Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.244
      1 /*	$NetBSD: kern_synch.c,v 1.244 2008/05/26 12:08:38 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*-
     35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.244 2008/05/26 12:08:38 ad Exp $");
     72 
     73 #include "opt_kstack.h"
     74 #include "opt_perfctrs.h"
     75 
     76 #define	__MUTEX_PRIVATE
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/kernel.h>
     82 #if defined(PERFCTRS)
     83 #include <sys/pmc.h>
     84 #endif
     85 #include <sys/cpu.h>
     86 #include <sys/resourcevar.h>
     87 #include <sys/sched.h>
     88 #include <sys/syscall_stats.h>
     89 #include <sys/sleepq.h>
     90 #include <sys/lockdebug.h>
     91 #include <sys/evcnt.h>
     92 #include <sys/intr.h>
     93 #include <sys/lwpctl.h>
     94 #include <sys/atomic.h>
     95 #include <sys/simplelock.h>
     96 
     97 #include <uvm/uvm_extern.h>
     98 
     99 #include <dev/lockstat.h>
    100 
    101 static u_int	sched_unsleep(struct lwp *, bool);
    102 static void	sched_changepri(struct lwp *, pri_t);
    103 static void	sched_lendpri(struct lwp *, pri_t);
    104 
    105 syncobj_t sleep_syncobj = {
    106 	SOBJ_SLEEPQ_SORTED,
    107 	sleepq_unsleep,
    108 	sleepq_changepri,
    109 	sleepq_lendpri,
    110 	syncobj_noowner,
    111 };
    112 
    113 syncobj_t sched_syncobj = {
    114 	SOBJ_SLEEPQ_SORTED,
    115 	sched_unsleep,
    116 	sched_changepri,
    117 	sched_lendpri,
    118 	syncobj_noowner,
    119 };
    120 
    121 callout_t 	sched_pstats_ch;
    122 unsigned	sched_pstats_ticks;
    123 kcondvar_t	lbolt;			/* once a second sleep address */
    124 
    125 /* Preemption event counters */
    126 static struct evcnt kpreempt_ev_crit;
    127 static struct evcnt kpreempt_ev_klock;
    128 static struct evcnt kpreempt_ev_ipl;
    129 static struct evcnt kpreempt_ev_immed;
    130 
    131 /*
    132  * During autoconfiguration or after a panic, a sleep will simply lower the
    133  * priority briefly to allow interrupts, then return.  The priority to be
    134  * used (safepri) is machine-dependent, thus this value is initialized and
    135  * maintained in the machine-dependent layers.  This priority will typically
    136  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    137  * it can be made higher to block network software interrupts after panics.
    138  */
    139 int	safepri;
    140 
    141 void
    142 sched_init(void)
    143 {
    144 
    145 	cv_init(&lbolt, "lbolt");
    146 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    147 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    148 
    149 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    150 	   "kpreempt", "defer: critical section");
    151 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    152 	   "kpreempt", "defer: kernel_lock");
    153 	evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
    154 	   "kpreempt", "defer: IPL");
    155 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    156 	   "kpreempt", "immediate");
    157 
    158 	sched_pstats(NULL);
    159 }
    160 
    161 /*
    162  * OBSOLETE INTERFACE
    163  *
    164  * General sleep call.  Suspends the current process until a wakeup is
    165  * performed on the specified identifier.  The process will then be made
    166  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    167  * means no timeout).  If pri includes PCATCH flag, signals are checked
    168  * before and after sleeping, else signals are not checked.  Returns 0 if
    169  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    170  * signal needs to be delivered, ERESTART is returned if the current system
    171  * call should be restarted if possible, and EINTR is returned if the system
    172  * call should be interrupted by the signal (return EINTR).
    173  *
    174  * The interlock is held until we are on a sleep queue. The interlock will
    175  * be locked before returning back to the caller unless the PNORELOCK flag
    176  * is specified, in which case the interlock will always be unlocked upon
    177  * return.
    178  */
    179 int
    180 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    181 	volatile struct simplelock *interlock)
    182 {
    183 	struct lwp *l = curlwp;
    184 	sleepq_t *sq;
    185 	kmutex_t *mp;
    186 	int error;
    187 
    188 	KASSERT((l->l_pflag & LP_INTR) == 0);
    189 
    190 	if (sleepq_dontsleep(l)) {
    191 		(void)sleepq_abort(NULL, 0);
    192 		if ((priority & PNORELOCK) != 0)
    193 			simple_unlock(interlock);
    194 		return 0;
    195 	}
    196 
    197 	l->l_kpriority = true;
    198 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    199 	sleepq_enter(sq, l, mp);
    200 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    201 
    202 	if (interlock != NULL) {
    203 		KASSERT(simple_lock_held(interlock));
    204 		simple_unlock(interlock);
    205 	}
    206 
    207 	error = sleepq_block(timo, priority & PCATCH);
    208 
    209 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    210 		simple_lock(interlock);
    211 
    212 	return error;
    213 }
    214 
    215 int
    216 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    217 	kmutex_t *mtx)
    218 {
    219 	struct lwp *l = curlwp;
    220 	sleepq_t *sq;
    221 	kmutex_t *mp;
    222 	int error;
    223 
    224 	KASSERT((l->l_pflag & LP_INTR) == 0);
    225 
    226 	if (sleepq_dontsleep(l)) {
    227 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    228 		return 0;
    229 	}
    230 
    231 	l->l_kpriority = true;
    232 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    233 	sleepq_enter(sq, l, mp);
    234 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    235 	mutex_exit(mtx);
    236 	error = sleepq_block(timo, priority & PCATCH);
    237 
    238 	if ((priority & PNORELOCK) == 0)
    239 		mutex_enter(mtx);
    240 
    241 	return error;
    242 }
    243 
    244 /*
    245  * General sleep call for situations where a wake-up is not expected.
    246  */
    247 int
    248 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    249 {
    250 	struct lwp *l = curlwp;
    251 	kmutex_t *mp;
    252 	sleepq_t *sq;
    253 	int error;
    254 
    255 	if (sleepq_dontsleep(l))
    256 		return sleepq_abort(NULL, 0);
    257 
    258 	if (mtx != NULL)
    259 		mutex_exit(mtx);
    260 	l->l_kpriority = true;
    261 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    262 	sleepq_enter(sq, l, mp);
    263 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    264 	error = sleepq_block(timo, intr);
    265 	if (mtx != NULL)
    266 		mutex_enter(mtx);
    267 
    268 	return error;
    269 }
    270 
    271 /*
    272  * OBSOLETE INTERFACE
    273  *
    274  * Make all processes sleeping on the specified identifier runnable.
    275  */
    276 void
    277 wakeup(wchan_t ident)
    278 {
    279 	sleepq_t *sq;
    280 	kmutex_t *mp;
    281 
    282 	if (cold)
    283 		return;
    284 
    285 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    286 	sleepq_wake(sq, ident, (u_int)-1, mp);
    287 }
    288 
    289 /*
    290  * OBSOLETE INTERFACE
    291  *
    292  * Make the highest priority process first in line on the specified
    293  * identifier runnable.
    294  */
    295 void
    296 wakeup_one(wchan_t ident)
    297 {
    298 	sleepq_t *sq;
    299 	kmutex_t *mp;
    300 
    301 	if (cold)
    302 		return;
    303 
    304 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    305 	sleepq_wake(sq, ident, 1, mp);
    306 }
    307 
    308 
    309 /*
    310  * General yield call.  Puts the current process back on its run queue and
    311  * performs a voluntary context switch.  Should only be called when the
    312  * current process explicitly requests it (eg sched_yield(2)).
    313  */
    314 void
    315 yield(void)
    316 {
    317 	struct lwp *l = curlwp;
    318 
    319 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    320 	lwp_lock(l);
    321 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    322 	KASSERT(l->l_stat == LSONPROC);
    323 	l->l_kpriority = false;
    324 	(void)mi_switch(l);
    325 	KERNEL_LOCK(l->l_biglocks, l);
    326 }
    327 
    328 /*
    329  * General preemption call.  Puts the current process back on its run queue
    330  * and performs an involuntary context switch.
    331  */
    332 void
    333 preempt(void)
    334 {
    335 	struct lwp *l = curlwp;
    336 
    337 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    338 	lwp_lock(l);
    339 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    340 	KASSERT(l->l_stat == LSONPROC);
    341 	l->l_kpriority = false;
    342 	l->l_nivcsw++;
    343 	(void)mi_switch(l);
    344 	KERNEL_LOCK(l->l_biglocks, l);
    345 }
    346 
    347 /*
    348  * Handle a request made by another agent to preempt the current LWP
    349  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    350  *
    351  * Character addresses for lockstat only.
    352  */
    353 static char	in_critical_section;
    354 static char	kernel_lock_held;
    355 static char	spl_raised;
    356 static char	is_softint;
    357 
    358 bool
    359 kpreempt(uintptr_t where)
    360 {
    361 	uintptr_t failed;
    362 	lwp_t *l;
    363 	int s, dop;
    364 
    365 	l = curlwp;
    366 	failed = 0;
    367 	while ((dop = l->l_dopreempt) != 0) {
    368 		if (l->l_stat != LSONPROC) {
    369 			/*
    370 			 * About to block (or die), let it happen.
    371 			 * Doesn't really count as "preemption has
    372 			 * been blocked", since we're going to
    373 			 * context switch.
    374 			 */
    375 			l->l_dopreempt = 0;
    376 			return true;
    377 		}
    378 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    379 			/* Can't preempt idle loop, don't count as failure. */
    380 		    	l->l_dopreempt = 0;
    381 		    	return true;
    382 		}
    383 		if (__predict_false(l->l_nopreempt != 0)) {
    384 			/* LWP holds preemption disabled, explicitly. */
    385 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    386 				kpreempt_ev_crit.ev_count++;
    387 			}
    388 			failed = (uintptr_t)&in_critical_section;
    389 			break;
    390 		}
    391 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    392 		    	/* Can't preempt soft interrupts yet. */
    393 		    	l->l_dopreempt = 0;
    394 		    	failed = (uintptr_t)&is_softint;
    395 		    	break;
    396 		}
    397 		s = splsched();
    398 		if (__predict_false(l->l_blcnt != 0 ||
    399 		    curcpu()->ci_biglock_wanted != NULL)) {
    400 			/* Hold or want kernel_lock, code is not MT safe. */
    401 			splx(s);
    402 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    403 				kpreempt_ev_klock.ev_count++;
    404 			}
    405 			failed = (uintptr_t)&kernel_lock_held;
    406 			break;
    407 		}
    408 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    409 			/*
    410 			 * It may be that the IPL is too high.
    411 			 * kpreempt_enter() can schedule an
    412 			 * interrupt to retry later.
    413 			 */
    414 			splx(s);
    415 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    416 				kpreempt_ev_ipl.ev_count++;
    417 			}
    418 			failed = (uintptr_t)&spl_raised;
    419 			break;
    420 		}
    421 		/* Do it! */
    422 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    423 			kpreempt_ev_immed.ev_count++;
    424 		}
    425 		lwp_lock(l);
    426 		mi_switch(l);
    427 		l->l_nopreempt++;
    428 		splx(s);
    429 
    430 		/* Take care of any MD cleanup. */
    431 		cpu_kpreempt_exit(where);
    432 		l->l_nopreempt--;
    433 	}
    434 
    435 	/* Record preemption failure for reporting via lockstat. */
    436 	if (__predict_false(failed)) {
    437 		int lsflag = 0;
    438 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    439 		LOCKSTAT_ENTER(lsflag);
    440 		/* Might recurse, make it atomic. */
    441 		if (__predict_false(lsflag)) {
    442 			if (where == 0) {
    443 				where = (uintptr_t)__builtin_return_address(0);
    444 			}
    445 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    446 			    NULL, (void *)where) == NULL) {
    447 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    448 				l->l_pfaillock = failed;
    449 			}
    450 		}
    451 		LOCKSTAT_EXIT(lsflag);
    452 	}
    453 
    454 	return failed;
    455 }
    456 
    457 /*
    458  * Return true if preemption is explicitly disabled.
    459  */
    460 bool
    461 kpreempt_disabled(void)
    462 {
    463 	lwp_t *l;
    464 
    465 	l = curlwp;
    466 
    467 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    468 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    469 }
    470 
    471 /*
    472  * Disable kernel preemption.
    473  */
    474 void
    475 kpreempt_disable(void)
    476 {
    477 
    478 	KPREEMPT_DISABLE(curlwp);
    479 }
    480 
    481 /*
    482  * Reenable kernel preemption.
    483  */
    484 void
    485 kpreempt_enable(void)
    486 {
    487 
    488 	KPREEMPT_ENABLE(curlwp);
    489 }
    490 
    491 /*
    492  * Compute the amount of time during which the current lwp was running.
    493  *
    494  * - update l_rtime unless it's an idle lwp.
    495  */
    496 
    497 void
    498 updatertime(lwp_t *l, const struct bintime *now)
    499 {
    500 
    501 	if ((l->l_flag & LW_IDLE) != 0)
    502 		return;
    503 
    504 	/* rtime += now - stime */
    505 	bintime_add(&l->l_rtime, now);
    506 	bintime_sub(&l->l_rtime, &l->l_stime);
    507 }
    508 
    509 /*
    510  * The machine independent parts of context switch.
    511  *
    512  * Returns 1 if another LWP was actually run.
    513  */
    514 int
    515 mi_switch(lwp_t *l)
    516 {
    517 	struct cpu_info *ci, *tci = NULL;
    518 	struct schedstate_percpu *spc;
    519 	struct lwp *newl;
    520 	int retval, oldspl;
    521 	struct bintime bt;
    522 	bool returning;
    523 
    524 	KASSERT(lwp_locked(l, NULL));
    525 	KASSERT(kpreempt_disabled());
    526 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    527 
    528 #ifdef KSTACK_CHECK_MAGIC
    529 	kstack_check_magic(l);
    530 #endif
    531 
    532 	binuptime(&bt);
    533 
    534 	KASSERT(l->l_cpu == curcpu());
    535 	ci = l->l_cpu;
    536 	spc = &ci->ci_schedstate;
    537 	returning = false;
    538 	newl = NULL;
    539 
    540 	/*
    541 	 * If we have been asked to switch to a specific LWP, then there
    542 	 * is no need to inspect the run queues.  If a soft interrupt is
    543 	 * blocking, then return to the interrupted thread without adjusting
    544 	 * VM context or its start time: neither have been changed in order
    545 	 * to take the interrupt.
    546 	 */
    547 	if (l->l_switchto != NULL) {
    548 		if ((l->l_pflag & LP_INTR) != 0) {
    549 			returning = true;
    550 			softint_block(l);
    551 			if ((l->l_flag & LW_TIMEINTR) != 0)
    552 				updatertime(l, &bt);
    553 		}
    554 		newl = l->l_switchto;
    555 		l->l_switchto = NULL;
    556 	}
    557 #ifndef __HAVE_FAST_SOFTINTS
    558 	else if (ci->ci_data.cpu_softints != 0) {
    559 		/* There are pending soft interrupts, so pick one. */
    560 		newl = softint_picklwp();
    561 		newl->l_stat = LSONPROC;
    562 		newl->l_flag |= LW_RUNNING;
    563 	}
    564 #endif	/* !__HAVE_FAST_SOFTINTS */
    565 
    566 	/* Count time spent in current system call */
    567 	if (!returning) {
    568 		SYSCALL_TIME_SLEEP(l);
    569 
    570 		/*
    571 		 * XXXSMP If we are using h/w performance counters,
    572 		 * save context.
    573 		 */
    574 #if PERFCTRS
    575 		if (PMC_ENABLED(l->l_proc)) {
    576 			pmc_save_context(l->l_proc);
    577 		}
    578 #endif
    579 		updatertime(l, &bt);
    580 	}
    581 
    582 	/*
    583 	 * If on the CPU and we have gotten this far, then we must yield.
    584 	 */
    585 	KASSERT(l->l_stat != LSRUN);
    586 	if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
    587 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    588 
    589 		if (l->l_target_cpu == l->l_cpu) {
    590 			l->l_target_cpu = NULL;
    591 		} else {
    592 			tci = l->l_target_cpu;
    593 		}
    594 
    595 		if (__predict_false(tci != NULL)) {
    596 			/* Double-lock the runqueues */
    597 			spc_dlock(ci, tci);
    598 		} else {
    599 			/* Lock the runqueue */
    600 			spc_lock(ci);
    601 		}
    602 
    603 		if ((l->l_flag & LW_IDLE) == 0) {
    604 			l->l_stat = LSRUN;
    605 			if (__predict_false(tci != NULL)) {
    606 				/*
    607 				 * Set the new CPU, lock and unset the
    608 				 * l_target_cpu - thread will be enqueued
    609 				 * to the runqueue of target CPU.
    610 				 */
    611 				l->l_cpu = tci;
    612 				lwp_setlock(l, tci->ci_schedstate.spc_mutex);
    613 				l->l_target_cpu = NULL;
    614 			} else {
    615 				lwp_setlock(l, spc->spc_mutex);
    616 			}
    617 			sched_enqueue(l, true);
    618 		} else {
    619 			KASSERT(tci == NULL);
    620 			l->l_stat = LSIDL;
    621 		}
    622 	} else {
    623 		/* Lock the runqueue */
    624 		spc_lock(ci);
    625 	}
    626 
    627 	/*
    628 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    629 	 * If no LWP is runnable, select the idle LWP.
    630 	 *
    631 	 * Note that spc_lwplock might not necessary be held, and
    632 	 * new thread would be unlocked after setting the LWP-lock.
    633 	 */
    634 	if (newl == NULL) {
    635 		newl = sched_nextlwp();
    636 		if (newl != NULL) {
    637 			sched_dequeue(newl);
    638 			KASSERT(lwp_locked(newl, spc->spc_mutex));
    639 			newl->l_stat = LSONPROC;
    640 			newl->l_cpu = ci;
    641 			newl->l_flag |= LW_RUNNING;
    642 			lwp_setlock(newl, spc->spc_lwplock);
    643 		} else {
    644 			newl = ci->ci_data.cpu_idlelwp;
    645 			newl->l_stat = LSONPROC;
    646 			newl->l_flag |= LW_RUNNING;
    647 		}
    648 		/*
    649 		 * Only clear want_resched if there are no
    650 		 * pending (slow) software interrupts.
    651 		 */
    652 		ci->ci_want_resched = ci->ci_data.cpu_softints;
    653 		spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    654 		spc->spc_curpriority = lwp_eprio(newl);
    655 	}
    656 
    657 	/* Items that must be updated with the CPU locked. */
    658 	if (!returning) {
    659 		/* Update the new LWP's start time. */
    660 		newl->l_stime = bt;
    661 
    662 		/*
    663 		 * ci_curlwp changes when a fast soft interrupt occurs.
    664 		 * We use cpu_onproc to keep track of which kernel or
    665 		 * user thread is running 'underneath' the software
    666 		 * interrupt.  This is important for time accounting,
    667 		 * itimers and forcing user threads to preempt (aston).
    668 		 */
    669 		ci->ci_data.cpu_onproc = newl;
    670 	}
    671 
    672 	/*
    673 	 * Preemption related tasks.  Must be done with the current
    674 	 * CPU locked.
    675 	 */
    676 	cpu_did_resched(l);
    677 	l->l_dopreempt = 0;
    678 	if (__predict_false(l->l_pfailaddr != 0)) {
    679 		LOCKSTAT_FLAG(lsflag);
    680 		LOCKSTAT_ENTER(lsflag);
    681 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    682 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    683 		    1, l->l_pfailtime, l->l_pfailaddr);
    684 		LOCKSTAT_EXIT(lsflag);
    685 		l->l_pfailtime = 0;
    686 		l->l_pfaillock = 0;
    687 		l->l_pfailaddr = 0;
    688 	}
    689 
    690 	if (l != newl) {
    691 		struct lwp *prevlwp;
    692 
    693 		/* Release all locks, but leave the current LWP locked */
    694 		if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
    695 			/*
    696 			 * In case of migration, drop the local runqueue
    697 			 * lock, thread is on other runqueue now.
    698 			 */
    699 			if (__predict_false(tci != NULL))
    700 				spc_unlock(ci);
    701 			/*
    702 			 * Drop spc_lwplock, if the current LWP has been moved
    703 			 * to the run queue (it is now locked by spc_mutex).
    704 			 */
    705 			mutex_spin_exit(spc->spc_lwplock);
    706 		} else {
    707 			/*
    708 			 * Otherwise, drop the spc_mutex, we are done with the
    709 			 * run queues.
    710 			 */
    711 			mutex_spin_exit(spc->spc_mutex);
    712 			KASSERT(tci == NULL);
    713 		}
    714 
    715 		/*
    716 		 * Mark that context switch is going to be perfomed
    717 		 * for this LWP, to protect it from being switched
    718 		 * to on another CPU.
    719 		 */
    720 		KASSERT(l->l_ctxswtch == 0);
    721 		l->l_ctxswtch = 1;
    722 		l->l_ncsw++;
    723 		l->l_flag &= ~LW_RUNNING;
    724 
    725 		/*
    726 		 * Increase the count of spin-mutexes before the release
    727 		 * of the last lock - we must remain at IPL_SCHED during
    728 		 * the context switch.
    729 		 */
    730 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    731 		ci->ci_mtx_count--;
    732 		lwp_unlock(l);
    733 
    734 		/* Count the context switch on this CPU. */
    735 		ci->ci_data.cpu_nswtch++;
    736 
    737 		/* Update status for lwpctl, if present. */
    738 		if (l->l_lwpctl != NULL)
    739 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    740 
    741 		/*
    742 		 * Save old VM context, unless a soft interrupt
    743 		 * handler is blocking.
    744 		 */
    745 		if (!returning)
    746 			pmap_deactivate(l);
    747 
    748 		/*
    749 		 * We may need to spin-wait for if 'newl' is still
    750 		 * context switching on another CPU.
    751 		 */
    752 		if (newl->l_ctxswtch != 0) {
    753 			u_int count;
    754 			count = SPINLOCK_BACKOFF_MIN;
    755 			while (newl->l_ctxswtch)
    756 				SPINLOCK_BACKOFF(count);
    757 		}
    758 
    759 		/* Switch to the new LWP.. */
    760 		prevlwp = cpu_switchto(l, newl, returning);
    761 		ci = curcpu();
    762 
    763 		/*
    764 		 * Switched away - we have new curlwp.
    765 		 * Restore VM context and IPL.
    766 		 */
    767 		pmap_activate(l);
    768 		if (prevlwp != NULL) {
    769 			/* Normalize the count of the spin-mutexes */
    770 			ci->ci_mtx_count++;
    771 			/* Unmark the state of context switch */
    772 			membar_exit();
    773 			prevlwp->l_ctxswtch = 0;
    774 		}
    775 
    776 		/* Update status for lwpctl, if present. */
    777 		if (l->l_lwpctl != NULL) {
    778 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    779 			l->l_lwpctl->lc_pctr++;
    780 		}
    781 
    782 		KASSERT(l->l_cpu == ci);
    783 		splx(oldspl);
    784 		retval = 1;
    785 	} else {
    786 		/* Nothing to do - just unlock and return. */
    787 		KASSERT(tci == NULL);
    788 		spc_unlock(ci);
    789 		lwp_unlock(l);
    790 		retval = 0;
    791 	}
    792 
    793 	KASSERT(l == curlwp);
    794 	KASSERT(l->l_stat == LSONPROC);
    795 
    796 	/*
    797 	 * XXXSMP If we are using h/w performance counters, restore context.
    798 	 * XXXSMP preemption problem.
    799 	 */
    800 #if PERFCTRS
    801 	if (PMC_ENABLED(l->l_proc)) {
    802 		pmc_restore_context(l->l_proc);
    803 	}
    804 #endif
    805 	SYSCALL_TIME_WAKEUP(l);
    806 	LOCKDEBUG_BARRIER(NULL, 1);
    807 
    808 	return retval;
    809 }
    810 
    811 /*
    812  * Change process state to be runnable, placing it on the run queue if it is
    813  * in memory, and awakening the swapper if it isn't in memory.
    814  *
    815  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    816  */
    817 void
    818 setrunnable(struct lwp *l)
    819 {
    820 	struct proc *p = l->l_proc;
    821 	struct cpu_info *ci;
    822 	sigset_t *ss;
    823 
    824 	KASSERT((l->l_flag & LW_IDLE) == 0);
    825 	KASSERT(mutex_owned(p->p_lock));
    826 	KASSERT(lwp_locked(l, NULL));
    827 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    828 
    829 	switch (l->l_stat) {
    830 	case LSSTOP:
    831 		/*
    832 		 * If we're being traced (possibly because someone attached us
    833 		 * while we were stopped), check for a signal from the debugger.
    834 		 */
    835 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    836 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    837 				ss = &l->l_sigpend.sp_set;
    838 			else
    839 				ss = &p->p_sigpend.sp_set;
    840 			sigaddset(ss, p->p_xstat);
    841 			signotify(l);
    842 		}
    843 		p->p_nrlwps++;
    844 		break;
    845 	case LSSUSPENDED:
    846 		l->l_flag &= ~LW_WSUSPEND;
    847 		p->p_nrlwps++;
    848 		cv_broadcast(&p->p_lwpcv);
    849 		break;
    850 	case LSSLEEP:
    851 		KASSERT(l->l_wchan != NULL);
    852 		break;
    853 	default:
    854 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    855 	}
    856 
    857 	/*
    858 	 * If the LWP was sleeping interruptably, then it's OK to start it
    859 	 * again.  If not, mark it as still sleeping.
    860 	 */
    861 	if (l->l_wchan != NULL) {
    862 		l->l_stat = LSSLEEP;
    863 		/* lwp_unsleep() will release the lock. */
    864 		lwp_unsleep(l, true);
    865 		return;
    866 	}
    867 
    868 	/*
    869 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    870 	 * about to call mi_switch(), in which case it will yield.
    871 	 */
    872 	if ((l->l_flag & LW_RUNNING) != 0) {
    873 		l->l_stat = LSONPROC;
    874 		l->l_slptime = 0;
    875 		lwp_unlock(l);
    876 		return;
    877 	}
    878 
    879 	/*
    880 	 * Look for a CPU to run.
    881 	 * Set the LWP runnable.
    882 	 */
    883 	ci = sched_takecpu(l);
    884 	l->l_cpu = ci;
    885 	spc_lock(ci);
    886 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    887 	sched_setrunnable(l);
    888 	l->l_stat = LSRUN;
    889 	l->l_slptime = 0;
    890 
    891 	/*
    892 	 * If thread is swapped out - wake the swapper to bring it back in.
    893 	 * Otherwise, enter it into a run queue.
    894 	 */
    895 	if (l->l_flag & LW_INMEM) {
    896 		sched_enqueue(l, false);
    897 		resched_cpu(l);
    898 		lwp_unlock(l);
    899 	} else {
    900 		lwp_unlock(l);
    901 		uvm_kick_scheduler();
    902 	}
    903 }
    904 
    905 /*
    906  * suspendsched:
    907  *
    908  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    909  */
    910 void
    911 suspendsched(void)
    912 {
    913 	CPU_INFO_ITERATOR cii;
    914 	struct cpu_info *ci;
    915 	struct lwp *l;
    916 	struct proc *p;
    917 
    918 	/*
    919 	 * We do this by process in order not to violate the locking rules.
    920 	 */
    921 	mutex_enter(proc_lock);
    922 	PROCLIST_FOREACH(p, &allproc) {
    923 		if ((p->p_flag & PK_MARKER) != 0)
    924 			continue;
    925 
    926 		mutex_enter(p->p_lock);
    927 		if ((p->p_flag & PK_SYSTEM) != 0) {
    928 			mutex_exit(p->p_lock);
    929 			continue;
    930 		}
    931 
    932 		p->p_stat = SSTOP;
    933 
    934 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    935 			if (l == curlwp)
    936 				continue;
    937 
    938 			lwp_lock(l);
    939 
    940 			/*
    941 			 * Set L_WREBOOT so that the LWP will suspend itself
    942 			 * when it tries to return to user mode.  We want to
    943 			 * try and get to get as many LWPs as possible to
    944 			 * the user / kernel boundary, so that they will
    945 			 * release any locks that they hold.
    946 			 */
    947 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
    948 
    949 			if (l->l_stat == LSSLEEP &&
    950 			    (l->l_flag & LW_SINTR) != 0) {
    951 				/* setrunnable() will release the lock. */
    952 				setrunnable(l);
    953 				continue;
    954 			}
    955 
    956 			lwp_unlock(l);
    957 		}
    958 
    959 		mutex_exit(p->p_lock);
    960 	}
    961 	mutex_exit(proc_lock);
    962 
    963 	/*
    964 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
    965 	 * They'll trap into the kernel and suspend themselves in userret().
    966 	 */
    967 	for (CPU_INFO_FOREACH(cii, ci)) {
    968 		spc_lock(ci);
    969 		cpu_need_resched(ci, RESCHED_IMMED);
    970 		spc_unlock(ci);
    971 	}
    972 }
    973 
    974 /*
    975  * sched_unsleep:
    976  *
    977  *	The is called when the LWP has not been awoken normally but instead
    978  *	interrupted: for example, if the sleep timed out.  Because of this,
    979  *	it's not a valid action for running or idle LWPs.
    980  */
    981 static u_int
    982 sched_unsleep(struct lwp *l, bool cleanup)
    983 {
    984 
    985 	lwp_unlock(l);
    986 	panic("sched_unsleep");
    987 }
    988 
    989 void
    990 resched_cpu(struct lwp *l)
    991 {
    992 	struct cpu_info *ci;
    993 
    994 	/*
    995 	 * XXXSMP
    996 	 * Since l->l_cpu persists across a context switch,
    997 	 * this gives us *very weak* processor affinity, in
    998 	 * that we notify the CPU on which the process last
    999 	 * ran that it should try to switch.
   1000 	 *
   1001 	 * This does not guarantee that the process will run on
   1002 	 * that processor next, because another processor might
   1003 	 * grab it the next time it performs a context switch.
   1004 	 *
   1005 	 * This also does not handle the case where its last
   1006 	 * CPU is running a higher-priority process, but every
   1007 	 * other CPU is running a lower-priority process.  There
   1008 	 * are ways to handle this situation, but they're not
   1009 	 * currently very pretty, and we also need to weigh the
   1010 	 * cost of moving a process from one CPU to another.
   1011 	 */
   1012 	ci = l->l_cpu;
   1013 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1014 		cpu_need_resched(ci, 0);
   1015 }
   1016 
   1017 static void
   1018 sched_changepri(struct lwp *l, pri_t pri)
   1019 {
   1020 
   1021 	KASSERT(lwp_locked(l, NULL));
   1022 
   1023 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1024 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1025 		sched_dequeue(l);
   1026 		l->l_priority = pri;
   1027 		sched_enqueue(l, false);
   1028 	} else {
   1029 		l->l_priority = pri;
   1030 	}
   1031 	resched_cpu(l);
   1032 }
   1033 
   1034 static void
   1035 sched_lendpri(struct lwp *l, pri_t pri)
   1036 {
   1037 
   1038 	KASSERT(lwp_locked(l, NULL));
   1039 
   1040 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1041 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1042 		sched_dequeue(l);
   1043 		l->l_inheritedprio = pri;
   1044 		sched_enqueue(l, false);
   1045 	} else {
   1046 		l->l_inheritedprio = pri;
   1047 	}
   1048 	resched_cpu(l);
   1049 }
   1050 
   1051 struct lwp *
   1052 syncobj_noowner(wchan_t wchan)
   1053 {
   1054 
   1055 	return NULL;
   1056 }
   1057 
   1058 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
   1059 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
   1060 
   1061 /*
   1062  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
   1063  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
   1064  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
   1065  *
   1066  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
   1067  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
   1068  *
   1069  * If you dont want to bother with the faster/more-accurate formula, you
   1070  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
   1071  * (more general) method of calculating the %age of CPU used by a process.
   1072  */
   1073 #define	CCPU_SHIFT	(FSHIFT + 1)
   1074 
   1075 /*
   1076  * sched_pstats:
   1077  *
   1078  * Update process statistics and check CPU resource allocation.
   1079  * Call scheduler-specific hook to eventually adjust process/LWP
   1080  * priorities.
   1081  */
   1082 /* ARGSUSED */
   1083 void
   1084 sched_pstats(void *arg)
   1085 {
   1086 	struct rlimit *rlim;
   1087 	struct lwp *l;
   1088 	struct proc *p;
   1089 	int sig, clkhz;
   1090 	long runtm;
   1091 
   1092 	sched_pstats_ticks++;
   1093 
   1094 	mutex_enter(proc_lock);
   1095 	PROCLIST_FOREACH(p, &allproc) {
   1096 		if ((p->p_flag & PK_MARKER) != 0)
   1097 			continue;
   1098 
   1099 		/*
   1100 		 * Increment time in/out of memory and sleep time (if
   1101 		 * sleeping).  We ignore overflow; with 16-bit int's
   1102 		 * (remember them?) overflow takes 45 days.
   1103 		 */
   1104 		mutex_enter(p->p_lock);
   1105 		mutex_spin_enter(&p->p_stmutex);
   1106 		runtm = p->p_rtime.sec;
   1107 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1108 			if ((l->l_flag & LW_IDLE) != 0)
   1109 				continue;
   1110 			lwp_lock(l);
   1111 			runtm += l->l_rtime.sec;
   1112 			l->l_swtime++;
   1113 			sched_lwp_stats(l);
   1114 			lwp_unlock(l);
   1115 
   1116 			/*
   1117 			 * p_pctcpu is only for ps.
   1118 			 */
   1119 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1120 			if (l->l_slptime < 1) {
   1121 				clkhz = stathz != 0 ? stathz : hz;
   1122 #if	(FSHIFT >= CCPU_SHIFT)
   1123 				l->l_pctcpu += (clkhz == 100) ?
   1124 				    ((fixpt_t)l->l_cpticks) <<
   1125 				        (FSHIFT - CCPU_SHIFT) :
   1126 				    100 * (((fixpt_t) p->p_cpticks)
   1127 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
   1128 #else
   1129 				l->l_pctcpu += ((FSCALE - ccpu) *
   1130 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
   1131 #endif
   1132 				l->l_cpticks = 0;
   1133 			}
   1134 		}
   1135 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1136 		mutex_spin_exit(&p->p_stmutex);
   1137 
   1138 		/*
   1139 		 * Check if the process exceeds its CPU resource allocation.
   1140 		 * If over max, kill it.
   1141 		 */
   1142 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1143 		sig = 0;
   1144 		if (runtm >= rlim->rlim_cur) {
   1145 			if (runtm >= rlim->rlim_max)
   1146 				sig = SIGKILL;
   1147 			else {
   1148 				sig = SIGXCPU;
   1149 				if (rlim->rlim_cur < rlim->rlim_max)
   1150 					rlim->rlim_cur += 5;
   1151 			}
   1152 		}
   1153 		mutex_exit(p->p_lock);
   1154 		if (sig)
   1155 			psignal(p, sig);
   1156 	}
   1157 	mutex_exit(proc_lock);
   1158 	uvm_meter();
   1159 	cv_wakeup(&lbolt);
   1160 	callout_schedule(&sched_pstats_ch, hz);
   1161 }
   1162