kern_synch.c revision 1.248 1 /* $NetBSD: kern_synch.c,v 1.248 2008/05/31 21:26:01 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*-
35 * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.248 2008/05/31 21:26:01 ad Exp $");
72
73 #include "opt_kstack.h"
74 #include "opt_perfctrs.h"
75
76 #define __MUTEX_PRIVATE
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/kernel.h>
82 #if defined(PERFCTRS)
83 #include <sys/pmc.h>
84 #endif
85 #include <sys/cpu.h>
86 #include <sys/resourcevar.h>
87 #include <sys/sched.h>
88 #include <sys/syscall_stats.h>
89 #include <sys/sleepq.h>
90 #include <sys/lockdebug.h>
91 #include <sys/evcnt.h>
92 #include <sys/intr.h>
93 #include <sys/lwpctl.h>
94 #include <sys/atomic.h>
95 #include <sys/simplelock.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #include <dev/lockstat.h>
100
101 static u_int sched_unsleep(struct lwp *, bool);
102 static void sched_changepri(struct lwp *, pri_t);
103 static void sched_lendpri(struct lwp *, pri_t);
104
105 syncobj_t sleep_syncobj = {
106 SOBJ_SLEEPQ_SORTED,
107 sleepq_unsleep,
108 sleepq_changepri,
109 sleepq_lendpri,
110 syncobj_noowner,
111 };
112
113 syncobj_t sched_syncobj = {
114 SOBJ_SLEEPQ_SORTED,
115 sched_unsleep,
116 sched_changepri,
117 sched_lendpri,
118 syncobj_noowner,
119 };
120
121 callout_t sched_pstats_ch;
122 unsigned sched_pstats_ticks;
123 kcondvar_t lbolt; /* once a second sleep address */
124
125 /* Preemption event counters */
126 static struct evcnt kpreempt_ev_crit;
127 static struct evcnt kpreempt_ev_klock;
128 static struct evcnt kpreempt_ev_ipl;
129 static struct evcnt kpreempt_ev_immed;
130
131 /*
132 * During autoconfiguration or after a panic, a sleep will simply lower the
133 * priority briefly to allow interrupts, then return. The priority to be
134 * used (safepri) is machine-dependent, thus this value is initialized and
135 * maintained in the machine-dependent layers. This priority will typically
136 * be 0, or the lowest priority that is safe for use on the interrupt stack;
137 * it can be made higher to block network software interrupts after panics.
138 */
139 int safepri;
140
141 void
142 sched_init(void)
143 {
144
145 cv_init(&lbolt, "lbolt");
146 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
147 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
148
149 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
150 "kpreempt", "defer: critical section");
151 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
152 "kpreempt", "defer: kernel_lock");
153 evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
154 "kpreempt", "defer: IPL");
155 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
156 "kpreempt", "immediate");
157
158 sched_pstats(NULL);
159 }
160
161 /*
162 * OBSOLETE INTERFACE
163 *
164 * General sleep call. Suspends the current process until a wakeup is
165 * performed on the specified identifier. The process will then be made
166 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
167 * means no timeout). If pri includes PCATCH flag, signals are checked
168 * before and after sleeping, else signals are not checked. Returns 0 if
169 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
170 * signal needs to be delivered, ERESTART is returned if the current system
171 * call should be restarted if possible, and EINTR is returned if the system
172 * call should be interrupted by the signal (return EINTR).
173 *
174 * The interlock is held until we are on a sleep queue. The interlock will
175 * be locked before returning back to the caller unless the PNORELOCK flag
176 * is specified, in which case the interlock will always be unlocked upon
177 * return.
178 */
179 int
180 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
181 volatile struct simplelock *interlock)
182 {
183 struct lwp *l = curlwp;
184 sleepq_t *sq;
185 kmutex_t *mp;
186 int error;
187
188 KASSERT((l->l_pflag & LP_INTR) == 0);
189
190 if (sleepq_dontsleep(l)) {
191 (void)sleepq_abort(NULL, 0);
192 if ((priority & PNORELOCK) != 0)
193 simple_unlock(interlock);
194 return 0;
195 }
196
197 l->l_kpriority = true;
198 sq = sleeptab_lookup(&sleeptab, ident, &mp);
199 sleepq_enter(sq, l, mp);
200 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
201
202 if (interlock != NULL) {
203 KASSERT(simple_lock_held(interlock));
204 simple_unlock(interlock);
205 }
206
207 error = sleepq_block(timo, priority & PCATCH);
208
209 if (interlock != NULL && (priority & PNORELOCK) == 0)
210 simple_lock(interlock);
211
212 return error;
213 }
214
215 int
216 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
217 kmutex_t *mtx)
218 {
219 struct lwp *l = curlwp;
220 sleepq_t *sq;
221 kmutex_t *mp;
222 int error;
223
224 KASSERT((l->l_pflag & LP_INTR) == 0);
225
226 if (sleepq_dontsleep(l)) {
227 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
228 return 0;
229 }
230
231 l->l_kpriority = true;
232 sq = sleeptab_lookup(&sleeptab, ident, &mp);
233 sleepq_enter(sq, l, mp);
234 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
235 mutex_exit(mtx);
236 error = sleepq_block(timo, priority & PCATCH);
237
238 if ((priority & PNORELOCK) == 0)
239 mutex_enter(mtx);
240
241 return error;
242 }
243
244 /*
245 * General sleep call for situations where a wake-up is not expected.
246 */
247 int
248 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
249 {
250 struct lwp *l = curlwp;
251 kmutex_t *mp;
252 sleepq_t *sq;
253 int error;
254
255 if (sleepq_dontsleep(l))
256 return sleepq_abort(NULL, 0);
257
258 if (mtx != NULL)
259 mutex_exit(mtx);
260 l->l_kpriority = true;
261 sq = sleeptab_lookup(&sleeptab, l, &mp);
262 sleepq_enter(sq, l, mp);
263 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
264 error = sleepq_block(timo, intr);
265 if (mtx != NULL)
266 mutex_enter(mtx);
267
268 return error;
269 }
270
271 /*
272 * OBSOLETE INTERFACE
273 *
274 * Make all processes sleeping on the specified identifier runnable.
275 */
276 void
277 wakeup(wchan_t ident)
278 {
279 sleepq_t *sq;
280 kmutex_t *mp;
281
282 if (cold)
283 return;
284
285 sq = sleeptab_lookup(&sleeptab, ident, &mp);
286 sleepq_wake(sq, ident, (u_int)-1, mp);
287 }
288
289 /*
290 * OBSOLETE INTERFACE
291 *
292 * Make the highest priority process first in line on the specified
293 * identifier runnable.
294 */
295 void
296 wakeup_one(wchan_t ident)
297 {
298 sleepq_t *sq;
299 kmutex_t *mp;
300
301 if (cold)
302 return;
303
304 sq = sleeptab_lookup(&sleeptab, ident, &mp);
305 sleepq_wake(sq, ident, 1, mp);
306 }
307
308
309 /*
310 * General yield call. Puts the current process back on its run queue and
311 * performs a voluntary context switch. Should only be called when the
312 * current process explicitly requests it (eg sched_yield(2)).
313 */
314 void
315 yield(void)
316 {
317 struct lwp *l = curlwp;
318
319 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
320 lwp_lock(l);
321 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
322 KASSERT(l->l_stat == LSONPROC);
323 l->l_kpriority = false;
324 (void)mi_switch(l);
325 KERNEL_LOCK(l->l_biglocks, l);
326 }
327
328 /*
329 * General preemption call. Puts the current process back on its run queue
330 * and performs an involuntary context switch.
331 */
332 void
333 preempt(void)
334 {
335 struct lwp *l = curlwp;
336
337 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
338 lwp_lock(l);
339 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
340 KASSERT(l->l_stat == LSONPROC);
341 l->l_kpriority = false;
342 l->l_nivcsw++;
343 (void)mi_switch(l);
344 KERNEL_LOCK(l->l_biglocks, l);
345 }
346
347 /*
348 * Handle a request made by another agent to preempt the current LWP
349 * in-kernel. Usually called when l_dopreempt may be non-zero.
350 *
351 * Character addresses for lockstat only.
352 */
353 static char in_critical_section;
354 static char kernel_lock_held;
355 static char spl_raised;
356 static char is_softint;
357
358 bool
359 kpreempt(uintptr_t where)
360 {
361 uintptr_t failed;
362 lwp_t *l;
363 int s, dop;
364
365 l = curlwp;
366 failed = 0;
367 while ((dop = l->l_dopreempt) != 0) {
368 if (l->l_stat != LSONPROC) {
369 /*
370 * About to block (or die), let it happen.
371 * Doesn't really count as "preemption has
372 * been blocked", since we're going to
373 * context switch.
374 */
375 l->l_dopreempt = 0;
376 return true;
377 }
378 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
379 /* Can't preempt idle loop, don't count as failure. */
380 l->l_dopreempt = 0;
381 return true;
382 }
383 if (__predict_false(l->l_nopreempt != 0)) {
384 /* LWP holds preemption disabled, explicitly. */
385 if ((dop & DOPREEMPT_COUNTED) == 0) {
386 kpreempt_ev_crit.ev_count++;
387 }
388 failed = (uintptr_t)&in_critical_section;
389 break;
390 }
391 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
392 /* Can't preempt soft interrupts yet. */
393 l->l_dopreempt = 0;
394 failed = (uintptr_t)&is_softint;
395 break;
396 }
397 s = splsched();
398 if (__predict_false(l->l_blcnt != 0 ||
399 curcpu()->ci_biglock_wanted != NULL)) {
400 /* Hold or want kernel_lock, code is not MT safe. */
401 splx(s);
402 if ((dop & DOPREEMPT_COUNTED) == 0) {
403 kpreempt_ev_klock.ev_count++;
404 }
405 failed = (uintptr_t)&kernel_lock_held;
406 break;
407 }
408 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
409 /*
410 * It may be that the IPL is too high.
411 * kpreempt_enter() can schedule an
412 * interrupt to retry later.
413 */
414 splx(s);
415 if ((dop & DOPREEMPT_COUNTED) == 0) {
416 kpreempt_ev_ipl.ev_count++;
417 }
418 failed = (uintptr_t)&spl_raised;
419 break;
420 }
421 /* Do it! */
422 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
423 kpreempt_ev_immed.ev_count++;
424 }
425 lwp_lock(l);
426 mi_switch(l);
427 l->l_nopreempt++;
428 splx(s);
429
430 /* Take care of any MD cleanup. */
431 cpu_kpreempt_exit(where);
432 l->l_nopreempt--;
433 }
434
435 /* Record preemption failure for reporting via lockstat. */
436 if (__predict_false(failed)) {
437 int lsflag = 0;
438 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
439 LOCKSTAT_ENTER(lsflag);
440 /* Might recurse, make it atomic. */
441 if (__predict_false(lsflag)) {
442 if (where == 0) {
443 where = (uintptr_t)__builtin_return_address(0);
444 }
445 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
446 NULL, (void *)where) == NULL) {
447 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
448 l->l_pfaillock = failed;
449 }
450 }
451 LOCKSTAT_EXIT(lsflag);
452 }
453
454 return failed;
455 }
456
457 /*
458 * Return true if preemption is explicitly disabled.
459 */
460 bool
461 kpreempt_disabled(void)
462 {
463 lwp_t *l;
464
465 l = curlwp;
466
467 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
468 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
469 }
470
471 /*
472 * Disable kernel preemption.
473 */
474 void
475 kpreempt_disable(void)
476 {
477
478 KPREEMPT_DISABLE(curlwp);
479 }
480
481 /*
482 * Reenable kernel preemption.
483 */
484 void
485 kpreempt_enable(void)
486 {
487
488 KPREEMPT_ENABLE(curlwp);
489 }
490
491 /*
492 * Compute the amount of time during which the current lwp was running.
493 *
494 * - update l_rtime unless it's an idle lwp.
495 */
496
497 void
498 updatertime(lwp_t *l, const struct bintime *now)
499 {
500
501 if ((l->l_flag & LW_IDLE) != 0)
502 return;
503
504 /* rtime += now - stime */
505 bintime_add(&l->l_rtime, now);
506 bintime_sub(&l->l_rtime, &l->l_stime);
507 }
508
509 /*
510 * Select next LWP from the current CPU to run..
511 */
512 static inline lwp_t *
513 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
514 {
515 lwp_t *newl;
516
517 /*
518 * Let sched_nextlwp() select the LWP to run the CPU next.
519 * If no LWP is runnable, select the idle LWP.
520 *
521 * Note that spc_lwplock might not necessary be held, and
522 * new thread would be unlocked after setting the LWP-lock.
523 */
524 newl = sched_nextlwp();
525 if (newl != NULL) {
526 sched_dequeue(newl);
527 KASSERT(lwp_locked(newl, spc->spc_mutex));
528 newl->l_stat = LSONPROC;
529 newl->l_cpu = ci;
530 newl->l_pflag |= LP_RUNNING;
531 lwp_setlock(newl, spc->spc_lwplock);
532 } else {
533 newl = ci->ci_data.cpu_idlelwp;
534 newl->l_stat = LSONPROC;
535 newl->l_pflag |= LP_RUNNING;
536 }
537
538 /*
539 * Only clear want_resched if there are no pending (slow)
540 * software interrupts.
541 */
542 ci->ci_want_resched = ci->ci_data.cpu_softints;
543 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
544 spc->spc_curpriority = lwp_eprio(newl);
545
546 return newl;
547 }
548
549 /*
550 * The machine independent parts of context switch.
551 *
552 * Returns 1 if another LWP was actually run.
553 */
554 int
555 mi_switch(lwp_t *l)
556 {
557 struct cpu_info *ci;
558 struct schedstate_percpu *spc;
559 struct lwp *newl;
560 int retval, oldspl;
561 struct bintime bt;
562 bool returning;
563
564 KASSERT(lwp_locked(l, NULL));
565 KASSERT(kpreempt_disabled());
566 LOCKDEBUG_BARRIER(l->l_mutex, 1);
567
568 #ifdef KSTACK_CHECK_MAGIC
569 kstack_check_magic(l);
570 #endif
571
572 binuptime(&bt);
573
574 KASSERT(l->l_cpu == curcpu());
575 ci = l->l_cpu;
576 spc = &ci->ci_schedstate;
577 returning = false;
578 newl = NULL;
579
580 /*
581 * If we have been asked to switch to a specific LWP, then there
582 * is no need to inspect the run queues. If a soft interrupt is
583 * blocking, then return to the interrupted thread without adjusting
584 * VM context or its start time: neither have been changed in order
585 * to take the interrupt.
586 */
587 if (l->l_switchto != NULL) {
588 if ((l->l_pflag & LP_INTR) != 0) {
589 returning = true;
590 softint_block(l);
591 if ((l->l_pflag & LP_TIMEINTR) != 0)
592 updatertime(l, &bt);
593 }
594 newl = l->l_switchto;
595 l->l_switchto = NULL;
596 }
597 #ifndef __HAVE_FAST_SOFTINTS
598 else if (ci->ci_data.cpu_softints != 0) {
599 /* There are pending soft interrupts, so pick one. */
600 newl = softint_picklwp();
601 newl->l_stat = LSONPROC;
602 newl->l_pflag |= LP_RUNNING;
603 }
604 #endif /* !__HAVE_FAST_SOFTINTS */
605
606 /* Count time spent in current system call */
607 if (!returning) {
608 SYSCALL_TIME_SLEEP(l);
609
610 /*
611 * XXXSMP If we are using h/w performance counters,
612 * save context.
613 */
614 #if PERFCTRS
615 if (PMC_ENABLED(l->l_proc)) {
616 pmc_save_context(l->l_proc);
617 }
618 #endif
619 updatertime(l, &bt);
620 }
621
622 /* Lock the runqueue */
623 KASSERT(l->l_stat != LSRUN);
624 mutex_spin_enter(spc->spc_mutex);
625
626 /*
627 * If on the CPU and we have gotten this far, then we must yield.
628 */
629 if (l->l_stat == LSONPROC && l != newl) {
630 KASSERT(lwp_locked(l, spc->spc_lwplock));
631 if ((l->l_flag & LW_IDLE) == 0) {
632 l->l_stat = LSRUN;
633 lwp_setlock(l, spc->spc_mutex);
634 sched_enqueue(l, true);
635 /* Handle migration case */
636 KASSERT(spc->spc_migrating == NULL);
637 if (l->l_target_cpu != NULL) {
638 spc->spc_migrating = l;
639 }
640 } else
641 l->l_stat = LSIDL;
642 }
643
644 /* Pick new LWP to run. */
645 if (newl == NULL) {
646 newl = nextlwp(ci, spc);
647 }
648
649 /* Items that must be updated with the CPU locked. */
650 if (!returning) {
651 /* Update the new LWP's start time. */
652 newl->l_stime = bt;
653
654 /*
655 * ci_curlwp changes when a fast soft interrupt occurs.
656 * We use cpu_onproc to keep track of which kernel or
657 * user thread is running 'underneath' the software
658 * interrupt. This is important for time accounting,
659 * itimers and forcing user threads to preempt (aston).
660 */
661 ci->ci_data.cpu_onproc = newl;
662 }
663
664 /*
665 * Preemption related tasks. Must be done with the current
666 * CPU locked.
667 */
668 cpu_did_resched(l);
669 l->l_dopreempt = 0;
670 if (__predict_false(l->l_pfailaddr != 0)) {
671 LOCKSTAT_FLAG(lsflag);
672 LOCKSTAT_ENTER(lsflag);
673 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
674 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
675 1, l->l_pfailtime, l->l_pfailaddr);
676 LOCKSTAT_EXIT(lsflag);
677 l->l_pfailtime = 0;
678 l->l_pfaillock = 0;
679 l->l_pfailaddr = 0;
680 }
681
682 if (l != newl) {
683 struct lwp *prevlwp;
684
685 /* Release all locks, but leave the current LWP locked */
686 if (l->l_mutex == spc->spc_mutex) {
687 /*
688 * Drop spc_lwplock, if the current LWP has been moved
689 * to the run queue (it is now locked by spc_mutex).
690 */
691 mutex_spin_exit(spc->spc_lwplock);
692 } else {
693 /*
694 * Otherwise, drop the spc_mutex, we are done with the
695 * run queues.
696 */
697 mutex_spin_exit(spc->spc_mutex);
698 }
699
700 /*
701 * Mark that context switch is going to be perfomed
702 * for this LWP, to protect it from being switched
703 * to on another CPU.
704 */
705 KASSERT(l->l_ctxswtch == 0);
706 l->l_ctxswtch = 1;
707 l->l_ncsw++;
708 l->l_pflag &= ~LP_RUNNING;
709
710 /*
711 * Increase the count of spin-mutexes before the release
712 * of the last lock - we must remain at IPL_SCHED during
713 * the context switch.
714 */
715 oldspl = MUTEX_SPIN_OLDSPL(ci);
716 ci->ci_mtx_count--;
717 lwp_unlock(l);
718
719 /* Count the context switch on this CPU. */
720 ci->ci_data.cpu_nswtch++;
721
722 /* Update status for lwpctl, if present. */
723 if (l->l_lwpctl != NULL)
724 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
725
726 /*
727 * Save old VM context, unless a soft interrupt
728 * handler is blocking.
729 */
730 if (!returning)
731 pmap_deactivate(l);
732
733 /*
734 * We may need to spin-wait for if 'newl' is still
735 * context switching on another CPU.
736 */
737 if (newl->l_ctxswtch != 0) {
738 u_int count;
739 count = SPINLOCK_BACKOFF_MIN;
740 while (newl->l_ctxswtch)
741 SPINLOCK_BACKOFF(count);
742 }
743
744 /* Switch to the new LWP.. */
745 prevlwp = cpu_switchto(l, newl, returning);
746 ci = curcpu();
747
748 /*
749 * Switched away - we have new curlwp.
750 * Restore VM context and IPL.
751 */
752 pmap_activate(l);
753 if (prevlwp != NULL) {
754 /* Normalize the count of the spin-mutexes */
755 ci->ci_mtx_count++;
756 /* Unmark the state of context switch */
757 membar_exit();
758 prevlwp->l_ctxswtch = 0;
759 }
760
761 /* Update status for lwpctl, if present. */
762 if (l->l_lwpctl != NULL) {
763 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
764 l->l_lwpctl->lc_pctr++;
765 }
766
767 KASSERT(l->l_cpu == ci);
768 splx(oldspl);
769 retval = 1;
770 } else {
771 /* Nothing to do - just unlock and return. */
772 mutex_spin_exit(spc->spc_mutex);
773 lwp_unlock(l);
774 retval = 0;
775 }
776
777 KASSERT(l == curlwp);
778 KASSERT(l->l_stat == LSONPROC);
779
780 /*
781 * XXXSMP If we are using h/w performance counters, restore context.
782 * XXXSMP preemption problem.
783 */
784 #if PERFCTRS
785 if (PMC_ENABLED(l->l_proc)) {
786 pmc_restore_context(l->l_proc);
787 }
788 #endif
789 SYSCALL_TIME_WAKEUP(l);
790 LOCKDEBUG_BARRIER(NULL, 1);
791
792 return retval;
793 }
794
795 /*
796 * The machine independent parts of context switch to oblivion.
797 * Does not return. Call with the LWP unlocked.
798 */
799 void
800 lwp_exit_switchaway(lwp_t *l)
801 {
802 struct cpu_info *ci;
803 struct lwp *newl;
804 struct bintime bt;
805
806 ci = l->l_cpu;
807
808 KASSERT(kpreempt_disabled());
809 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
810 KASSERT(ci == curcpu());
811 LOCKDEBUG_BARRIER(NULL, 0);
812
813 #ifdef KSTACK_CHECK_MAGIC
814 kstack_check_magic(l);
815 #endif
816
817 /* Count time spent in current system call */
818 SYSCALL_TIME_SLEEP(l);
819 binuptime(&bt);
820 updatertime(l, &bt);
821
822 /* Must stay at IPL_SCHED even after releasing run queue lock. */
823 (void)splsched();
824
825 /*
826 * Let sched_nextlwp() select the LWP to run the CPU next.
827 * If no LWP is runnable, select the idle LWP.
828 *
829 * Note that spc_lwplock might not necessary be held, and
830 * new thread would be unlocked after setting the LWP-lock.
831 */
832 spc_lock(ci);
833 #ifndef __HAVE_FAST_SOFTINTS
834 if (ci->ci_data.cpu_softints != 0) {
835 /* There are pending soft interrupts, so pick one. */
836 newl = softint_picklwp();
837 newl->l_stat = LSONPROC;
838 newl->l_pflag |= LP_RUNNING;
839 } else
840 #endif /* !__HAVE_FAST_SOFTINTS */
841 {
842 newl = nextlwp(ci, &ci->ci_schedstate);
843 }
844
845 /* Update the new LWP's start time. */
846 newl->l_stime = bt;
847 l->l_pflag &= ~LP_RUNNING;
848
849 /*
850 * ci_curlwp changes when a fast soft interrupt occurs.
851 * We use cpu_onproc to keep track of which kernel or
852 * user thread is running 'underneath' the software
853 * interrupt. This is important for time accounting,
854 * itimers and forcing user threads to preempt (aston).
855 */
856 ci->ci_data.cpu_onproc = newl;
857
858 /*
859 * Preemption related tasks. Must be done with the current
860 * CPU locked.
861 */
862 cpu_did_resched(l);
863
864 /* Unlock the run queue. */
865 spc_unlock(ci);
866
867 /* Count the context switch on this CPU. */
868 ci->ci_data.cpu_nswtch++;
869
870 /* Update status for lwpctl, if present. */
871 if (l->l_lwpctl != NULL)
872 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
873
874 /*
875 * We may need to spin-wait for if 'newl' is still
876 * context switching on another CPU.
877 */
878 if (newl->l_ctxswtch != 0) {
879 u_int count;
880 count = SPINLOCK_BACKOFF_MIN;
881 while (newl->l_ctxswtch)
882 SPINLOCK_BACKOFF(count);
883 }
884
885 /* Switch to the new LWP.. */
886 (void)cpu_switchto(NULL, newl, false);
887
888 /* NOTREACHED */
889 }
890
891 /*
892 * Change process state to be runnable, placing it on the run queue if it is
893 * in memory, and awakening the swapper if it isn't in memory.
894 *
895 * Call with the process and LWP locked. Will return with the LWP unlocked.
896 */
897 void
898 setrunnable(struct lwp *l)
899 {
900 struct proc *p = l->l_proc;
901 struct cpu_info *ci;
902 sigset_t *ss;
903
904 KASSERT((l->l_flag & LW_IDLE) == 0);
905 KASSERT(mutex_owned(p->p_lock));
906 KASSERT(lwp_locked(l, NULL));
907 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
908
909 switch (l->l_stat) {
910 case LSSTOP:
911 /*
912 * If we're being traced (possibly because someone attached us
913 * while we were stopped), check for a signal from the debugger.
914 */
915 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
916 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
917 ss = &l->l_sigpend.sp_set;
918 else
919 ss = &p->p_sigpend.sp_set;
920 sigaddset(ss, p->p_xstat);
921 signotify(l);
922 }
923 p->p_nrlwps++;
924 break;
925 case LSSUSPENDED:
926 l->l_flag &= ~LW_WSUSPEND;
927 p->p_nrlwps++;
928 cv_broadcast(&p->p_lwpcv);
929 break;
930 case LSSLEEP:
931 KASSERT(l->l_wchan != NULL);
932 break;
933 default:
934 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
935 }
936
937 /*
938 * If the LWP was sleeping interruptably, then it's OK to start it
939 * again. If not, mark it as still sleeping.
940 */
941 if (l->l_wchan != NULL) {
942 l->l_stat = LSSLEEP;
943 /* lwp_unsleep() will release the lock. */
944 lwp_unsleep(l, true);
945 return;
946 }
947
948 /*
949 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
950 * about to call mi_switch(), in which case it will yield.
951 */
952 if ((l->l_pflag & LP_RUNNING) != 0) {
953 l->l_stat = LSONPROC;
954 l->l_slptime = 0;
955 lwp_unlock(l);
956 return;
957 }
958
959 /*
960 * Look for a CPU to run.
961 * Set the LWP runnable.
962 */
963 ci = sched_takecpu(l);
964 l->l_cpu = ci;
965 spc_lock(ci);
966 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
967 sched_setrunnable(l);
968 l->l_stat = LSRUN;
969 l->l_slptime = 0;
970
971 /*
972 * If thread is swapped out - wake the swapper to bring it back in.
973 * Otherwise, enter it into a run queue.
974 */
975 if (l->l_flag & LW_INMEM) {
976 sched_enqueue(l, false);
977 resched_cpu(l);
978 lwp_unlock(l);
979 } else {
980 lwp_unlock(l);
981 uvm_kick_scheduler();
982 }
983 }
984
985 /*
986 * suspendsched:
987 *
988 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
989 */
990 void
991 suspendsched(void)
992 {
993 CPU_INFO_ITERATOR cii;
994 struct cpu_info *ci;
995 struct lwp *l;
996 struct proc *p;
997
998 /*
999 * We do this by process in order not to violate the locking rules.
1000 */
1001 mutex_enter(proc_lock);
1002 PROCLIST_FOREACH(p, &allproc) {
1003 if ((p->p_flag & PK_MARKER) != 0)
1004 continue;
1005
1006 mutex_enter(p->p_lock);
1007 if ((p->p_flag & PK_SYSTEM) != 0) {
1008 mutex_exit(p->p_lock);
1009 continue;
1010 }
1011
1012 p->p_stat = SSTOP;
1013
1014 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1015 if (l == curlwp)
1016 continue;
1017
1018 lwp_lock(l);
1019
1020 /*
1021 * Set L_WREBOOT so that the LWP will suspend itself
1022 * when it tries to return to user mode. We want to
1023 * try and get to get as many LWPs as possible to
1024 * the user / kernel boundary, so that they will
1025 * release any locks that they hold.
1026 */
1027 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1028
1029 if (l->l_stat == LSSLEEP &&
1030 (l->l_flag & LW_SINTR) != 0) {
1031 /* setrunnable() will release the lock. */
1032 setrunnable(l);
1033 continue;
1034 }
1035
1036 lwp_unlock(l);
1037 }
1038
1039 mutex_exit(p->p_lock);
1040 }
1041 mutex_exit(proc_lock);
1042
1043 /*
1044 * Kick all CPUs to make them preempt any LWPs running in user mode.
1045 * They'll trap into the kernel and suspend themselves in userret().
1046 */
1047 for (CPU_INFO_FOREACH(cii, ci)) {
1048 spc_lock(ci);
1049 cpu_need_resched(ci, RESCHED_IMMED);
1050 spc_unlock(ci);
1051 }
1052 }
1053
1054 /*
1055 * sched_unsleep:
1056 *
1057 * The is called when the LWP has not been awoken normally but instead
1058 * interrupted: for example, if the sleep timed out. Because of this,
1059 * it's not a valid action for running or idle LWPs.
1060 */
1061 static u_int
1062 sched_unsleep(struct lwp *l, bool cleanup)
1063 {
1064
1065 lwp_unlock(l);
1066 panic("sched_unsleep");
1067 }
1068
1069 void
1070 resched_cpu(struct lwp *l)
1071 {
1072 struct cpu_info *ci;
1073
1074 /*
1075 * XXXSMP
1076 * Since l->l_cpu persists across a context switch,
1077 * this gives us *very weak* processor affinity, in
1078 * that we notify the CPU on which the process last
1079 * ran that it should try to switch.
1080 *
1081 * This does not guarantee that the process will run on
1082 * that processor next, because another processor might
1083 * grab it the next time it performs a context switch.
1084 *
1085 * This also does not handle the case where its last
1086 * CPU is running a higher-priority process, but every
1087 * other CPU is running a lower-priority process. There
1088 * are ways to handle this situation, but they're not
1089 * currently very pretty, and we also need to weigh the
1090 * cost of moving a process from one CPU to another.
1091 */
1092 ci = l->l_cpu;
1093 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1094 cpu_need_resched(ci, 0);
1095 }
1096
1097 static void
1098 sched_changepri(struct lwp *l, pri_t pri)
1099 {
1100
1101 KASSERT(lwp_locked(l, NULL));
1102
1103 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1104 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1105 sched_dequeue(l);
1106 l->l_priority = pri;
1107 sched_enqueue(l, false);
1108 } else {
1109 l->l_priority = pri;
1110 }
1111 resched_cpu(l);
1112 }
1113
1114 static void
1115 sched_lendpri(struct lwp *l, pri_t pri)
1116 {
1117
1118 KASSERT(lwp_locked(l, NULL));
1119
1120 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1121 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1122 sched_dequeue(l);
1123 l->l_inheritedprio = pri;
1124 sched_enqueue(l, false);
1125 } else {
1126 l->l_inheritedprio = pri;
1127 }
1128 resched_cpu(l);
1129 }
1130
1131 struct lwp *
1132 syncobj_noowner(wchan_t wchan)
1133 {
1134
1135 return NULL;
1136 }
1137
1138 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
1139 fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
1140
1141 /*
1142 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
1143 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
1144 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
1145 *
1146 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
1147 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
1148 *
1149 * If you dont want to bother with the faster/more-accurate formula, you
1150 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
1151 * (more general) method of calculating the %age of CPU used by a process.
1152 */
1153 #define CCPU_SHIFT (FSHIFT + 1)
1154
1155 /*
1156 * sched_pstats:
1157 *
1158 * Update process statistics and check CPU resource allocation.
1159 * Call scheduler-specific hook to eventually adjust process/LWP
1160 * priorities.
1161 */
1162 /* ARGSUSED */
1163 void
1164 sched_pstats(void *arg)
1165 {
1166 struct rlimit *rlim;
1167 struct lwp *l;
1168 struct proc *p;
1169 int sig, clkhz;
1170 long runtm;
1171
1172 sched_pstats_ticks++;
1173
1174 mutex_enter(proc_lock);
1175 PROCLIST_FOREACH(p, &allproc) {
1176 if ((p->p_flag & PK_MARKER) != 0)
1177 continue;
1178
1179 /*
1180 * Increment time in/out of memory and sleep time (if
1181 * sleeping). We ignore overflow; with 16-bit int's
1182 * (remember them?) overflow takes 45 days.
1183 */
1184 mutex_enter(p->p_lock);
1185 mutex_spin_enter(&p->p_stmutex);
1186 runtm = p->p_rtime.sec;
1187 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1188 if ((l->l_flag & LW_IDLE) != 0)
1189 continue;
1190 lwp_lock(l);
1191 runtm += l->l_rtime.sec;
1192 l->l_swtime++;
1193 sched_lwp_stats(l);
1194 lwp_unlock(l);
1195
1196 /*
1197 * p_pctcpu is only for ps.
1198 */
1199 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1200 if (l->l_slptime < 1) {
1201 clkhz = stathz != 0 ? stathz : hz;
1202 #if (FSHIFT >= CCPU_SHIFT)
1203 l->l_pctcpu += (clkhz == 100) ?
1204 ((fixpt_t)l->l_cpticks) <<
1205 (FSHIFT - CCPU_SHIFT) :
1206 100 * (((fixpt_t) p->p_cpticks)
1207 << (FSHIFT - CCPU_SHIFT)) / clkhz;
1208 #else
1209 l->l_pctcpu += ((FSCALE - ccpu) *
1210 (l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
1211 #endif
1212 l->l_cpticks = 0;
1213 }
1214 }
1215 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1216 mutex_spin_exit(&p->p_stmutex);
1217
1218 /*
1219 * Check if the process exceeds its CPU resource allocation.
1220 * If over max, kill it.
1221 */
1222 rlim = &p->p_rlimit[RLIMIT_CPU];
1223 sig = 0;
1224 if (runtm >= rlim->rlim_cur) {
1225 if (runtm >= rlim->rlim_max)
1226 sig = SIGKILL;
1227 else {
1228 sig = SIGXCPU;
1229 if (rlim->rlim_cur < rlim->rlim_max)
1230 rlim->rlim_cur += 5;
1231 }
1232 }
1233 mutex_exit(p->p_lock);
1234 if (sig)
1235 psignal(p, sig);
1236 }
1237 mutex_exit(proc_lock);
1238 uvm_meter();
1239 cv_wakeup(&lbolt);
1240 callout_schedule(&sched_pstats_ch, hz);
1241 }
1242