Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.243
      1 /*	$NetBSD: kern_synch.c,v 1.243 2008/05/19 17:06:02 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*-
     35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.243 2008/05/19 17:06:02 ad Exp $");
     72 
     73 #include "opt_kstack.h"
     74 #include "opt_perfctrs.h"
     75 
     76 #define	__MUTEX_PRIVATE
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/kernel.h>
     82 #if defined(PERFCTRS)
     83 #include <sys/pmc.h>
     84 #endif
     85 #include <sys/cpu.h>
     86 #include <sys/resourcevar.h>
     87 #include <sys/sched.h>
     88 #include <sys/syscall_stats.h>
     89 #include <sys/sleepq.h>
     90 #include <sys/lockdebug.h>
     91 #include <sys/evcnt.h>
     92 #include <sys/intr.h>
     93 #include <sys/lwpctl.h>
     94 #include <sys/atomic.h>
     95 #include <sys/simplelock.h>
     96 
     97 #include <uvm/uvm_extern.h>
     98 
     99 #include <dev/lockstat.h>
    100 
    101 static u_int	sched_unsleep(struct lwp *, bool);
    102 static void	sched_changepri(struct lwp *, pri_t);
    103 static void	sched_lendpri(struct lwp *, pri_t);
    104 
    105 syncobj_t sleep_syncobj = {
    106 	SOBJ_SLEEPQ_SORTED,
    107 	sleepq_unsleep,
    108 	sleepq_changepri,
    109 	sleepq_lendpri,
    110 	syncobj_noowner,
    111 };
    112 
    113 syncobj_t sched_syncobj = {
    114 	SOBJ_SLEEPQ_SORTED,
    115 	sched_unsleep,
    116 	sched_changepri,
    117 	sched_lendpri,
    118 	syncobj_noowner,
    119 };
    120 
    121 callout_t 	sched_pstats_ch;
    122 unsigned	sched_pstats_ticks;
    123 kcondvar_t	lbolt;			/* once a second sleep address */
    124 
    125 /* Preemption event counters */
    126 static struct evcnt kpreempt_ev_crit;
    127 static struct evcnt kpreempt_ev_klock;
    128 static struct evcnt kpreempt_ev_ipl;
    129 static struct evcnt kpreempt_ev_immed;
    130 
    131 /*
    132  * During autoconfiguration or after a panic, a sleep will simply lower the
    133  * priority briefly to allow interrupts, then return.  The priority to be
    134  * used (safepri) is machine-dependent, thus this value is initialized and
    135  * maintained in the machine-dependent layers.  This priority will typically
    136  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    137  * it can be made higher to block network software interrupts after panics.
    138  */
    139 int	safepri;
    140 
    141 void
    142 sched_init(void)
    143 {
    144 
    145 	cv_init(&lbolt, "lbolt");
    146 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    147 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    148 
    149 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    150 	   "kpreempt", "defer: critical section");
    151 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    152 	   "kpreempt", "defer: kernel_lock");
    153 	evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
    154 	   "kpreempt", "defer: IPL");
    155 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    156 	   "kpreempt", "immediate");
    157 
    158 	sched_pstats(NULL);
    159 }
    160 
    161 /*
    162  * OBSOLETE INTERFACE
    163  *
    164  * General sleep call.  Suspends the current process until a wakeup is
    165  * performed on the specified identifier.  The process will then be made
    166  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    167  * means no timeout).  If pri includes PCATCH flag, signals are checked
    168  * before and after sleeping, else signals are not checked.  Returns 0 if
    169  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    170  * signal needs to be delivered, ERESTART is returned if the current system
    171  * call should be restarted if possible, and EINTR is returned if the system
    172  * call should be interrupted by the signal (return EINTR).
    173  *
    174  * The interlock is held until we are on a sleep queue. The interlock will
    175  * be locked before returning back to the caller unless the PNORELOCK flag
    176  * is specified, in which case the interlock will always be unlocked upon
    177  * return.
    178  */
    179 int
    180 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    181 	volatile struct simplelock *interlock)
    182 {
    183 	struct lwp *l = curlwp;
    184 	sleepq_t *sq;
    185 	int error;
    186 
    187 	KASSERT((l->l_pflag & LP_INTR) == 0);
    188 
    189 	if (sleepq_dontsleep(l)) {
    190 		(void)sleepq_abort(NULL, 0);
    191 		if ((priority & PNORELOCK) != 0)
    192 			simple_unlock(interlock);
    193 		return 0;
    194 	}
    195 
    196 	l->l_kpriority = true;
    197 	sq = sleeptab_lookup(&sleeptab, ident);
    198 	sleepq_enter(sq, l);
    199 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    200 
    201 	if (interlock != NULL) {
    202 		KASSERT(simple_lock_held(interlock));
    203 		simple_unlock(interlock);
    204 	}
    205 
    206 	error = sleepq_block(timo, priority & PCATCH);
    207 
    208 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    209 		simple_lock(interlock);
    210 
    211 	return error;
    212 }
    213 
    214 int
    215 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    216 	kmutex_t *mtx)
    217 {
    218 	struct lwp *l = curlwp;
    219 	sleepq_t *sq;
    220 	int error;
    221 
    222 	KASSERT((l->l_pflag & LP_INTR) == 0);
    223 
    224 	if (sleepq_dontsleep(l)) {
    225 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    226 		return 0;
    227 	}
    228 
    229 	l->l_kpriority = true;
    230 	sq = sleeptab_lookup(&sleeptab, ident);
    231 	sleepq_enter(sq, l);
    232 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    233 	mutex_exit(mtx);
    234 	error = sleepq_block(timo, priority & PCATCH);
    235 
    236 	if ((priority & PNORELOCK) == 0)
    237 		mutex_enter(mtx);
    238 
    239 	return error;
    240 }
    241 
    242 /*
    243  * General sleep call for situations where a wake-up is not expected.
    244  */
    245 int
    246 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    247 {
    248 	struct lwp *l = curlwp;
    249 	sleepq_t *sq;
    250 	int error;
    251 
    252 	if (sleepq_dontsleep(l))
    253 		return sleepq_abort(NULL, 0);
    254 
    255 	if (mtx != NULL)
    256 		mutex_exit(mtx);
    257 	l->l_kpriority = true;
    258 	sq = sleeptab_lookup(&sleeptab, l);
    259 	sleepq_enter(sq, l);
    260 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    261 	error = sleepq_block(timo, intr);
    262 	if (mtx != NULL)
    263 		mutex_enter(mtx);
    264 
    265 	return error;
    266 }
    267 
    268 /*
    269  * OBSOLETE INTERFACE
    270  *
    271  * Make all processes sleeping on the specified identifier runnable.
    272  */
    273 void
    274 wakeup(wchan_t ident)
    275 {
    276 	sleepq_t *sq;
    277 
    278 	if (cold)
    279 		return;
    280 
    281 	sq = sleeptab_lookup(&sleeptab, ident);
    282 	sleepq_wake(sq, ident, (u_int)-1);
    283 }
    284 
    285 /*
    286  * OBSOLETE INTERFACE
    287  *
    288  * Make the highest priority process first in line on the specified
    289  * identifier runnable.
    290  */
    291 void
    292 wakeup_one(wchan_t ident)
    293 {
    294 	sleepq_t *sq;
    295 
    296 	if (cold)
    297 		return;
    298 
    299 	sq = sleeptab_lookup(&sleeptab, ident);
    300 	sleepq_wake(sq, ident, 1);
    301 }
    302 
    303 
    304 /*
    305  * General yield call.  Puts the current process back on its run queue and
    306  * performs a voluntary context switch.  Should only be called when the
    307  * current process explicitly requests it (eg sched_yield(2)).
    308  */
    309 void
    310 yield(void)
    311 {
    312 	struct lwp *l = curlwp;
    313 
    314 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    315 	lwp_lock(l);
    316 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    317 	KASSERT(l->l_stat == LSONPROC);
    318 	l->l_kpriority = false;
    319 	(void)mi_switch(l);
    320 	KERNEL_LOCK(l->l_biglocks, l);
    321 }
    322 
    323 /*
    324  * General preemption call.  Puts the current process back on its run queue
    325  * and performs an involuntary context switch.
    326  */
    327 void
    328 preempt(void)
    329 {
    330 	struct lwp *l = curlwp;
    331 
    332 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    333 	lwp_lock(l);
    334 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    335 	KASSERT(l->l_stat == LSONPROC);
    336 	l->l_kpriority = false;
    337 	l->l_nivcsw++;
    338 	(void)mi_switch(l);
    339 	KERNEL_LOCK(l->l_biglocks, l);
    340 }
    341 
    342 /*
    343  * Handle a request made by another agent to preempt the current LWP
    344  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    345  *
    346  * Character addresses for lockstat only.
    347  */
    348 static char	in_critical_section;
    349 static char	kernel_lock_held;
    350 static char	spl_raised;
    351 static char	is_softint;
    352 
    353 bool
    354 kpreempt(uintptr_t where)
    355 {
    356 	uintptr_t failed;
    357 	lwp_t *l;
    358 	int s, dop;
    359 
    360 	l = curlwp;
    361 	failed = 0;
    362 	while ((dop = l->l_dopreempt) != 0) {
    363 		if (l->l_stat != LSONPROC) {
    364 			/*
    365 			 * About to block (or die), let it happen.
    366 			 * Doesn't really count as "preemption has
    367 			 * been blocked", since we're going to
    368 			 * context switch.
    369 			 */
    370 			l->l_dopreempt = 0;
    371 			return true;
    372 		}
    373 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    374 			/* Can't preempt idle loop, don't count as failure. */
    375 		    	l->l_dopreempt = 0;
    376 		    	return true;
    377 		}
    378 		if (__predict_false(l->l_nopreempt != 0)) {
    379 			/* LWP holds preemption disabled, explicitly. */
    380 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    381 				kpreempt_ev_crit.ev_count++;
    382 			}
    383 			failed = (uintptr_t)&in_critical_section;
    384 			break;
    385 		}
    386 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    387 		    	/* Can't preempt soft interrupts yet. */
    388 		    	l->l_dopreempt = 0;
    389 		    	failed = (uintptr_t)&is_softint;
    390 		    	break;
    391 		}
    392 		s = splsched();
    393 		if (__predict_false(l->l_blcnt != 0 ||
    394 		    curcpu()->ci_biglock_wanted != NULL)) {
    395 			/* Hold or want kernel_lock, code is not MT safe. */
    396 			splx(s);
    397 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    398 				kpreempt_ev_klock.ev_count++;
    399 			}
    400 			failed = (uintptr_t)&kernel_lock_held;
    401 			break;
    402 		}
    403 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    404 			/*
    405 			 * It may be that the IPL is too high.
    406 			 * kpreempt_enter() can schedule an
    407 			 * interrupt to retry later.
    408 			 */
    409 			splx(s);
    410 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    411 				kpreempt_ev_ipl.ev_count++;
    412 			}
    413 			failed = (uintptr_t)&spl_raised;
    414 			break;
    415 		}
    416 		/* Do it! */
    417 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    418 			kpreempt_ev_immed.ev_count++;
    419 		}
    420 		lwp_lock(l);
    421 		mi_switch(l);
    422 		l->l_nopreempt++;
    423 		splx(s);
    424 
    425 		/* Take care of any MD cleanup. */
    426 		cpu_kpreempt_exit(where);
    427 		l->l_nopreempt--;
    428 	}
    429 
    430 	/* Record preemption failure for reporting via lockstat. */
    431 	if (__predict_false(failed)) {
    432 		int lsflag = 0;
    433 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    434 		LOCKSTAT_ENTER(lsflag);
    435 		/* Might recurse, make it atomic. */
    436 		if (__predict_false(lsflag)) {
    437 			if (where == 0) {
    438 				where = (uintptr_t)__builtin_return_address(0);
    439 			}
    440 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    441 			    NULL, (void *)where) == NULL) {
    442 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    443 				l->l_pfaillock = failed;
    444 			}
    445 		}
    446 		LOCKSTAT_EXIT(lsflag);
    447 	}
    448 
    449 	return failed;
    450 }
    451 
    452 /*
    453  * Return true if preemption is explicitly disabled.
    454  */
    455 bool
    456 kpreempt_disabled(void)
    457 {
    458 	lwp_t *l;
    459 
    460 	l = curlwp;
    461 
    462 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    463 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    464 }
    465 
    466 /*
    467  * Disable kernel preemption.
    468  */
    469 void
    470 kpreempt_disable(void)
    471 {
    472 
    473 	KPREEMPT_DISABLE(curlwp);
    474 }
    475 
    476 /*
    477  * Reenable kernel preemption.
    478  */
    479 void
    480 kpreempt_enable(void)
    481 {
    482 
    483 	KPREEMPT_ENABLE(curlwp);
    484 }
    485 
    486 /*
    487  * Compute the amount of time during which the current lwp was running.
    488  *
    489  * - update l_rtime unless it's an idle lwp.
    490  */
    491 
    492 void
    493 updatertime(lwp_t *l, const struct bintime *now)
    494 {
    495 
    496 	if ((l->l_flag & LW_IDLE) != 0)
    497 		return;
    498 
    499 	/* rtime += now - stime */
    500 	bintime_add(&l->l_rtime, now);
    501 	bintime_sub(&l->l_rtime, &l->l_stime);
    502 }
    503 
    504 /*
    505  * The machine independent parts of context switch.
    506  *
    507  * Returns 1 if another LWP was actually run.
    508  */
    509 int
    510 mi_switch(lwp_t *l)
    511 {
    512 	struct cpu_info *ci, *tci = NULL;
    513 	struct schedstate_percpu *spc;
    514 	struct lwp *newl;
    515 	int retval, oldspl;
    516 	struct bintime bt;
    517 	bool returning;
    518 
    519 	KASSERT(lwp_locked(l, NULL));
    520 	KASSERT(kpreempt_disabled());
    521 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    522 
    523 #ifdef KSTACK_CHECK_MAGIC
    524 	kstack_check_magic(l);
    525 #endif
    526 
    527 	binuptime(&bt);
    528 
    529 	KASSERT(l->l_cpu == curcpu());
    530 	ci = l->l_cpu;
    531 	spc = &ci->ci_schedstate;
    532 	returning = false;
    533 	newl = NULL;
    534 
    535 	/*
    536 	 * If we have been asked to switch to a specific LWP, then there
    537 	 * is no need to inspect the run queues.  If a soft interrupt is
    538 	 * blocking, then return to the interrupted thread without adjusting
    539 	 * VM context or its start time: neither have been changed in order
    540 	 * to take the interrupt.
    541 	 */
    542 	if (l->l_switchto != NULL) {
    543 		if ((l->l_pflag & LP_INTR) != 0) {
    544 			returning = true;
    545 			softint_block(l);
    546 			if ((l->l_flag & LW_TIMEINTR) != 0)
    547 				updatertime(l, &bt);
    548 		}
    549 		newl = l->l_switchto;
    550 		l->l_switchto = NULL;
    551 	}
    552 #ifndef __HAVE_FAST_SOFTINTS
    553 	else if (ci->ci_data.cpu_softints != 0) {
    554 		/* There are pending soft interrupts, so pick one. */
    555 		newl = softint_picklwp();
    556 		newl->l_stat = LSONPROC;
    557 		newl->l_flag |= LW_RUNNING;
    558 	}
    559 #endif	/* !__HAVE_FAST_SOFTINTS */
    560 
    561 	/* Count time spent in current system call */
    562 	if (!returning) {
    563 		SYSCALL_TIME_SLEEP(l);
    564 
    565 		/*
    566 		 * XXXSMP If we are using h/w performance counters,
    567 		 * save context.
    568 		 */
    569 #if PERFCTRS
    570 		if (PMC_ENABLED(l->l_proc)) {
    571 			pmc_save_context(l->l_proc);
    572 		}
    573 #endif
    574 		updatertime(l, &bt);
    575 	}
    576 
    577 	/*
    578 	 * If on the CPU and we have gotten this far, then we must yield.
    579 	 */
    580 	KASSERT(l->l_stat != LSRUN);
    581 	if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
    582 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    583 
    584 		if (l->l_target_cpu == l->l_cpu) {
    585 			l->l_target_cpu = NULL;
    586 		} else {
    587 			tci = l->l_target_cpu;
    588 		}
    589 
    590 		if (__predict_false(tci != NULL)) {
    591 			/* Double-lock the runqueues */
    592 			spc_dlock(ci, tci);
    593 		} else {
    594 			/* Lock the runqueue */
    595 			spc_lock(ci);
    596 		}
    597 
    598 		if ((l->l_flag & LW_IDLE) == 0) {
    599 			l->l_stat = LSRUN;
    600 			if (__predict_false(tci != NULL)) {
    601 				/*
    602 				 * Set the new CPU, lock and unset the
    603 				 * l_target_cpu - thread will be enqueued
    604 				 * to the runqueue of target CPU.
    605 				 */
    606 				l->l_cpu = tci;
    607 				lwp_setlock(l, tci->ci_schedstate.spc_mutex);
    608 				l->l_target_cpu = NULL;
    609 			} else {
    610 				lwp_setlock(l, spc->spc_mutex);
    611 			}
    612 			sched_enqueue(l, true);
    613 		} else {
    614 			KASSERT(tci == NULL);
    615 			l->l_stat = LSIDL;
    616 		}
    617 	} else {
    618 		/* Lock the runqueue */
    619 		spc_lock(ci);
    620 	}
    621 
    622 	/*
    623 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    624 	 * If no LWP is runnable, select the idle LWP.
    625 	 *
    626 	 * Note that spc_lwplock might not necessary be held, and
    627 	 * new thread would be unlocked after setting the LWP-lock.
    628 	 */
    629 	if (newl == NULL) {
    630 		newl = sched_nextlwp();
    631 		if (newl != NULL) {
    632 			sched_dequeue(newl);
    633 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    634 			newl->l_stat = LSONPROC;
    635 			newl->l_cpu = ci;
    636 			newl->l_flag |= LW_RUNNING;
    637 			lwp_setlock(newl, spc->spc_lwplock);
    638 		} else {
    639 			newl = ci->ci_data.cpu_idlelwp;
    640 			newl->l_stat = LSONPROC;
    641 			newl->l_flag |= LW_RUNNING;
    642 		}
    643 		/*
    644 		 * Only clear want_resched if there are no
    645 		 * pending (slow) software interrupts.
    646 		 */
    647 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    648 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    649 		spc->spc_curpriority = lwp_eprio(newl);
    650 	}
    651 
    652 	/* Items that must be updated with the CPU locked. */
    653 	if (!returning) {
    654 		/* Update the new LWP's start time. */
    655 		newl->l_stime = bt;
    656 
    657 		/*
    658 		 * ci_curlwp changes when a fast soft interrupt occurs.
    659 		 * We use cpu_onproc to keep track of which kernel or
    660 		 * user thread is running 'underneath' the software
    661 		 * interrupt.  This is important for time accounting,
    662 		 * itimers and forcing user threads to preempt (aston).
    663 		 */
    664 		ci->ci_data.cpu_onproc = newl;
    665 	}
    666 
    667 	/*
    668 	 * Preemption related tasks.  Must be done with the current
    669 	 * CPU locked.
    670 	 */
    671 	cpu_did_resched(l);
    672 	l->l_dopreempt = 0;
    673 	if (__predict_false(l->l_pfailaddr != 0)) {
    674 		LOCKSTAT_FLAG(lsflag);
    675 		LOCKSTAT_ENTER(lsflag);
    676 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    677 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    678 		    1, l->l_pfailtime, l->l_pfailaddr);
    679 		LOCKSTAT_EXIT(lsflag);
    680 		l->l_pfailtime = 0;
    681 		l->l_pfaillock = 0;
    682 		l->l_pfailaddr = 0;
    683 	}
    684 
    685 	if (l != newl) {
    686 		struct lwp *prevlwp;
    687 
    688 		/* Release all locks, but leave the current LWP locked */
    689 		if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
    690 			/*
    691 			 * In case of migration, drop the local runqueue
    692 			 * lock, thread is on other runqueue now.
    693 			 */
    694 			if (__predict_false(tci != NULL))
    695 				spc_unlock(ci);
    696 			/*
    697 			 * Drop spc_lwplock, if the current LWP has been moved
    698 			 * to the run queue (it is now locked by spc_mutex).
    699 			 */
    700 			mutex_spin_exit(spc->spc_lwplock);
    701 		} else {
    702 			/*
    703 			 * Otherwise, drop the spc_mutex, we are done with the
    704 			 * run queues.
    705 			 */
    706 			mutex_spin_exit(spc->spc_mutex);
    707 			KASSERT(tci == NULL);
    708 		}
    709 
    710 		/*
    711 		 * Mark that context switch is going to be perfomed
    712 		 * for this LWP, to protect it from being switched
    713 		 * to on another CPU.
    714 		 */
    715 		KASSERT(l->l_ctxswtch == 0);
    716 		l->l_ctxswtch = 1;
    717 		l->l_ncsw++;
    718 		l->l_flag &= ~LW_RUNNING;
    719 
    720 		/*
    721 		 * Increase the count of spin-mutexes before the release
    722 		 * of the last lock - we must remain at IPL_SCHED during
    723 		 * the context switch.
    724 		 */
    725 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    726 		ci->ci_mtx_count--;
    727 		lwp_unlock(l);
    728 
    729 		/* Count the context switch on this CPU. */
    730 		ci->ci_data.cpu_nswtch++;
    731 
    732 		/* Update status for lwpctl, if present. */
    733 		if (l->l_lwpctl != NULL)
    734 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    735 
    736 		/*
    737 		 * Save old VM context, unless a soft interrupt
    738 		 * handler is blocking.
    739 		 */
    740 		if (!returning)
    741 			pmap_deactivate(l);
    742 
    743 		/*
    744 		 * We may need to spin-wait for if 'newl' is still
    745 		 * context switching on another CPU.
    746 		 */
    747 		if (newl->l_ctxswtch != 0) {
    748 			u_int count;
    749 			count = SPINLOCK_BACKOFF_MIN;
    750 			while (newl->l_ctxswtch)
    751 				SPINLOCK_BACKOFF(count);
    752 		}
    753 
    754 		/* Switch to the new LWP.. */
    755 		prevlwp = cpu_switchto(l, newl, returning);
    756 		ci = curcpu();
    757 
    758 		/*
    759 		 * Switched away - we have new curlwp.
    760 		 * Restore VM context and IPL.
    761 		 */
    762 		pmap_activate(l);
    763 		if (prevlwp != NULL) {
    764 			/* Normalize the count of the spin-mutexes */
    765 			ci->ci_mtx_count++;
    766 			/* Unmark the state of context switch */
    767 			membar_exit();
    768 			prevlwp->l_ctxswtch = 0;
    769 		}
    770 
    771 		/* Update status for lwpctl, if present. */
    772 		if (l->l_lwpctl != NULL) {
    773 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    774 			l->l_lwpctl->lc_pctr++;
    775 		}
    776 
    777 		KASSERT(l->l_cpu == ci);
    778 		splx(oldspl);
    779 		retval = 1;
    780 	} else {
    781 		/* Nothing to do - just unlock and return. */
    782 		KASSERT(tci == NULL);
    783 		spc_unlock(ci);
    784 		lwp_unlock(l);
    785 		retval = 0;
    786 	}
    787 
    788 	KASSERT(l == curlwp);
    789 	KASSERT(l->l_stat == LSONPROC);
    790 
    791 	/*
    792 	 * XXXSMP If we are using h/w performance counters, restore context.
    793 	 * XXXSMP preemption problem.
    794 	 */
    795 #if PERFCTRS
    796 	if (PMC_ENABLED(l->l_proc)) {
    797 		pmc_restore_context(l->l_proc);
    798 	}
    799 #endif
    800 	SYSCALL_TIME_WAKEUP(l);
    801 	LOCKDEBUG_BARRIER(NULL, 1);
    802 
    803 	return retval;
    804 }
    805 
    806 /*
    807  * Change process state to be runnable, placing it on the run queue if it is
    808  * in memory, and awakening the swapper if it isn't in memory.
    809  *
    810  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    811  */
    812 void
    813 setrunnable(struct lwp *l)
    814 {
    815 	struct proc *p = l->l_proc;
    816 	struct cpu_info *ci;
    817 	sigset_t *ss;
    818 
    819 	KASSERT((l->l_flag & LW_IDLE) == 0);
    820 	KASSERT(mutex_owned(p->p_lock));
    821 	KASSERT(lwp_locked(l, NULL));
    822 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    823 
    824 	switch (l->l_stat) {
    825 	case LSSTOP:
    826 		/*
    827 		 * If we're being traced (possibly because someone attached us
    828 		 * while we were stopped), check for a signal from the debugger.
    829 		 */
    830 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    831 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    832 				ss = &l->l_sigpend.sp_set;
    833 			else
    834 				ss = &p->p_sigpend.sp_set;
    835 			sigaddset(ss, p->p_xstat);
    836 			signotify(l);
    837 		}
    838 		p->p_nrlwps++;
    839 		break;
    840 	case LSSUSPENDED:
    841 		l->l_flag &= ~LW_WSUSPEND;
    842 		p->p_nrlwps++;
    843 		cv_broadcast(&p->p_lwpcv);
    844 		break;
    845 	case LSSLEEP:
    846 		KASSERT(l->l_wchan != NULL);
    847 		break;
    848 	default:
    849 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    850 	}
    851 
    852 	/*
    853 	 * If the LWP was sleeping interruptably, then it's OK to start it
    854 	 * again.  If not, mark it as still sleeping.
    855 	 */
    856 	if (l->l_wchan != NULL) {
    857 		l->l_stat = LSSLEEP;
    858 		/* lwp_unsleep() will release the lock. */
    859 		lwp_unsleep(l, true);
    860 		return;
    861 	}
    862 
    863 	/*
    864 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    865 	 * about to call mi_switch(), in which case it will yield.
    866 	 */
    867 	if ((l->l_flag & LW_RUNNING) != 0) {
    868 		l->l_stat = LSONPROC;
    869 		l->l_slptime = 0;
    870 		lwp_unlock(l);
    871 		return;
    872 	}
    873 
    874 	/*
    875 	 * Look for a CPU to run.
    876 	 * Set the LWP runnable.
    877 	 */
    878 	ci = sched_takecpu(l);
    879 	l->l_cpu = ci;
    880 	spc_lock(ci);
    881 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    882 	sched_setrunnable(l);
    883 	l->l_stat = LSRUN;
    884 	l->l_slptime = 0;
    885 
    886 	/*
    887 	 * If thread is swapped out - wake the swapper to bring it back in.
    888 	 * Otherwise, enter it into a run queue.
    889 	 */
    890 	if (l->l_flag & LW_INMEM) {
    891 		sched_enqueue(l, false);
    892 		resched_cpu(l);
    893 		lwp_unlock(l);
    894 	} else {
    895 		lwp_unlock(l);
    896 		uvm_kick_scheduler();
    897 	}
    898 }
    899 
    900 /*
    901  * suspendsched:
    902  *
    903  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    904  */
    905 void
    906 suspendsched(void)
    907 {
    908 	CPU_INFO_ITERATOR cii;
    909 	struct cpu_info *ci;
    910 	struct lwp *l;
    911 	struct proc *p;
    912 
    913 	/*
    914 	 * We do this by process in order not to violate the locking rules.
    915 	 */
    916 	mutex_enter(proc_lock);
    917 	PROCLIST_FOREACH(p, &allproc) {
    918 		if ((p->p_flag & PK_MARKER) != 0)
    919 			continue;
    920 
    921 		mutex_enter(p->p_lock);
    922 		if ((p->p_flag & PK_SYSTEM) != 0) {
    923 			mutex_exit(p->p_lock);
    924 			continue;
    925 		}
    926 
    927 		p->p_stat = SSTOP;
    928 
    929 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    930 			if (l == curlwp)
    931 				continue;
    932 
    933 			lwp_lock(l);
    934 
    935 			/*
    936 			 * Set L_WREBOOT so that the LWP will suspend itself
    937 			 * when it tries to return to user mode.  We want to
    938 			 * try and get to get as many LWPs as possible to
    939 			 * the user / kernel boundary, so that they will
    940 			 * release any locks that they hold.
    941 			 */
    942 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    943 
    944 			if (l->l_stat == LSSLEEP &&
    945 			    (l->l_flag & LW_SINTR) != 0) {
    946 				/* setrunnable() will release the lock. */
    947 				setrunnable(l);
    948 				continue;
    949 			}
    950 
    951 			lwp_unlock(l);
    952 		}
    953 
    954 		mutex_exit(p->p_lock);
    955 	}
    956 	mutex_exit(proc_lock);
    957 
    958 	/*
    959 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    960 	 * They'll trap into the kernel and suspend themselves in userret().
    961 	 */
    962 	for (CPU_INFO_FOREACH(cii, ci)) {
    963 		spc_lock(ci);
    964 		cpu_need_resched(ci, RESCHED_IMMED);
    965 		spc_unlock(ci);
    966 	}
    967 }
    968 
    969 /*
    970  * sched_unsleep:
    971  *
    972  *	The is called when the LWP has not been awoken normally but instead
    973  *	interrupted: for example, if the sleep timed out.  Because of this,
    974  *	it's not a valid action for running or idle LWPs.
    975  */
    976 static u_int
    977 sched_unsleep(struct lwp *l, bool cleanup)
    978 {
    979 
    980 	lwp_unlock(l);
    981 	panic("sched_unsleep");
    982 }
    983 
    984 void
    985 resched_cpu(struct lwp *l)
    986 {
    987 	struct cpu_info *ci;
    988 
    989 	/*
    990 	 * XXXSMP
    991 	 * Since l->l_cpu persists across a context switch,
    992 	 * this gives us *very weak* processor affinity, in
    993 	 * that we notify the CPU on which the process last
    994 	 * ran that it should try to switch.
    995 	 *
    996 	 * This does not guarantee that the process will run on
    997 	 * that processor next, because another processor might
    998 	 * grab it the next time it performs a context switch.
    999 	 *
   1000 	 * This also does not handle the case where its last
   1001 	 * CPU is running a higher-priority process, but every
   1002 	 * other CPU is running a lower-priority process.  There
   1003 	 * are ways to handle this situation, but they're not
   1004 	 * currently very pretty, and we also need to weigh the
   1005 	 * cost of moving a process from one CPU to another.
   1006 	 */
   1007 	ci = l->l_cpu;
   1008 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1009 		cpu_need_resched(ci, 0);
   1010 }
   1011 
   1012 static void
   1013 sched_changepri(struct lwp *l, pri_t pri)
   1014 {
   1015 
   1016 	KASSERT(lwp_locked(l, NULL));
   1017 
   1018 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1019 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1020 		sched_dequeue(l);
   1021 		l->l_priority = pri;
   1022 		sched_enqueue(l, false);
   1023 	} else {
   1024 		l->l_priority = pri;
   1025 	}
   1026 	resched_cpu(l);
   1027 }
   1028 
   1029 static void
   1030 sched_lendpri(struct lwp *l, pri_t pri)
   1031 {
   1032 
   1033 	KASSERT(lwp_locked(l, NULL));
   1034 
   1035 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1036 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1037 		sched_dequeue(l);
   1038 		l->l_inheritedprio = pri;
   1039 		sched_enqueue(l, false);
   1040 	} else {
   1041 		l->l_inheritedprio = pri;
   1042 	}
   1043 	resched_cpu(l);
   1044 }
   1045 
   1046 struct lwp *
   1047 syncobj_noowner(wchan_t wchan)
   1048 {
   1049 
   1050 	return NULL;
   1051 }
   1052 
   1053 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
   1054 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
   1055 
   1056 /*
   1057  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
   1058  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
   1059  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
   1060  *
   1061  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
   1062  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
   1063  *
   1064  * If you dont want to bother with the faster/more-accurate formula, you
   1065  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
   1066  * (more general) method of calculating the %age of CPU used by a process.
   1067  */
   1068 #define	CCPU_SHIFT	(FSHIFT + 1)
   1069 
   1070 /*
   1071  * sched_pstats:
   1072  *
   1073  * Update process statistics and check CPU resource allocation.
   1074  * Call scheduler-specific hook to eventually adjust process/LWP
   1075  * priorities.
   1076  */
   1077 /* ARGSUSED */
   1078 void
   1079 sched_pstats(void *arg)
   1080 {
   1081 	struct rlimit *rlim;
   1082 	struct lwp *l;
   1083 	struct proc *p;
   1084 	int sig, clkhz;
   1085 	long runtm;
   1086 
   1087 	sched_pstats_ticks++;
   1088 
   1089 	mutex_enter(proc_lock);
   1090 	PROCLIST_FOREACH(p, &allproc) {
   1091 		if ((p->p_flag & PK_MARKER) != 0)
   1092 			continue;
   1093 
   1094 		/*
   1095 		 * Increment time in/out of memory and sleep time (if
   1096 		 * sleeping).  We ignore overflow; with 16-bit int's
   1097 		 * (remember them?) overflow takes 45 days.
   1098 		 */
   1099 		mutex_enter(p->p_lock);
   1100 		mutex_spin_enter(&p->p_stmutex);
   1101 		runtm = p->p_rtime.sec;
   1102 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1103 			if ((l->l_flag & LW_IDLE) != 0)
   1104 				continue;
   1105 			lwp_lock(l);
   1106 			runtm += l->l_rtime.sec;
   1107 			l->l_swtime++;
   1108 			sched_lwp_stats(l);
   1109 			lwp_unlock(l);
   1110 
   1111 			/*
   1112 			 * p_pctcpu is only for ps.
   1113 			 */
   1114 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1115 			if (l->l_slptime < 1) {
   1116 				clkhz = stathz != 0 ? stathz : hz;
   1117 #if	(FSHIFT >= CCPU_SHIFT)
   1118 				l->l_pctcpu += (clkhz == 100) ?
   1119 				    ((fixpt_t)l->l_cpticks) <<
   1120 				        (FSHIFT - CCPU_SHIFT) :
   1121 				    100 * (((fixpt_t) p->p_cpticks)
   1122 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
   1123 #else
   1124 				l->l_pctcpu += ((FSCALE - ccpu) *
   1125 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
   1126 #endif
   1127 				l->l_cpticks = 0;
   1128 			}
   1129 		}
   1130 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1131 		mutex_spin_exit(&p->p_stmutex);
   1132 
   1133 		/*
   1134 		 * Check if the process exceeds its CPU resource allocation.
   1135 		 * If over max, kill it.
   1136 		 */
   1137 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1138 		sig = 0;
   1139 		if (runtm >= rlim->rlim_cur) {
   1140 			if (runtm >= rlim->rlim_max)
   1141 				sig = SIGKILL;
   1142 			else {
   1143 				sig = SIGXCPU;
   1144 				if (rlim->rlim_cur < rlim->rlim_max)
   1145 					rlim->rlim_cur += 5;
   1146 			}
   1147 		}
   1148 		mutex_exit(p->p_lock);
   1149 		if (sig)
   1150 			psignal(p, sig);
   1151 	}
   1152 	mutex_exit(proc_lock);
   1153 	uvm_meter();
   1154 	cv_wakeup(&lbolt);
   1155 	callout_schedule(&sched_pstats_ch, hz);
   1156 }
   1157