449 return failed;
450 }
451
452 /*
453 * Return true if preemption is explicitly disabled.
454 */
455 bool
456 kpreempt_disabled(void)
457 {
458 lwp_t *l;
459
460 l = curlwp;
461
462 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
463 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
464 }
465
466 /*
467 * Disable kernel preemption.
468 */
469 void
470 kpreempt_disable(void)
471 {
472
473 KPREEMPT_DISABLE(curlwp);
474 }
475
476 /*
477 * Reenable kernel preemption.
478 */
479 void
480 kpreempt_enable(void)
481 {
482
483 KPREEMPT_ENABLE(curlwp);
484 }
485
486 /*
487 * Compute the amount of time during which the current lwp was running.
488 *
489 * - update l_rtime unless it's an idle lwp.
490 */
491
492 void
493 updatertime(lwp_t *l, const struct bintime *now)
494 {
495
496 if ((l->l_flag & LW_IDLE) != 0)
497 return;
498
499 /* rtime += now - stime */
500 bintime_add(&l->l_rtime, now);
501 bintime_sub(&l->l_rtime, &l->l_stime);
502 }
503
504 /*
505 * The machine independent parts of context switch.
506 *
507 * Returns 1 if another LWP was actually run.
508 */
509 int
510 mi_switch(lwp_t *l)
511 {
512 struct cpu_info *ci, *tci = NULL;
513 struct schedstate_percpu *spc;
514 struct lwp *newl;
515 int retval, oldspl;
516 struct bintime bt;
517 bool returning;
518
519 KASSERT(lwp_locked(l, NULL));
520 KASSERT(kpreempt_disabled());
521 LOCKDEBUG_BARRIER(l->l_mutex, 1);
522
523 #ifdef KSTACK_CHECK_MAGIC
524 kstack_check_magic(l);
525 #endif
526
527 binuptime(&bt);
528
529 KASSERT(l->l_cpu == curcpu());
530 ci = l->l_cpu;
531 spc = &ci->ci_schedstate;
532 returning = false;
533 newl = NULL;
534
535 /*
536 * If we have been asked to switch to a specific LWP, then there
537 * is no need to inspect the run queues. If a soft interrupt is
538 * blocking, then return to the interrupted thread without adjusting
539 * VM context or its start time: neither have been changed in order
540 * to take the interrupt.
541 */
542 if (l->l_switchto != NULL) {
543 if ((l->l_pflag & LP_INTR) != 0) {
544 returning = true;
545 softint_block(l);
546 if ((l->l_flag & LW_TIMEINTR) != 0)
547 updatertime(l, &bt);
548 }
549 newl = l->l_switchto;
550 l->l_switchto = NULL;
551 }
552 #ifndef __HAVE_FAST_SOFTINTS
553 else if (ci->ci_data.cpu_softints != 0) {
554 /* There are pending soft interrupts, so pick one. */
555 newl = softint_picklwp();
556 newl->l_stat = LSONPROC;
557 newl->l_flag |= LW_RUNNING;
558 }
559 #endif /* !__HAVE_FAST_SOFTINTS */
560
561 /* Count time spent in current system call */
562 if (!returning) {
563 SYSCALL_TIME_SLEEP(l);
564
565 /*
566 * XXXSMP If we are using h/w performance counters,
567 * save context.
568 */
569 #if PERFCTRS
570 if (PMC_ENABLED(l->l_proc)) {
571 pmc_save_context(l->l_proc);
572 }
573 #endif
574 updatertime(l, &bt);
575 }
576
577 /*
578 * If on the CPU and we have gotten this far, then we must yield.
579 */
580 KASSERT(l->l_stat != LSRUN);
581 if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
582 KASSERT(lwp_locked(l, spc->spc_lwplock));
583
584 if (l->l_target_cpu == l->l_cpu) {
585 l->l_target_cpu = NULL;
586 } else {
587 tci = l->l_target_cpu;
588 }
589
590 if (__predict_false(tci != NULL)) {
591 /* Double-lock the runqueues */
592 spc_dlock(ci, tci);
593 } else {
594 /* Lock the runqueue */
595 spc_lock(ci);
596 }
597
598 if ((l->l_flag & LW_IDLE) == 0) {
599 l->l_stat = LSRUN;
600 if (__predict_false(tci != NULL)) {
601 /*
602 * Set the new CPU, lock and unset the
603 * l_target_cpu - thread will be enqueued
604 * to the runqueue of target CPU.
605 */
606 l->l_cpu = tci;
607 lwp_setlock(l, tci->ci_schedstate.spc_mutex);
608 l->l_target_cpu = NULL;
609 } else {
610 lwp_setlock(l, spc->spc_mutex);
611 }
612 sched_enqueue(l, true);
613 } else {
614 KASSERT(tci == NULL);
615 l->l_stat = LSIDL;
616 }
617 } else {
618 /* Lock the runqueue */
619 spc_lock(ci);
620 }
621
622 /*
623 * Let sched_nextlwp() select the LWP to run the CPU next.
624 * If no LWP is runnable, select the idle LWP.
625 *
626 * Note that spc_lwplock might not necessary be held, and
627 * new thread would be unlocked after setting the LWP-lock.
628 */
629 if (newl == NULL) {
630 newl = sched_nextlwp();
631 if (newl != NULL) {
632 sched_dequeue(newl);
633 KASSERT(lwp_locked(newl, spc->spc_mutex));
634 newl->l_stat = LSONPROC;
635 newl->l_cpu = ci;
636 newl->l_flag |= LW_RUNNING;
637 lwp_setlock(newl, spc->spc_lwplock);
638 } else {
639 newl = ci->ci_data.cpu_idlelwp;
640 newl->l_stat = LSONPROC;
641 newl->l_flag |= LW_RUNNING;
642 }
643 /*
644 * Only clear want_resched if there are no
645 * pending (slow) software interrupts.
646 */
647 ci->ci_want_resched = ci->ci_data.cpu_softints;
648 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
649 spc->spc_curpriority = lwp_eprio(newl);
650 }
651
652 /* Items that must be updated with the CPU locked. */
653 if (!returning) {
654 /* Update the new LWP's start time. */
655 newl->l_stime = bt;
656
657 /*
658 * ci_curlwp changes when a fast soft interrupt occurs.
659 * We use cpu_onproc to keep track of which kernel or
660 * user thread is running 'underneath' the software
661 * interrupt. This is important for time accounting,
662 * itimers and forcing user threads to preempt (aston).
663 */
664 ci->ci_data.cpu_onproc = newl;
665 }
666
667 /*
668 * Preemption related tasks. Must be done with the current
669 * CPU locked.
670 */
671 cpu_did_resched(l);
672 l->l_dopreempt = 0;
673 if (__predict_false(l->l_pfailaddr != 0)) {
674 LOCKSTAT_FLAG(lsflag);
675 LOCKSTAT_ENTER(lsflag);
676 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
677 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
678 1, l->l_pfailtime, l->l_pfailaddr);
679 LOCKSTAT_EXIT(lsflag);
680 l->l_pfailtime = 0;
681 l->l_pfaillock = 0;
682 l->l_pfailaddr = 0;
683 }
684
685 if (l != newl) {
686 struct lwp *prevlwp;
687
688 /* Release all locks, but leave the current LWP locked */
689 if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
690 /*
691 * In case of migration, drop the local runqueue
692 * lock, thread is on other runqueue now.
693 */
694 if (__predict_false(tci != NULL))
695 spc_unlock(ci);
696 /*
697 * Drop spc_lwplock, if the current LWP has been moved
698 * to the run queue (it is now locked by spc_mutex).
699 */
700 mutex_spin_exit(spc->spc_lwplock);
701 } else {
702 /*
703 * Otherwise, drop the spc_mutex, we are done with the
704 * run queues.
705 */
706 mutex_spin_exit(spc->spc_mutex);
707 KASSERT(tci == NULL);
708 }
709
710 /*
711 * Mark that context switch is going to be perfomed
712 * for this LWP, to protect it from being switched
713 * to on another CPU.
714 */
715 KASSERT(l->l_ctxswtch == 0);
716 l->l_ctxswtch = 1;
717 l->l_ncsw++;
718 l->l_flag &= ~LW_RUNNING;
719
720 /*
721 * Increase the count of spin-mutexes before the release
722 * of the last lock - we must remain at IPL_SCHED during
723 * the context switch.
724 */
725 oldspl = MUTEX_SPIN_OLDSPL(ci);
726 ci->ci_mtx_count--;
727 lwp_unlock(l);
728
729 /* Count the context switch on this CPU. */
730 ci->ci_data.cpu_nswtch++;
731
732 /* Update status for lwpctl, if present. */
733 if (l->l_lwpctl != NULL)
734 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
735
736 /*
737 * Save old VM context, unless a soft interrupt
738 * handler is blocking.
739 */
740 if (!returning)
741 pmap_deactivate(l);
742
743 /*
744 * We may need to spin-wait for if 'newl' is still
745 * context switching on another CPU.
746 */
747 if (newl->l_ctxswtch != 0) {
748 u_int count;
749 count = SPINLOCK_BACKOFF_MIN;
750 while (newl->l_ctxswtch)
751 SPINLOCK_BACKOFF(count);
752 }
753
754 /* Switch to the new LWP.. */
755 prevlwp = cpu_switchto(l, newl, returning);
756 ci = curcpu();
757
758 /*
759 * Switched away - we have new curlwp.
760 * Restore VM context and IPL.
761 */
762 pmap_activate(l);
763 if (prevlwp != NULL) {
764 /* Normalize the count of the spin-mutexes */
765 ci->ci_mtx_count++;
766 /* Unmark the state of context switch */
767 membar_exit();
768 prevlwp->l_ctxswtch = 0;
769 }
770
771 /* Update status for lwpctl, if present. */
772 if (l->l_lwpctl != NULL) {
773 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
774 l->l_lwpctl->lc_pctr++;
775 }
776
777 KASSERT(l->l_cpu == ci);
778 splx(oldspl);
779 retval = 1;
780 } else {
781 /* Nothing to do - just unlock and return. */
782 KASSERT(tci == NULL);
783 spc_unlock(ci);
784 lwp_unlock(l);
785 retval = 0;
786 }
787
788 KASSERT(l == curlwp);
789 KASSERT(l->l_stat == LSONPROC);
790
791 /*
792 * XXXSMP If we are using h/w performance counters, restore context.
793 * XXXSMP preemption problem.
794 */
795 #if PERFCTRS
796 if (PMC_ENABLED(l->l_proc)) {
797 pmc_restore_context(l->l_proc);
798 }
799 #endif
800 SYSCALL_TIME_WAKEUP(l);
801 LOCKDEBUG_BARRIER(NULL, 1);
802
803 return retval;
804 }
805
806 /*
807 * Change process state to be runnable, placing it on the run queue if it is
808 * in memory, and awakening the swapper if it isn't in memory.
809 *
810 * Call with the process and LWP locked. Will return with the LWP unlocked.
811 */
812 void
813 setrunnable(struct lwp *l)
814 {
815 struct proc *p = l->l_proc;
816 struct cpu_info *ci;
817 sigset_t *ss;
818
819 KASSERT((l->l_flag & LW_IDLE) == 0);
820 KASSERT(mutex_owned(p->p_lock));
821 KASSERT(lwp_locked(l, NULL));
822 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
823
824 switch (l->l_stat) {
825 case LSSTOP:
826 /*
827 * If we're being traced (possibly because someone attached us
828 * while we were stopped), check for a signal from the debugger.
829 */
830 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
831 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
832 ss = &l->l_sigpend.sp_set;
833 else
834 ss = &p->p_sigpend.sp_set;
835 sigaddset(ss, p->p_xstat);
836 signotify(l);
837 }
838 p->p_nrlwps++;
839 break;
840 case LSSUSPENDED:
841 l->l_flag &= ~LW_WSUSPEND;
842 p->p_nrlwps++;
843 cv_broadcast(&p->p_lwpcv);
844 break;
845 case LSSLEEP:
846 KASSERT(l->l_wchan != NULL);
847 break;
848 default:
849 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
850 }
851
852 /*
853 * If the LWP was sleeping interruptably, then it's OK to start it
854 * again. If not, mark it as still sleeping.
855 */
856 if (l->l_wchan != NULL) {
857 l->l_stat = LSSLEEP;
858 /* lwp_unsleep() will release the lock. */
859 lwp_unsleep(l, true);
860 return;
861 }
862
863 /*
864 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
865 * about to call mi_switch(), in which case it will yield.
866 */
867 if ((l->l_flag & LW_RUNNING) != 0) {
868 l->l_stat = LSONPROC;
869 l->l_slptime = 0;
870 lwp_unlock(l);
871 return;
872 }
873
874 /*
875 * Look for a CPU to run.
876 * Set the LWP runnable.
877 */
878 ci = sched_takecpu(l);
879 l->l_cpu = ci;
880 spc_lock(ci);
881 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
882 sched_setrunnable(l);
883 l->l_stat = LSRUN;
884 l->l_slptime = 0;
885
886 /*
887 * If thread is swapped out - wake the swapper to bring it back in.
888 * Otherwise, enter it into a run queue.
889 */
890 if (l->l_flag & LW_INMEM) {
891 sched_enqueue(l, false);
892 resched_cpu(l);
893 lwp_unlock(l);
894 } else {
895 lwp_unlock(l);
896 uvm_kick_scheduler();
897 }
898 }
899
900 /*
901 * suspendsched:
902 *
903 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
904 */
905 void
906 suspendsched(void)
907 {
908 CPU_INFO_ITERATOR cii;
909 struct cpu_info *ci;
910 struct lwp *l;
911 struct proc *p;
912
913 /*
914 * We do this by process in order not to violate the locking rules.
915 */
916 mutex_enter(proc_lock);
917 PROCLIST_FOREACH(p, &allproc) {
918 if ((p->p_flag & PK_MARKER) != 0)
919 continue;
920
921 mutex_enter(p->p_lock);
922 if ((p->p_flag & PK_SYSTEM) != 0) {
923 mutex_exit(p->p_lock);
924 continue;
925 }
926
927 p->p_stat = SSTOP;
928
929 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
930 if (l == curlwp)
931 continue;
932
933 lwp_lock(l);
934
935 /*
936 * Set L_WREBOOT so that the LWP will suspend itself
937 * when it tries to return to user mode. We want to
938 * try and get to get as many LWPs as possible to
939 * the user / kernel boundary, so that they will
940 * release any locks that they hold.
941 */
942 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
943
944 if (l->l_stat == LSSLEEP &&
945 (l->l_flag & LW_SINTR) != 0) {
946 /* setrunnable() will release the lock. */
947 setrunnable(l);
948 continue;
949 }
950
951 lwp_unlock(l);
952 }
953
954 mutex_exit(p->p_lock);
955 }
956 mutex_exit(proc_lock);
957
958 /*
959 * Kick all CPUs to make them preempt any LWPs running in user mode.
960 * They'll trap into the kernel and suspend themselves in userret().
961 */
962 for (CPU_INFO_FOREACH(cii, ci)) {
963 spc_lock(ci);
964 cpu_need_resched(ci, RESCHED_IMMED);
965 spc_unlock(ci);
966 }
967 }
968
969 /*
970 * sched_unsleep:
971 *
972 * The is called when the LWP has not been awoken normally but instead
973 * interrupted: for example, if the sleep timed out. Because of this,
974 * it's not a valid action for running or idle LWPs.
975 */
976 static u_int
977 sched_unsleep(struct lwp *l, bool cleanup)
978 {
979
980 lwp_unlock(l);
981 panic("sched_unsleep");
982 }
983
984 void
985 resched_cpu(struct lwp *l)
986 {
987 struct cpu_info *ci;
988
989 /*
990 * XXXSMP
991 * Since l->l_cpu persists across a context switch,
992 * this gives us *very weak* processor affinity, in
993 * that we notify the CPU on which the process last
994 * ran that it should try to switch.
995 *
996 * This does not guarantee that the process will run on
997 * that processor next, because another processor might
998 * grab it the next time it performs a context switch.
999 *
1000 * This also does not handle the case where its last
1001 * CPU is running a higher-priority process, but every
1002 * other CPU is running a lower-priority process. There
1003 * are ways to handle this situation, but they're not
1004 * currently very pretty, and we also need to weigh the
1005 * cost of moving a process from one CPU to another.
1006 */
1007 ci = l->l_cpu;
1008 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1009 cpu_need_resched(ci, 0);
1010 }
1011
1012 static void
1013 sched_changepri(struct lwp *l, pri_t pri)
1014 {
1015
1016 KASSERT(lwp_locked(l, NULL));
1017
1018 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1019 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1020 sched_dequeue(l);
1021 l->l_priority = pri;
1022 sched_enqueue(l, false);
1023 } else {
1024 l->l_priority = pri;
1025 }
1026 resched_cpu(l);
1027 }
1028
1029 static void
1030 sched_lendpri(struct lwp *l, pri_t pri)
1031 {
1032
1033 KASSERT(lwp_locked(l, NULL));
1034
1035 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1036 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1037 sched_dequeue(l);
1038 l->l_inheritedprio = pri;
1039 sched_enqueue(l, false);
1040 } else {
1041 l->l_inheritedprio = pri;
1042 }
1043 resched_cpu(l);
1044 }
1045
1046 struct lwp *
1047 syncobj_noowner(wchan_t wchan)
1048 {
1049
1050 return NULL;
1051 }
1052
1053 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1054 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
1055
1056 /*
1057 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
1058 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
1059 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
1060 *
1061 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
1062 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
1063 *
1064 * If you dont want to bother with the faster/more-accurate formula, you
1065 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
1066 * (more general) method of calculating the %age of CPU used by a process.
1067 */
1068 #define CCPU_SHIFT (FSHIFT + 1)
1069
1070 /*
1071 * sched_pstats:
1072 *
1073 * Update process statistics and check CPU resource allocation.
1074 * Call scheduler-specific hook to eventually adjust process/LWP
1075 * priorities.
1076 */
1077 /* ARGSUSED */
1078 void
1079 sched_pstats(void *arg)
1080 {
1081 struct rlimit *rlim;
1082 struct lwp *l;
1083 struct proc *p;
1084 int sig, clkhz;
1085 long runtm;
1086
1087 sched_pstats_ticks++;
1088
1089 mutex_enter(proc_lock);
1090 PROCLIST_FOREACH(p, &allproc) {
1091 if ((p->p_flag & PK_MARKER) != 0)
1092 continue;
1093
1094 /*
1095 * Increment time in/out of memory and sleep time (if
1096 * sleeping). We ignore overflow; with 16-bit int's
1097 * (remember them?) overflow takes 45 days.
1098 */
1099 mutex_enter(p->p_lock);
1100 mutex_spin_enter(&p->p_stmutex);
1101 runtm = p->p_rtime.sec;
1102 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1103 if ((l->l_flag & LW_IDLE) != 0)
1104 continue;
1105 lwp_lock(l);
1106 runtm += l->l_rtime.sec;
1107 l->l_swtime++;
1108 sched_lwp_stats(l);
1109 lwp_unlock(l);
1110
1111 /*
1112 * p_pctcpu is only for ps.
1113 */
1114 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1115 if (l->l_slptime < 1) {
1116 clkhz = stathz != 0 ? stathz : hz;
1117 #if (FSHIFT >= CCPU_SHIFT)
1118 l->l_pctcpu += (clkhz == 100) ?
1119 ((fixpt_t)l->l_cpticks) <<
1120 (FSHIFT - CCPU_SHIFT) :
1121 100 * (((fixpt_t) p->p_cpticks)
1122 << (FSHIFT - CCPU_SHIFT)) / clkhz;
1123 #else
1124 l->l_pctcpu += ((FSCALE - ccpu) *
1125 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1126 #endif
1127 l->l_cpticks = 0;
1128 }
1129 }
1130 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1131 mutex_spin_exit(&p->p_stmutex);
1132
1133 /*
1134 * Check if the process exceeds its CPU resource allocation.
1135 * If over max, kill it.
1136 */
1137 rlim = &p->p_rlimit[RLIMIT_CPU];
1138 sig = 0;
1139 if (runtm >= rlim->rlim_cur) {
1140 if (runtm >= rlim->rlim_max)
1141 sig = SIGKILL;
1142 else {
1143 sig = SIGXCPU;
1144 if (rlim->rlim_cur < rlim->rlim_max)
1145 rlim->rlim_cur += 5;
1146 }
1147 }
1148 mutex_exit(p->p_lock);
1149 if (sig)
1150 psignal(p, sig);
1151 }
1152 mutex_exit(proc_lock);
1153 uvm_meter();
1154 cv_wakeup(&lbolt);
1155 callout_schedule(&sched_pstats_ch, hz);
1156 }
1157