Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.245
      1 /*	$NetBSD: kern_synch.c,v 1.245 2008/05/27 17:51:17 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*-
     35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.245 2008/05/27 17:51:17 ad Exp $");
     72 
     73 #include "opt_kstack.h"
     74 #include "opt_perfctrs.h"
     75 
     76 #define	__MUTEX_PRIVATE
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/kernel.h>
     82 #if defined(PERFCTRS)
     83 #include <sys/pmc.h>
     84 #endif
     85 #include <sys/cpu.h>
     86 #include <sys/resourcevar.h>
     87 #include <sys/sched.h>
     88 #include <sys/syscall_stats.h>
     89 #include <sys/sleepq.h>
     90 #include <sys/lockdebug.h>
     91 #include <sys/evcnt.h>
     92 #include <sys/intr.h>
     93 #include <sys/lwpctl.h>
     94 #include <sys/atomic.h>
     95 #include <sys/simplelock.h>
     96 
     97 #include <uvm/uvm_extern.h>
     98 
     99 #include <dev/lockstat.h>
    100 
    101 static u_int	sched_unsleep(struct lwp *, bool);
    102 static void	sched_changepri(struct lwp *, pri_t);
    103 static void	sched_lendpri(struct lwp *, pri_t);
    104 
    105 syncobj_t sleep_syncobj = {
    106 	SOBJ_SLEEPQ_SORTED,
    107 	sleepq_unsleep,
    108 	sleepq_changepri,
    109 	sleepq_lendpri,
    110 	syncobj_noowner,
    111 };
    112 
    113 syncobj_t sched_syncobj = {
    114 	SOBJ_SLEEPQ_SORTED,
    115 	sched_unsleep,
    116 	sched_changepri,
    117 	sched_lendpri,
    118 	syncobj_noowner,
    119 };
    120 
    121 callout_t 	sched_pstats_ch;
    122 unsigned	sched_pstats_ticks;
    123 kcondvar_t	lbolt;			/* once a second sleep address */
    124 
    125 /* Preemption event counters */
    126 static struct evcnt kpreempt_ev_crit;
    127 static struct evcnt kpreempt_ev_klock;
    128 static struct evcnt kpreempt_ev_ipl;
    129 static struct evcnt kpreempt_ev_immed;
    130 
    131 /*
    132  * During autoconfiguration or after a panic, a sleep will simply lower the
    133  * priority briefly to allow interrupts, then return.  The priority to be
    134  * used (safepri) is machine-dependent, thus this value is initialized and
    135  * maintained in the machine-dependent layers.  This priority will typically
    136  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    137  * it can be made higher to block network software interrupts after panics.
    138  */
    139 int	safepri;
    140 
    141 void
    142 sched_init(void)
    143 {
    144 
    145 	cv_init(&lbolt, "lbolt");
    146 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    147 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    148 
    149 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    150 	   "kpreempt", "defer: critical section");
    151 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    152 	   "kpreempt", "defer: kernel_lock");
    153 	evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
    154 	   "kpreempt", "defer: IPL");
    155 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    156 	   "kpreempt", "immediate");
    157 
    158 	sched_pstats(NULL);
    159 }
    160 
    161 /*
    162  * OBSOLETE INTERFACE
    163  *
    164  * General sleep call.  Suspends the current process until a wakeup is
    165  * performed on the specified identifier.  The process will then be made
    166  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    167  * means no timeout).  If pri includes PCATCH flag, signals are checked
    168  * before and after sleeping, else signals are not checked.  Returns 0 if
    169  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    170  * signal needs to be delivered, ERESTART is returned if the current system
    171  * call should be restarted if possible, and EINTR is returned if the system
    172  * call should be interrupted by the signal (return EINTR).
    173  *
    174  * The interlock is held until we are on a sleep queue. The interlock will
    175  * be locked before returning back to the caller unless the PNORELOCK flag
    176  * is specified, in which case the interlock will always be unlocked upon
    177  * return.
    178  */
    179 int
    180 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    181 	volatile struct simplelock *interlock)
    182 {
    183 	struct lwp *l = curlwp;
    184 	sleepq_t *sq;
    185 	kmutex_t *mp;
    186 	int error;
    187 
    188 	KASSERT((l->l_pflag & LP_INTR) == 0);
    189 
    190 	if (sleepq_dontsleep(l)) {
    191 		(void)sleepq_abort(NULL, 0);
    192 		if ((priority & PNORELOCK) != 0)
    193 			simple_unlock(interlock);
    194 		return 0;
    195 	}
    196 
    197 	l->l_kpriority = true;
    198 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    199 	sleepq_enter(sq, l, mp);
    200 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    201 
    202 	if (interlock != NULL) {
    203 		KASSERT(simple_lock_held(interlock));
    204 		simple_unlock(interlock);
    205 	}
    206 
    207 	error = sleepq_block(timo, priority & PCATCH);
    208 
    209 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    210 		simple_lock(interlock);
    211 
    212 	return error;
    213 }
    214 
    215 int
    216 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    217 	kmutex_t *mtx)
    218 {
    219 	struct lwp *l = curlwp;
    220 	sleepq_t *sq;
    221 	kmutex_t *mp;
    222 	int error;
    223 
    224 	KASSERT((l->l_pflag & LP_INTR) == 0);
    225 
    226 	if (sleepq_dontsleep(l)) {
    227 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    228 		return 0;
    229 	}
    230 
    231 	l->l_kpriority = true;
    232 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    233 	sleepq_enter(sq, l, mp);
    234 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    235 	mutex_exit(mtx);
    236 	error = sleepq_block(timo, priority & PCATCH);
    237 
    238 	if ((priority & PNORELOCK) == 0)
    239 		mutex_enter(mtx);
    240 
    241 	return error;
    242 }
    243 
    244 /*
    245  * General sleep call for situations where a wake-up is not expected.
    246  */
    247 int
    248 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    249 {
    250 	struct lwp *l = curlwp;
    251 	kmutex_t *mp;
    252 	sleepq_t *sq;
    253 	int error;
    254 
    255 	if (sleepq_dontsleep(l))
    256 		return sleepq_abort(NULL, 0);
    257 
    258 	if (mtx != NULL)
    259 		mutex_exit(mtx);
    260 	l->l_kpriority = true;
    261 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    262 	sleepq_enter(sq, l, mp);
    263 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    264 	error = sleepq_block(timo, intr);
    265 	if (mtx != NULL)
    266 		mutex_enter(mtx);
    267 
    268 	return error;
    269 }
    270 
    271 /*
    272  * OBSOLETE INTERFACE
    273  *
    274  * Make all processes sleeping on the specified identifier runnable.
    275  */
    276 void
    277 wakeup(wchan_t ident)
    278 {
    279 	sleepq_t *sq;
    280 	kmutex_t *mp;
    281 
    282 	if (cold)
    283 		return;
    284 
    285 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    286 	sleepq_wake(sq, ident, (u_int)-1, mp);
    287 }
    288 
    289 /*
    290  * OBSOLETE INTERFACE
    291  *
    292  * Make the highest priority process first in line on the specified
    293  * identifier runnable.
    294  */
    295 void
    296 wakeup_one(wchan_t ident)
    297 {
    298 	sleepq_t *sq;
    299 	kmutex_t *mp;
    300 
    301 	if (cold)
    302 		return;
    303 
    304 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    305 	sleepq_wake(sq, ident, 1, mp);
    306 }
    307 
    308 
    309 /*
    310  * General yield call.  Puts the current process back on its run queue and
    311  * performs a voluntary context switch.  Should only be called when the
    312  * current process explicitly requests it (eg sched_yield(2)).
    313  */
    314 void
    315 yield(void)
    316 {
    317 	struct lwp *l = curlwp;
    318 
    319 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    320 	lwp_lock(l);
    321 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    322 	KASSERT(l->l_stat == LSONPROC);
    323 	l->l_kpriority = false;
    324 	(void)mi_switch(l);
    325 	KERNEL_LOCK(l->l_biglocks, l);
    326 }
    327 
    328 /*
    329  * General preemption call.  Puts the current process back on its run queue
    330  * and performs an involuntary context switch.
    331  */
    332 void
    333 preempt(void)
    334 {
    335 	struct lwp *l = curlwp;
    336 
    337 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    338 	lwp_lock(l);
    339 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    340 	KASSERT(l->l_stat == LSONPROC);
    341 	l->l_kpriority = false;
    342 	l->l_nivcsw++;
    343 	(void)mi_switch(l);
    344 	KERNEL_LOCK(l->l_biglocks, l);
    345 }
    346 
    347 /*
    348  * Handle a request made by another agent to preempt the current LWP
    349  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    350  *
    351  * Character addresses for lockstat only.
    352  */
    353 static char	in_critical_section;
    354 static char	kernel_lock_held;
    355 static char	spl_raised;
    356 static char	is_softint;
    357 
    358 bool
    359 kpreempt(uintptr_t where)
    360 {
    361 	uintptr_t failed;
    362 	lwp_t *l;
    363 	int s, dop;
    364 
    365 	l = curlwp;
    366 	failed = 0;
    367 	while ((dop = l->l_dopreempt) != 0) {
    368 		if (l->l_stat != LSONPROC) {
    369 			/*
    370 			 * About to block (or die), let it happen.
    371 			 * Doesn't really count as "preemption has
    372 			 * been blocked", since we're going to
    373 			 * context switch.
    374 			 */
    375 			l->l_dopreempt = 0;
    376 			return true;
    377 		}
    378 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    379 			/* Can't preempt idle loop, don't count as failure. */
    380 		    	l->l_dopreempt = 0;
    381 		    	return true;
    382 		}
    383 		if (__predict_false(l->l_nopreempt != 0)) {
    384 			/* LWP holds preemption disabled, explicitly. */
    385 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    386 				kpreempt_ev_crit.ev_count++;
    387 			}
    388 			failed = (uintptr_t)&in_critical_section;
    389 			break;
    390 		}
    391 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    392 		    	/* Can't preempt soft interrupts yet. */
    393 		    	l->l_dopreempt = 0;
    394 		    	failed = (uintptr_t)&is_softint;
    395 		    	break;
    396 		}
    397 		s = splsched();
    398 		if (__predict_false(l->l_blcnt != 0 ||
    399 		    curcpu()->ci_biglock_wanted != NULL)) {
    400 			/* Hold or want kernel_lock, code is not MT safe. */
    401 			splx(s);
    402 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    403 				kpreempt_ev_klock.ev_count++;
    404 			}
    405 			failed = (uintptr_t)&kernel_lock_held;
    406 			break;
    407 		}
    408 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    409 			/*
    410 			 * It may be that the IPL is too high.
    411 			 * kpreempt_enter() can schedule an
    412 			 * interrupt to retry later.
    413 			 */
    414 			splx(s);
    415 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    416 				kpreempt_ev_ipl.ev_count++;
    417 			}
    418 			failed = (uintptr_t)&spl_raised;
    419 			break;
    420 		}
    421 		/* Do it! */
    422 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    423 			kpreempt_ev_immed.ev_count++;
    424 		}
    425 		lwp_lock(l);
    426 		mi_switch(l);
    427 		l->l_nopreempt++;
    428 		splx(s);
    429 
    430 		/* Take care of any MD cleanup. */
    431 		cpu_kpreempt_exit(where);
    432 		l->l_nopreempt--;
    433 	}
    434 
    435 	/* Record preemption failure for reporting via lockstat. */
    436 	if (__predict_false(failed)) {
    437 		int lsflag = 0;
    438 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    439 		LOCKSTAT_ENTER(lsflag);
    440 		/* Might recurse, make it atomic. */
    441 		if (__predict_false(lsflag)) {
    442 			if (where == 0) {
    443 				where = (uintptr_t)__builtin_return_address(0);
    444 			}
    445 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    446 			    NULL, (void *)where) == NULL) {
    447 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    448 				l->l_pfaillock = failed;
    449 			}
    450 		}
    451 		LOCKSTAT_EXIT(lsflag);
    452 	}
    453 
    454 	return failed;
    455 }
    456 
    457 /*
    458  * Return true if preemption is explicitly disabled.
    459  */
    460 bool
    461 kpreempt_disabled(void)
    462 {
    463 	lwp_t *l;
    464 
    465 	l = curlwp;
    466 
    467 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    468 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    469 }
    470 
    471 /*
    472  * Disable kernel preemption.
    473  */
    474 void
    475 kpreempt_disable(void)
    476 {
    477 
    478 	KPREEMPT_DISABLE(curlwp);
    479 }
    480 
    481 /*
    482  * Reenable kernel preemption.
    483  */
    484 void
    485 kpreempt_enable(void)
    486 {
    487 
    488 	KPREEMPT_ENABLE(curlwp);
    489 }
    490 
    491 /*
    492  * Compute the amount of time during which the current lwp was running.
    493  *
    494  * - update l_rtime unless it's an idle lwp.
    495  */
    496 
    497 void
    498 updatertime(lwp_t *l, const struct bintime *now)
    499 {
    500 
    501 	if ((l->l_flag & LW_IDLE) != 0)
    502 		return;
    503 
    504 	/* rtime += now - stime */
    505 	bintime_add(&l->l_rtime, now);
    506 	bintime_sub(&l->l_rtime, &l->l_stime);
    507 }
    508 
    509 /*
    510  * Select next LWP from the current CPU to run..
    511  */
    512 static inline lwp_t *
    513 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    514 {
    515 	lwp_t *newl;
    516 
    517 	/*
    518 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    519 	 * If no LWP is runnable, select the idle LWP.
    520 	 *
    521 	 * Note that spc_lwplock might not necessary be held, and
    522 	 * new thread would be unlocked after setting the LWP-lock.
    523 	 */
    524 	newl = sched_nextlwp();
    525 	if (newl != NULL) {
    526 		sched_dequeue(newl);
    527 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    528 		newl->l_stat = LSONPROC;
    529 		newl->l_cpu = ci;
    530 		newl->l_flag |= LW_RUNNING;
    531 		lwp_setlock(newl, spc->spc_lwplock);
    532 	} else {
    533 		newl = ci->ci_data.cpu_idlelwp;
    534 		newl->l_stat = LSONPROC;
    535 		newl->l_flag |= LW_RUNNING;
    536 	}
    537 
    538 	/*
    539 	 * Only clear want_resched if there are no pending (slow)
    540 	 * software interrupts.
    541 	 */
    542 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    543 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    544 	spc->spc_curpriority = lwp_eprio(newl);
    545 
    546 	return newl;
    547 }
    548 
    549 /*
    550  * The machine independent parts of context switch.
    551  *
    552  * Returns 1 if another LWP was actually run.
    553  */
    554 int
    555 mi_switch(lwp_t *l)
    556 {
    557 	struct cpu_info *ci, *tci = NULL;
    558 	struct schedstate_percpu *spc;
    559 	struct lwp *newl;
    560 	int retval, oldspl;
    561 	struct bintime bt;
    562 	bool returning;
    563 
    564 	KASSERT(lwp_locked(l, NULL));
    565 	KASSERT(kpreempt_disabled());
    566 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    567 
    568 #ifdef KSTACK_CHECK_MAGIC
    569 	kstack_check_magic(l);
    570 #endif
    571 
    572 	binuptime(&bt);
    573 
    574 	KASSERT(l->l_cpu == curcpu());
    575 	ci = l->l_cpu;
    576 	spc = &ci->ci_schedstate;
    577 	returning = false;
    578 	newl = NULL;
    579 
    580 	/*
    581 	 * If we have been asked to switch to a specific LWP, then there
    582 	 * is no need to inspect the run queues.  If a soft interrupt is
    583 	 * blocking, then return to the interrupted thread without adjusting
    584 	 * VM context or its start time: neither have been changed in order
    585 	 * to take the interrupt.
    586 	 */
    587 	if (l->l_switchto != NULL) {
    588 		if ((l->l_pflag & LP_INTR) != 0) {
    589 			returning = true;
    590 			softint_block(l);
    591 			if ((l->l_flag & LW_TIMEINTR) != 0)
    592 				updatertime(l, &bt);
    593 		}
    594 		newl = l->l_switchto;
    595 		l->l_switchto = NULL;
    596 	}
    597 #ifndef __HAVE_FAST_SOFTINTS
    598 	else if (ci->ci_data.cpu_softints != 0) {
    599 		/* There are pending soft interrupts, so pick one. */
    600 		newl = softint_picklwp();
    601 		newl->l_stat = LSONPROC;
    602 		newl->l_flag |= LW_RUNNING;
    603 	}
    604 #endif	/* !__HAVE_FAST_SOFTINTS */
    605 
    606 	/* Count time spent in current system call */
    607 	if (!returning) {
    608 		SYSCALL_TIME_SLEEP(l);
    609 
    610 		/*
    611 		 * XXXSMP If we are using h/w performance counters,
    612 		 * save context.
    613 		 */
    614 #if PERFCTRS
    615 		if (PMC_ENABLED(l->l_proc)) {
    616 			pmc_save_context(l->l_proc);
    617 		}
    618 #endif
    619 		updatertime(l, &bt);
    620 	}
    621 
    622 	/*
    623 	 * If on the CPU and we have gotten this far, then we must yield.
    624 	 */
    625 	KASSERT(l->l_stat != LSRUN);
    626 	if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
    627 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    628 
    629 		if (l->l_target_cpu == l->l_cpu) {
    630 			l->l_target_cpu = NULL;
    631 		} else {
    632 			tci = l->l_target_cpu;
    633 		}
    634 
    635 		if (__predict_false(tci != NULL)) {
    636 			/* Double-lock the runqueues */
    637 			spc_dlock(ci, tci);
    638 		} else {
    639 			/* Lock the runqueue */
    640 			spc_lock(ci);
    641 		}
    642 
    643 		if ((l->l_flag & LW_IDLE) == 0) {
    644 			l->l_stat = LSRUN;
    645 			if (__predict_false(tci != NULL)) {
    646 				/*
    647 				 * Set the new CPU, lock and unset the
    648 				 * l_target_cpu - thread will be enqueued
    649 				 * to the runqueue of target CPU.
    650 				 */
    651 				l->l_cpu = tci;
    652 				lwp_setlock(l, tci->ci_schedstate.spc_mutex);
    653 				l->l_target_cpu = NULL;
    654 			} else {
    655 				lwp_setlock(l, spc->spc_mutex);
    656 			}
    657 			sched_enqueue(l, true);
    658 		} else {
    659 			KASSERT(tci == NULL);
    660 			l->l_stat = LSIDL;
    661 		}
    662 	} else {
    663 		/* Lock the runqueue */
    664 		spc_lock(ci);
    665 	}
    666 
    667 	/* Pick new LWP to run. */
    668 	if (newl == NULL) {
    669 		newl = nextlwp(ci, spc);
    670 	}
    671 
    672 	/* Items that must be updated with the CPU locked. */
    673 	if (!returning) {
    674 		/* Update the new LWP's start time. */
    675 		newl->l_stime = bt;
    676 
    677 		/*
    678 		 * ci_curlwp changes when a fast soft interrupt occurs.
    679 		 * We use cpu_onproc to keep track of which kernel or
    680 		 * user thread is running 'underneath' the software
    681 		 * interrupt.  This is important for time accounting,
    682 		 * itimers and forcing user threads to preempt (aston).
    683 		 */
    684 		ci->ci_data.cpu_onproc = newl;
    685 	}
    686 
    687 	/*
    688 	 * Preemption related tasks.  Must be done with the current
    689 	 * CPU locked.
    690 	 */
    691 	cpu_did_resched(l);
    692 	l->l_dopreempt = 0;
    693 	if (__predict_false(l->l_pfailaddr != 0)) {
    694 		LOCKSTAT_FLAG(lsflag);
    695 		LOCKSTAT_ENTER(lsflag);
    696 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    697 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    698 		    1, l->l_pfailtime, l->l_pfailaddr);
    699 		LOCKSTAT_EXIT(lsflag);
    700 		l->l_pfailtime = 0;
    701 		l->l_pfaillock = 0;
    702 		l->l_pfailaddr = 0;
    703 	}
    704 
    705 	if (l != newl) {
    706 		struct lwp *prevlwp;
    707 
    708 		/* Release all locks, but leave the current LWP locked */
    709 		if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
    710 			/*
    711 			 * In case of migration, drop the local runqueue
    712 			 * lock, thread is on other runqueue now.
    713 			 */
    714 			if (__predict_false(tci != NULL))
    715 				spc_unlock(ci);
    716 			/*
    717 			 * Drop spc_lwplock, if the current LWP has been moved
    718 			 * to the run queue (it is now locked by spc_mutex).
    719 			 */
    720 			mutex_spin_exit(spc->spc_lwplock);
    721 		} else {
    722 			/*
    723 			 * Otherwise, drop the spc_mutex, we are done with the
    724 			 * run queues.
    725 			 */
    726 			mutex_spin_exit(spc->spc_mutex);
    727 			KASSERT(tci == NULL);
    728 		}
    729 
    730 		/*
    731 		 * Mark that context switch is going to be perfomed
    732 		 * for this LWP, to protect it from being switched
    733 		 * to on another CPU.
    734 		 */
    735 		KASSERT(l->l_ctxswtch == 0);
    736 		l->l_ctxswtch = 1;
    737 		l->l_ncsw++;
    738 		l->l_flag &= ~LW_RUNNING;
    739 
    740 		/*
    741 		 * Increase the count of spin-mutexes before the release
    742 		 * of the last lock - we must remain at IPL_SCHED during
    743 		 * the context switch.
    744 		 */
    745 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    746 		ci->ci_mtx_count--;
    747 		lwp_unlock(l);
    748 
    749 		/* Count the context switch on this CPU. */
    750 		ci->ci_data.cpu_nswtch++;
    751 
    752 		/* Update status for lwpctl, if present. */
    753 		if (l->l_lwpctl != NULL)
    754 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    755 
    756 		/*
    757 		 * Save old VM context, unless a soft interrupt
    758 		 * handler is blocking.
    759 		 */
    760 		if (!returning)
    761 			pmap_deactivate(l);
    762 
    763 		/*
    764 		 * We may need to spin-wait for if 'newl' is still
    765 		 * context switching on another CPU.
    766 		 */
    767 		if (newl->l_ctxswtch != 0) {
    768 			u_int count;
    769 			count = SPINLOCK_BACKOFF_MIN;
    770 			while (newl->l_ctxswtch)
    771 				SPINLOCK_BACKOFF(count);
    772 		}
    773 
    774 		/* Switch to the new LWP.. */
    775 		prevlwp = cpu_switchto(l, newl, returning);
    776 		ci = curcpu();
    777 
    778 		/*
    779 		 * Switched away - we have new curlwp.
    780 		 * Restore VM context and IPL.
    781 		 */
    782 		pmap_activate(l);
    783 		if (prevlwp != NULL) {
    784 			/* Normalize the count of the spin-mutexes */
    785 			ci->ci_mtx_count++;
    786 			/* Unmark the state of context switch */
    787 			membar_exit();
    788 			prevlwp->l_ctxswtch = 0;
    789 		}
    790 
    791 		/* Update status for lwpctl, if present. */
    792 		if (l->l_lwpctl != NULL) {
    793 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    794 			l->l_lwpctl->lc_pctr++;
    795 		}
    796 
    797 		KASSERT(l->l_cpu == ci);
    798 		splx(oldspl);
    799 		retval = 1;
    800 	} else {
    801 		/* Nothing to do - just unlock and return. */
    802 		KASSERT(tci == NULL);
    803 		spc_unlock(ci);
    804 		lwp_unlock(l);
    805 		retval = 0;
    806 	}
    807 
    808 	KASSERT(l == curlwp);
    809 	KASSERT(l->l_stat == LSONPROC);
    810 
    811 	/*
    812 	 * XXXSMP If we are using h/w performance counters, restore context.
    813 	 * XXXSMP preemption problem.
    814 	 */
    815 #if PERFCTRS
    816 	if (PMC_ENABLED(l->l_proc)) {
    817 		pmc_restore_context(l->l_proc);
    818 	}
    819 #endif
    820 	SYSCALL_TIME_WAKEUP(l);
    821 	LOCKDEBUG_BARRIER(NULL, 1);
    822 
    823 	return retval;
    824 }
    825 
    826 /*
    827  * The machine independent parts of context switch to oblivion.
    828  * Does not return.  Call with the LWP unlocked.
    829  */
    830 void
    831 lwp_exit_switchaway(lwp_t *l)
    832 {
    833 	struct cpu_info *ci;
    834 	struct lwp *newl;
    835 	struct bintime bt;
    836 
    837 	ci = l->l_cpu;
    838 
    839 	KASSERT(kpreempt_disabled());
    840 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    841 	KASSERT(ci == curcpu());
    842 	LOCKDEBUG_BARRIER(NULL, 0);
    843 
    844 #ifdef KSTACK_CHECK_MAGIC
    845 	kstack_check_magic(l);
    846 #endif
    847 
    848 	/* Count time spent in current system call */
    849 	SYSCALL_TIME_SLEEP(l);
    850 	binuptime(&bt);
    851 	updatertime(l, &bt);
    852 
    853 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    854 	(void)splsched();
    855 
    856 	/*
    857 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    858 	 * If no LWP is runnable, select the idle LWP.
    859 	 *
    860 	 * Note that spc_lwplock might not necessary be held, and
    861 	 * new thread would be unlocked after setting the LWP-lock.
    862 	 */
    863 	spc_lock(ci);
    864 #ifndef __HAVE_FAST_SOFTINTS
    865 	if (ci->ci_data.cpu_softints != 0) {
    866 		/* There are pending soft interrupts, so pick one. */
    867 		newl = softint_picklwp();
    868 		newl->l_stat = LSONPROC;
    869 		newl->l_flag |= LW_RUNNING;
    870 	} else
    871 #endif	/* !__HAVE_FAST_SOFTINTS */
    872 	{
    873 		newl = nextlwp(ci, &ci->ci_schedstate);
    874 	}
    875 
    876 	/* Update the new LWP's start time. */
    877 	newl->l_stime = bt;
    878 	l->l_flag &= ~LW_RUNNING;
    879 
    880 	/*
    881 	 * ci_curlwp changes when a fast soft interrupt occurs.
    882 	 * We use cpu_onproc to keep track of which kernel or
    883 	 * user thread is running 'underneath' the software
    884 	 * interrupt.  This is important for time accounting,
    885 	 * itimers and forcing user threads to preempt (aston).
    886 	 */
    887 	ci->ci_data.cpu_onproc = newl;
    888 
    889 	/*
    890 	 * Preemption related tasks.  Must be done with the current
    891 	 * CPU locked.
    892 	 */
    893 	cpu_did_resched(l);
    894 
    895 	/* Unlock the run queue. */
    896 	spc_unlock(ci);
    897 
    898 	/* Count the context switch on this CPU. */
    899 	ci->ci_data.cpu_nswtch++;
    900 
    901 	/* Update status for lwpctl, if present. */
    902 	if (l->l_lwpctl != NULL)
    903 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    904 
    905 	/*
    906 	 * We may need to spin-wait for if 'newl' is still
    907 	 * context switching on another CPU.
    908 	 */
    909 	if (newl->l_ctxswtch != 0) {
    910 		u_int count;
    911 		count = SPINLOCK_BACKOFF_MIN;
    912 		while (newl->l_ctxswtch)
    913 			SPINLOCK_BACKOFF(count);
    914 	}
    915 
    916 	/* Switch to the new LWP.. */
    917 	(void)cpu_switchto(NULL, newl, false);
    918 
    919 	/* NOTREACHED */
    920 }
    921 
    922 /*
    923  * Change process state to be runnable, placing it on the run queue if it is
    924  * in memory, and awakening the swapper if it isn't in memory.
    925  *
    926  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    927  */
    928 void
    929 setrunnable(struct lwp *l)
    930 {
    931 	struct proc *p = l->l_proc;
    932 	struct cpu_info *ci;
    933 	sigset_t *ss;
    934 
    935 	KASSERT((l->l_flag & LW_IDLE) == 0);
    936 	KASSERT(mutex_owned(p->p_lock));
    937 	KASSERT(lwp_locked(l, NULL));
    938 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    939 
    940 	switch (l->l_stat) {
    941 	case LSSTOP:
    942 		/*
    943 		 * If we're being traced (possibly because someone attached us
    944 		 * while we were stopped), check for a signal from the debugger.
    945 		 */
    946 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    947 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    948 				ss = &l->l_sigpend.sp_set;
    949 			else
    950 				ss = &p->p_sigpend.sp_set;
    951 			sigaddset(ss, p->p_xstat);
    952 			signotify(l);
    953 		}
    954 		p->p_nrlwps++;
    955 		break;
    956 	case LSSUSPENDED:
    957 		l->l_flag &= ~LW_WSUSPEND;
    958 		p->p_nrlwps++;
    959 		cv_broadcast(&p->p_lwpcv);
    960 		break;
    961 	case LSSLEEP:
    962 		KASSERT(l->l_wchan != NULL);
    963 		break;
    964 	default:
    965 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    966 	}
    967 
    968 	/*
    969 	 * If the LWP was sleeping interruptably, then it's OK to start it
    970 	 * again.  If not, mark it as still sleeping.
    971 	 */
    972 	if (l->l_wchan != NULL) {
    973 		l->l_stat = LSSLEEP;
    974 		/* lwp_unsleep() will release the lock. */
    975 		lwp_unsleep(l, true);
    976 		return;
    977 	}
    978 
    979 	/*
    980 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    981 	 * about to call mi_switch(), in which case it will yield.
    982 	 */
    983 	if ((l->l_flag & LW_RUNNING) != 0) {
    984 		l->l_stat = LSONPROC;
    985 		l->l_slptime = 0;
    986 		lwp_unlock(l);
    987 		return;
    988 	}
    989 
    990 	/*
    991 	 * Look for a CPU to run.
    992 	 * Set the LWP runnable.
    993 	 */
    994 	ci = sched_takecpu(l);
    995 	l->l_cpu = ci;
    996 	spc_lock(ci);
    997 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    998 	sched_setrunnable(l);
    999 	l->l_stat = LSRUN;
   1000 	l->l_slptime = 0;
   1001 
   1002 	/*
   1003 	 * If thread is swapped out - wake the swapper to bring it back in.
   1004 	 * Otherwise, enter it into a run queue.
   1005 	 */
   1006 	if (l->l_flag & LW_INMEM) {
   1007 		sched_enqueue(l, false);
   1008 		resched_cpu(l);
   1009 		lwp_unlock(l);
   1010 	} else {
   1011 		lwp_unlock(l);
   1012 		uvm_kick_scheduler();
   1013 	}
   1014 }
   1015 
   1016 /*
   1017  * suspendsched:
   1018  *
   1019  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1020  */
   1021 void
   1022 suspendsched(void)
   1023 {
   1024 	CPU_INFO_ITERATOR cii;
   1025 	struct cpu_info *ci;
   1026 	struct lwp *l;
   1027 	struct proc *p;
   1028 
   1029 	/*
   1030 	 * We do this by process in order not to violate the locking rules.
   1031 	 */
   1032 	mutex_enter(proc_lock);
   1033 	PROCLIST_FOREACH(p, &allproc) {
   1034 		if ((p->p_flag & PK_MARKER) != 0)
   1035 			continue;
   1036 
   1037 		mutex_enter(p->p_lock);
   1038 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1039 			mutex_exit(p->p_lock);
   1040 			continue;
   1041 		}
   1042 
   1043 		p->p_stat = SSTOP;
   1044 
   1045 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1046 			if (l == curlwp)
   1047 				continue;
   1048 
   1049 			lwp_lock(l);
   1050 
   1051 			/*
   1052 			 * Set L_WREBOOT so that the LWP will suspend itself
   1053 			 * when it tries to return to user mode.  We want to
   1054 			 * try and get to get as many LWPs as possible to
   1055 			 * the user / kernel boundary, so that they will
   1056 			 * release any locks that they hold.
   1057 			 */
   1058 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1059 
   1060 			if (l->l_stat == LSSLEEP &&
   1061 			    (l->l_flag & LW_SINTR) != 0) {
   1062 				/* setrunnable() will release the lock. */
   1063 				setrunnable(l);
   1064 				continue;
   1065 			}
   1066 
   1067 			lwp_unlock(l);
   1068 		}
   1069 
   1070 		mutex_exit(p->p_lock);
   1071 	}
   1072 	mutex_exit(proc_lock);
   1073 
   1074 	/*
   1075 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1076 	 * They'll trap into the kernel and suspend themselves in userret().
   1077 	 */
   1078 	for (CPU_INFO_FOREACH(cii, ci)) {
   1079 		spc_lock(ci);
   1080 		cpu_need_resched(ci, RESCHED_IMMED);
   1081 		spc_unlock(ci);
   1082 	}
   1083 }
   1084 
   1085 /*
   1086  * sched_unsleep:
   1087  *
   1088  *	The is called when the LWP has not been awoken normally but instead
   1089  *	interrupted: for example, if the sleep timed out.  Because of this,
   1090  *	it's not a valid action for running or idle LWPs.
   1091  */
   1092 static u_int
   1093 sched_unsleep(struct lwp *l, bool cleanup)
   1094 {
   1095 
   1096 	lwp_unlock(l);
   1097 	panic("sched_unsleep");
   1098 }
   1099 
   1100 void
   1101 resched_cpu(struct lwp *l)
   1102 {
   1103 	struct cpu_info *ci;
   1104 
   1105 	/*
   1106 	 * XXXSMP
   1107 	 * Since l->l_cpu persists across a context switch,
   1108 	 * this gives us *very weak* processor affinity, in
   1109 	 * that we notify the CPU on which the process last
   1110 	 * ran that it should try to switch.
   1111 	 *
   1112 	 * This does not guarantee that the process will run on
   1113 	 * that processor next, because another processor might
   1114 	 * grab it the next time it performs a context switch.
   1115 	 *
   1116 	 * This also does not handle the case where its last
   1117 	 * CPU is running a higher-priority process, but every
   1118 	 * other CPU is running a lower-priority process.  There
   1119 	 * are ways to handle this situation, but they're not
   1120 	 * currently very pretty, and we also need to weigh the
   1121 	 * cost of moving a process from one CPU to another.
   1122 	 */
   1123 	ci = l->l_cpu;
   1124 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1125 		cpu_need_resched(ci, 0);
   1126 }
   1127 
   1128 static void
   1129 sched_changepri(struct lwp *l, pri_t pri)
   1130 {
   1131 
   1132 	KASSERT(lwp_locked(l, NULL));
   1133 
   1134 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1135 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1136 		sched_dequeue(l);
   1137 		l->l_priority = pri;
   1138 		sched_enqueue(l, false);
   1139 	} else {
   1140 		l->l_priority = pri;
   1141 	}
   1142 	resched_cpu(l);
   1143 }
   1144 
   1145 static void
   1146 sched_lendpri(struct lwp *l, pri_t pri)
   1147 {
   1148 
   1149 	KASSERT(lwp_locked(l, NULL));
   1150 
   1151 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1152 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1153 		sched_dequeue(l);
   1154 		l->l_inheritedprio = pri;
   1155 		sched_enqueue(l, false);
   1156 	} else {
   1157 		l->l_inheritedprio = pri;
   1158 	}
   1159 	resched_cpu(l);
   1160 }
   1161 
   1162 struct lwp *
   1163 syncobj_noowner(wchan_t wchan)
   1164 {
   1165 
   1166 	return NULL;
   1167 }
   1168 
   1169 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
   1170 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
   1171 
   1172 /*
   1173  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
   1174  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
   1175  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
   1176  *
   1177  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
   1178  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
   1179  *
   1180  * If you dont want to bother with the faster/more-accurate formula, you
   1181  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
   1182  * (more general) method of calculating the %age of CPU used by a process.
   1183  */
   1184 #define	CCPU_SHIFT	(FSHIFT + 1)
   1185 
   1186 /*
   1187  * sched_pstats:
   1188  *
   1189  * Update process statistics and check CPU resource allocation.
   1190  * Call scheduler-specific hook to eventually adjust process/LWP
   1191  * priorities.
   1192  */
   1193 /* ARGSUSED */
   1194 void
   1195 sched_pstats(void *arg)
   1196 {
   1197 	struct rlimit *rlim;
   1198 	struct lwp *l;
   1199 	struct proc *p;
   1200 	int sig, clkhz;
   1201 	long runtm;
   1202 
   1203 	sched_pstats_ticks++;
   1204 
   1205 	mutex_enter(proc_lock);
   1206 	PROCLIST_FOREACH(p, &allproc) {
   1207 		if ((p->p_flag & PK_MARKER) != 0)
   1208 			continue;
   1209 
   1210 		/*
   1211 		 * Increment time in/out of memory and sleep time (if
   1212 		 * sleeping).  We ignore overflow; with 16-bit int's
   1213 		 * (remember them?) overflow takes 45 days.
   1214 		 */
   1215 		mutex_enter(p->p_lock);
   1216 		mutex_spin_enter(&p->p_stmutex);
   1217 		runtm = p->p_rtime.sec;
   1218 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1219 			if ((l->l_flag & LW_IDLE) != 0)
   1220 				continue;
   1221 			lwp_lock(l);
   1222 			runtm += l->l_rtime.sec;
   1223 			l->l_swtime++;
   1224 			sched_lwp_stats(l);
   1225 			lwp_unlock(l);
   1226 
   1227 			/*
   1228 			 * p_pctcpu is only for ps.
   1229 			 */
   1230 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1231 			if (l->l_slptime < 1) {
   1232 				clkhz = stathz != 0 ? stathz : hz;
   1233 #if	(FSHIFT >= CCPU_SHIFT)
   1234 				l->l_pctcpu += (clkhz == 100) ?
   1235 				    ((fixpt_t)l->l_cpticks) <<
   1236 				        (FSHIFT - CCPU_SHIFT) :
   1237 				    100 * (((fixpt_t) p->p_cpticks)
   1238 				        << (FSHIFT - CCPU_SHIFT)) / clkhz;
   1239 #else
   1240 				l->l_pctcpu += ((FSCALE - ccpu) *
   1241 				    (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
   1242 #endif
   1243 				l->l_cpticks = 0;
   1244 			}
   1245 		}
   1246 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1247 		mutex_spin_exit(&p->p_stmutex);
   1248 
   1249 		/*
   1250 		 * Check if the process exceeds its CPU resource allocation.
   1251 		 * If over max, kill it.
   1252 		 */
   1253 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1254 		sig = 0;
   1255 		if (runtm >= rlim->rlim_cur) {
   1256 			if (runtm >= rlim->rlim_max)
   1257 				sig = SIGKILL;
   1258 			else {
   1259 				sig = SIGXCPU;
   1260 				if (rlim->rlim_cur < rlim->rlim_max)
   1261 					rlim->rlim_cur += 5;
   1262 			}
   1263 		}
   1264 		mutex_exit(p->p_lock);
   1265 		if (sig)
   1266 			psignal(p, sig);
   1267 	}
   1268 	mutex_exit(proc_lock);
   1269 	uvm_meter();
   1270 	cv_wakeup(&lbolt);
   1271 	callout_schedule(&sched_pstats_ch, hz);
   1272 }
   1273