kern_synch.c revision 1.251 1 /* $NetBSD: kern_synch.c,v 1.251 2008/07/25 00:48:59 uwe Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
10 * Daniel Sieger.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*-
35 * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.251 2008/07/25 00:48:59 uwe Exp $");
72
73 #include "opt_kstack.h"
74 #include "opt_perfctrs.h"
75
76 #define __MUTEX_PRIVATE
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/kernel.h>
82 #if defined(PERFCTRS)
83 #include <sys/pmc.h>
84 #endif
85 #include <sys/cpu.h>
86 #include <sys/resourcevar.h>
87 #include <sys/sched.h>
88 #include <sys/syscall_stats.h>
89 #include <sys/sleepq.h>
90 #include <sys/lockdebug.h>
91 #include <sys/evcnt.h>
92 #include <sys/intr.h>
93 #include <sys/lwpctl.h>
94 #include <sys/atomic.h>
95 #include <sys/simplelock.h>
96
97 #include <uvm/uvm_extern.h>
98
99 #include <dev/lockstat.h>
100
101 static u_int sched_unsleep(struct lwp *, bool);
102 static void sched_changepri(struct lwp *, pri_t);
103 static void sched_lendpri(struct lwp *, pri_t);
104 static void resched_cpu(struct lwp *);
105
106 syncobj_t sleep_syncobj = {
107 SOBJ_SLEEPQ_SORTED,
108 sleepq_unsleep,
109 sleepq_changepri,
110 sleepq_lendpri,
111 syncobj_noowner,
112 };
113
114 syncobj_t sched_syncobj = {
115 SOBJ_SLEEPQ_SORTED,
116 sched_unsleep,
117 sched_changepri,
118 sched_lendpri,
119 syncobj_noowner,
120 };
121
122 callout_t sched_pstats_ch;
123 unsigned sched_pstats_ticks;
124 kcondvar_t lbolt; /* once a second sleep address */
125
126 /* Preemption event counters */
127 static struct evcnt kpreempt_ev_crit;
128 static struct evcnt kpreempt_ev_klock;
129 static struct evcnt kpreempt_ev_ipl;
130 static struct evcnt kpreempt_ev_immed;
131
132 /*
133 * During autoconfiguration or after a panic, a sleep will simply lower the
134 * priority briefly to allow interrupts, then return. The priority to be
135 * used (safepri) is machine-dependent, thus this value is initialized and
136 * maintained in the machine-dependent layers. This priority will typically
137 * be 0, or the lowest priority that is safe for use on the interrupt stack;
138 * it can be made higher to block network software interrupts after panics.
139 */
140 int safepri;
141
142 void
143 sched_init(void)
144 {
145
146 cv_init(&lbolt, "lbolt");
147 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
148 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
149
150 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
151 "kpreempt", "defer: critical section");
152 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
153 "kpreempt", "defer: kernel_lock");
154 evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
155 "kpreempt", "defer: IPL");
156 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
157 "kpreempt", "immediate");
158
159 sched_pstats(NULL);
160 }
161
162 /*
163 * OBSOLETE INTERFACE
164 *
165 * General sleep call. Suspends the current process until a wakeup is
166 * performed on the specified identifier. The process will then be made
167 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
168 * means no timeout). If pri includes PCATCH flag, signals are checked
169 * before and after sleeping, else signals are not checked. Returns 0 if
170 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
171 * signal needs to be delivered, ERESTART is returned if the current system
172 * call should be restarted if possible, and EINTR is returned if the system
173 * call should be interrupted by the signal (return EINTR).
174 *
175 * The interlock is held until we are on a sleep queue. The interlock will
176 * be locked before returning back to the caller unless the PNORELOCK flag
177 * is specified, in which case the interlock will always be unlocked upon
178 * return.
179 */
180 int
181 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
182 volatile struct simplelock *interlock)
183 {
184 struct lwp *l = curlwp;
185 sleepq_t *sq;
186 kmutex_t *mp;
187 int error;
188
189 KASSERT((l->l_pflag & LP_INTR) == 0);
190
191 if (sleepq_dontsleep(l)) {
192 (void)sleepq_abort(NULL, 0);
193 if ((priority & PNORELOCK) != 0)
194 simple_unlock(interlock);
195 return 0;
196 }
197
198 l->l_kpriority = true;
199 sq = sleeptab_lookup(&sleeptab, ident, &mp);
200 sleepq_enter(sq, l, mp);
201 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
202
203 if (interlock != NULL) {
204 KASSERT(simple_lock_held(interlock));
205 simple_unlock(interlock);
206 }
207
208 error = sleepq_block(timo, priority & PCATCH);
209
210 if (interlock != NULL && (priority & PNORELOCK) == 0)
211 simple_lock(interlock);
212
213 return error;
214 }
215
216 int
217 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
218 kmutex_t *mtx)
219 {
220 struct lwp *l = curlwp;
221 sleepq_t *sq;
222 kmutex_t *mp;
223 int error;
224
225 KASSERT((l->l_pflag & LP_INTR) == 0);
226
227 if (sleepq_dontsleep(l)) {
228 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
229 return 0;
230 }
231
232 l->l_kpriority = true;
233 sq = sleeptab_lookup(&sleeptab, ident, &mp);
234 sleepq_enter(sq, l, mp);
235 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
236 mutex_exit(mtx);
237 error = sleepq_block(timo, priority & PCATCH);
238
239 if ((priority & PNORELOCK) == 0)
240 mutex_enter(mtx);
241
242 return error;
243 }
244
245 /*
246 * General sleep call for situations where a wake-up is not expected.
247 */
248 int
249 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
250 {
251 struct lwp *l = curlwp;
252 kmutex_t *mp;
253 sleepq_t *sq;
254 int error;
255
256 if (sleepq_dontsleep(l))
257 return sleepq_abort(NULL, 0);
258
259 if (mtx != NULL)
260 mutex_exit(mtx);
261 l->l_kpriority = true;
262 sq = sleeptab_lookup(&sleeptab, l, &mp);
263 sleepq_enter(sq, l, mp);
264 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
265 error = sleepq_block(timo, intr);
266 if (mtx != NULL)
267 mutex_enter(mtx);
268
269 return error;
270 }
271
272 /*
273 * OBSOLETE INTERFACE
274 *
275 * Make all processes sleeping on the specified identifier runnable.
276 */
277 void
278 wakeup(wchan_t ident)
279 {
280 sleepq_t *sq;
281 kmutex_t *mp;
282
283 if (cold)
284 return;
285
286 sq = sleeptab_lookup(&sleeptab, ident, &mp);
287 sleepq_wake(sq, ident, (u_int)-1, mp);
288 }
289
290 /*
291 * OBSOLETE INTERFACE
292 *
293 * Make the highest priority process first in line on the specified
294 * identifier runnable.
295 */
296 void
297 wakeup_one(wchan_t ident)
298 {
299 sleepq_t *sq;
300 kmutex_t *mp;
301
302 if (cold)
303 return;
304
305 sq = sleeptab_lookup(&sleeptab, ident, &mp);
306 sleepq_wake(sq, ident, 1, mp);
307 }
308
309
310 /*
311 * General yield call. Puts the current process back on its run queue and
312 * performs a voluntary context switch. Should only be called when the
313 * current process explicitly requests it (eg sched_yield(2)).
314 */
315 void
316 yield(void)
317 {
318 struct lwp *l = curlwp;
319
320 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
321 lwp_lock(l);
322 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
323 KASSERT(l->l_stat == LSONPROC);
324 l->l_kpriority = false;
325 (void)mi_switch(l);
326 KERNEL_LOCK(l->l_biglocks, l);
327 }
328
329 /*
330 * General preemption call. Puts the current process back on its run queue
331 * and performs an involuntary context switch.
332 */
333 void
334 preempt(void)
335 {
336 struct lwp *l = curlwp;
337
338 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
339 lwp_lock(l);
340 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
341 KASSERT(l->l_stat == LSONPROC);
342 l->l_kpriority = false;
343 l->l_nivcsw++;
344 (void)mi_switch(l);
345 KERNEL_LOCK(l->l_biglocks, l);
346 }
347
348 /*
349 * Handle a request made by another agent to preempt the current LWP
350 * in-kernel. Usually called when l_dopreempt may be non-zero.
351 *
352 * Character addresses for lockstat only.
353 */
354 static char in_critical_section;
355 static char kernel_lock_held;
356 static char spl_raised;
357 static char is_softint;
358
359 bool
360 kpreempt(uintptr_t where)
361 {
362 uintptr_t failed;
363 lwp_t *l;
364 int s, dop;
365
366 l = curlwp;
367 failed = 0;
368 while ((dop = l->l_dopreempt) != 0) {
369 if (l->l_stat != LSONPROC) {
370 /*
371 * About to block (or die), let it happen.
372 * Doesn't really count as "preemption has
373 * been blocked", since we're going to
374 * context switch.
375 */
376 l->l_dopreempt = 0;
377 return true;
378 }
379 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
380 /* Can't preempt idle loop, don't count as failure. */
381 l->l_dopreempt = 0;
382 return true;
383 }
384 if (__predict_false(l->l_nopreempt != 0)) {
385 /* LWP holds preemption disabled, explicitly. */
386 if ((dop & DOPREEMPT_COUNTED) == 0) {
387 kpreempt_ev_crit.ev_count++;
388 }
389 failed = (uintptr_t)&in_critical_section;
390 break;
391 }
392 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
393 /* Can't preempt soft interrupts yet. */
394 l->l_dopreempt = 0;
395 failed = (uintptr_t)&is_softint;
396 break;
397 }
398 s = splsched();
399 if (__predict_false(l->l_blcnt != 0 ||
400 curcpu()->ci_biglock_wanted != NULL)) {
401 /* Hold or want kernel_lock, code is not MT safe. */
402 splx(s);
403 if ((dop & DOPREEMPT_COUNTED) == 0) {
404 kpreempt_ev_klock.ev_count++;
405 }
406 failed = (uintptr_t)&kernel_lock_held;
407 break;
408 }
409 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
410 /*
411 * It may be that the IPL is too high.
412 * kpreempt_enter() can schedule an
413 * interrupt to retry later.
414 */
415 splx(s);
416 if ((dop & DOPREEMPT_COUNTED) == 0) {
417 kpreempt_ev_ipl.ev_count++;
418 }
419 failed = (uintptr_t)&spl_raised;
420 break;
421 }
422 /* Do it! */
423 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
424 kpreempt_ev_immed.ev_count++;
425 }
426 lwp_lock(l);
427 mi_switch(l);
428 l->l_nopreempt++;
429 splx(s);
430
431 /* Take care of any MD cleanup. */
432 cpu_kpreempt_exit(where);
433 l->l_nopreempt--;
434 }
435
436 /* Record preemption failure for reporting via lockstat. */
437 if (__predict_false(failed)) {
438 int lsflag = 0;
439 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
440 LOCKSTAT_ENTER(lsflag);
441 /* Might recurse, make it atomic. */
442 if (__predict_false(lsflag)) {
443 if (where == 0) {
444 where = (uintptr_t)__builtin_return_address(0);
445 }
446 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
447 NULL, (void *)where) == NULL) {
448 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
449 l->l_pfaillock = failed;
450 }
451 }
452 LOCKSTAT_EXIT(lsflag);
453 }
454
455 return failed;
456 }
457
458 /*
459 * Return true if preemption is explicitly disabled.
460 */
461 bool
462 kpreempt_disabled(void)
463 {
464 lwp_t *l;
465
466 l = curlwp;
467
468 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
469 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
470 }
471
472 /*
473 * Disable kernel preemption.
474 */
475 void
476 kpreempt_disable(void)
477 {
478
479 KPREEMPT_DISABLE(curlwp);
480 }
481
482 /*
483 * Reenable kernel preemption.
484 */
485 void
486 kpreempt_enable(void)
487 {
488
489 KPREEMPT_ENABLE(curlwp);
490 }
491
492 /*
493 * Compute the amount of time during which the current lwp was running.
494 *
495 * - update l_rtime unless it's an idle lwp.
496 */
497
498 void
499 updatertime(lwp_t *l, const struct bintime *now)
500 {
501
502 if ((l->l_flag & LW_IDLE) != 0)
503 return;
504
505 /* rtime += now - stime */
506 bintime_add(&l->l_rtime, now);
507 bintime_sub(&l->l_rtime, &l->l_stime);
508 }
509
510 /*
511 * Select next LWP from the current CPU to run..
512 */
513 static inline lwp_t *
514 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
515 {
516 lwp_t *newl;
517
518 /*
519 * Let sched_nextlwp() select the LWP to run the CPU next.
520 * If no LWP is runnable, select the idle LWP.
521 *
522 * Note that spc_lwplock might not necessary be held, and
523 * new thread would be unlocked after setting the LWP-lock.
524 */
525 newl = sched_nextlwp();
526 if (newl != NULL) {
527 sched_dequeue(newl);
528 KASSERT(lwp_locked(newl, spc->spc_mutex));
529 newl->l_stat = LSONPROC;
530 newl->l_cpu = ci;
531 newl->l_pflag |= LP_RUNNING;
532 lwp_setlock(newl, spc->spc_lwplock);
533 } else {
534 newl = ci->ci_data.cpu_idlelwp;
535 newl->l_stat = LSONPROC;
536 newl->l_pflag |= LP_RUNNING;
537 }
538
539 /*
540 * Only clear want_resched if there are no pending (slow)
541 * software interrupts.
542 */
543 ci->ci_want_resched = ci->ci_data.cpu_softints;
544 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
545 spc->spc_curpriority = lwp_eprio(newl);
546
547 return newl;
548 }
549
550 /*
551 * The machine independent parts of context switch.
552 *
553 * Returns 1 if another LWP was actually run.
554 */
555 int
556 mi_switch(lwp_t *l)
557 {
558 struct cpu_info *ci;
559 struct schedstate_percpu *spc;
560 struct lwp *newl;
561 int retval, oldspl;
562 struct bintime bt;
563 bool returning;
564
565 KASSERT(lwp_locked(l, NULL));
566 KASSERT(kpreempt_disabled());
567 LOCKDEBUG_BARRIER(l->l_mutex, 1);
568
569 #ifdef KSTACK_CHECK_MAGIC
570 kstack_check_magic(l);
571 #endif
572
573 binuptime(&bt);
574
575 KASSERT(l->l_cpu == curcpu());
576 ci = l->l_cpu;
577 spc = &ci->ci_schedstate;
578 returning = false;
579 newl = NULL;
580
581 /*
582 * If we have been asked to switch to a specific LWP, then there
583 * is no need to inspect the run queues. If a soft interrupt is
584 * blocking, then return to the interrupted thread without adjusting
585 * VM context or its start time: neither have been changed in order
586 * to take the interrupt.
587 */
588 if (l->l_switchto != NULL) {
589 if ((l->l_pflag & LP_INTR) != 0) {
590 returning = true;
591 softint_block(l);
592 if ((l->l_pflag & LP_TIMEINTR) != 0)
593 updatertime(l, &bt);
594 }
595 newl = l->l_switchto;
596 l->l_switchto = NULL;
597 }
598 #ifndef __HAVE_FAST_SOFTINTS
599 else if (ci->ci_data.cpu_softints != 0) {
600 /* There are pending soft interrupts, so pick one. */
601 newl = softint_picklwp();
602 newl->l_stat = LSONPROC;
603 newl->l_pflag |= LP_RUNNING;
604 }
605 #endif /* !__HAVE_FAST_SOFTINTS */
606
607 /* Count time spent in current system call */
608 if (!returning) {
609 SYSCALL_TIME_SLEEP(l);
610
611 /*
612 * XXXSMP If we are using h/w performance counters,
613 * save context.
614 */
615 #if PERFCTRS
616 if (PMC_ENABLED(l->l_proc)) {
617 pmc_save_context(l->l_proc);
618 }
619 #endif
620 updatertime(l, &bt);
621 }
622
623 /* Lock the runqueue */
624 KASSERT(l->l_stat != LSRUN);
625 mutex_spin_enter(spc->spc_mutex);
626
627 /*
628 * If on the CPU and we have gotten this far, then we must yield.
629 */
630 if (l->l_stat == LSONPROC && l != newl) {
631 KASSERT(lwp_locked(l, spc->spc_lwplock));
632 if ((l->l_flag & LW_IDLE) == 0) {
633 l->l_stat = LSRUN;
634 lwp_setlock(l, spc->spc_mutex);
635 sched_enqueue(l, true);
636 /* Handle migration case */
637 KASSERT(spc->spc_migrating == NULL);
638 if (l->l_target_cpu != NULL) {
639 spc->spc_migrating = l;
640 }
641 } else
642 l->l_stat = LSIDL;
643 }
644
645 /* Pick new LWP to run. */
646 if (newl == NULL) {
647 newl = nextlwp(ci, spc);
648 }
649
650 /* Items that must be updated with the CPU locked. */
651 if (!returning) {
652 /* Update the new LWP's start time. */
653 newl->l_stime = bt;
654
655 /*
656 * ci_curlwp changes when a fast soft interrupt occurs.
657 * We use cpu_onproc to keep track of which kernel or
658 * user thread is running 'underneath' the software
659 * interrupt. This is important for time accounting,
660 * itimers and forcing user threads to preempt (aston).
661 */
662 ci->ci_data.cpu_onproc = newl;
663 }
664
665 /*
666 * Preemption related tasks. Must be done with the current
667 * CPU locked.
668 */
669 cpu_did_resched(l);
670 l->l_dopreempt = 0;
671 if (__predict_false(l->l_pfailaddr != 0)) {
672 LOCKSTAT_FLAG(lsflag);
673 LOCKSTAT_ENTER(lsflag);
674 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
675 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
676 1, l->l_pfailtime, l->l_pfailaddr);
677 LOCKSTAT_EXIT(lsflag);
678 l->l_pfailtime = 0;
679 l->l_pfaillock = 0;
680 l->l_pfailaddr = 0;
681 }
682
683 if (l != newl) {
684 struct lwp *prevlwp;
685
686 /* Release all locks, but leave the current LWP locked */
687 if (l->l_mutex == spc->spc_mutex) {
688 /*
689 * Drop spc_lwplock, if the current LWP has been moved
690 * to the run queue (it is now locked by spc_mutex).
691 */
692 mutex_spin_exit(spc->spc_lwplock);
693 } else {
694 /*
695 * Otherwise, drop the spc_mutex, we are done with the
696 * run queues.
697 */
698 mutex_spin_exit(spc->spc_mutex);
699 }
700
701 /*
702 * Mark that context switch is going to be perfomed
703 * for this LWP, to protect it from being switched
704 * to on another CPU.
705 */
706 KASSERT(l->l_ctxswtch == 0);
707 l->l_ctxswtch = 1;
708 l->l_ncsw++;
709 l->l_pflag &= ~LP_RUNNING;
710
711 /*
712 * Increase the count of spin-mutexes before the release
713 * of the last lock - we must remain at IPL_SCHED during
714 * the context switch.
715 */
716 oldspl = MUTEX_SPIN_OLDSPL(ci);
717 ci->ci_mtx_count--;
718 lwp_unlock(l);
719
720 /* Count the context switch on this CPU. */
721 ci->ci_data.cpu_nswtch++;
722
723 /* Update status for lwpctl, if present. */
724 if (l->l_lwpctl != NULL)
725 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
726
727 /*
728 * Save old VM context, unless a soft interrupt
729 * handler is blocking.
730 */
731 if (!returning)
732 pmap_deactivate(l);
733
734 /*
735 * We may need to spin-wait for if 'newl' is still
736 * context switching on another CPU.
737 */
738 if (newl->l_ctxswtch != 0) {
739 u_int count;
740 count = SPINLOCK_BACKOFF_MIN;
741 while (newl->l_ctxswtch)
742 SPINLOCK_BACKOFF(count);
743 }
744
745 /* Switch to the new LWP.. */
746 prevlwp = cpu_switchto(l, newl, returning);
747 ci = curcpu();
748
749 /*
750 * Switched away - we have new curlwp.
751 * Restore VM context and IPL.
752 */
753 pmap_activate(l);
754 if (prevlwp != NULL) {
755 /* Normalize the count of the spin-mutexes */
756 ci->ci_mtx_count++;
757 /* Unmark the state of context switch */
758 membar_exit();
759 prevlwp->l_ctxswtch = 0;
760 }
761
762 /* Update status for lwpctl, if present. */
763 if (l->l_lwpctl != NULL) {
764 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
765 l->l_lwpctl->lc_pctr++;
766 }
767
768 KASSERT(l->l_cpu == ci);
769 splx(oldspl);
770 retval = 1;
771 } else {
772 /* Nothing to do - just unlock and return. */
773 mutex_spin_exit(spc->spc_mutex);
774 lwp_unlock(l);
775 retval = 0;
776 }
777
778 KASSERT(l == curlwp);
779 KASSERT(l->l_stat == LSONPROC);
780
781 /*
782 * XXXSMP If we are using h/w performance counters, restore context.
783 * XXXSMP preemption problem.
784 */
785 #if PERFCTRS
786 if (PMC_ENABLED(l->l_proc)) {
787 pmc_restore_context(l->l_proc);
788 }
789 #endif
790 SYSCALL_TIME_WAKEUP(l);
791 LOCKDEBUG_BARRIER(NULL, 1);
792
793 return retval;
794 }
795
796 /*
797 * The machine independent parts of context switch to oblivion.
798 * Does not return. Call with the LWP unlocked.
799 */
800 void
801 lwp_exit_switchaway(lwp_t *l)
802 {
803 struct cpu_info *ci;
804 struct lwp *newl;
805 struct bintime bt;
806
807 ci = l->l_cpu;
808
809 KASSERT(kpreempt_disabled());
810 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
811 KASSERT(ci == curcpu());
812 LOCKDEBUG_BARRIER(NULL, 0);
813
814 #ifdef KSTACK_CHECK_MAGIC
815 kstack_check_magic(l);
816 #endif
817
818 /* Count time spent in current system call */
819 SYSCALL_TIME_SLEEP(l);
820 binuptime(&bt);
821 updatertime(l, &bt);
822
823 /* Must stay at IPL_SCHED even after releasing run queue lock. */
824 (void)splsched();
825
826 /*
827 * Let sched_nextlwp() select the LWP to run the CPU next.
828 * If no LWP is runnable, select the idle LWP.
829 *
830 * Note that spc_lwplock might not necessary be held, and
831 * new thread would be unlocked after setting the LWP-lock.
832 */
833 spc_lock(ci);
834 #ifndef __HAVE_FAST_SOFTINTS
835 if (ci->ci_data.cpu_softints != 0) {
836 /* There are pending soft interrupts, so pick one. */
837 newl = softint_picklwp();
838 newl->l_stat = LSONPROC;
839 newl->l_pflag |= LP_RUNNING;
840 } else
841 #endif /* !__HAVE_FAST_SOFTINTS */
842 {
843 newl = nextlwp(ci, &ci->ci_schedstate);
844 }
845
846 /* Update the new LWP's start time. */
847 newl->l_stime = bt;
848 l->l_pflag &= ~LP_RUNNING;
849
850 /*
851 * ci_curlwp changes when a fast soft interrupt occurs.
852 * We use cpu_onproc to keep track of which kernel or
853 * user thread is running 'underneath' the software
854 * interrupt. This is important for time accounting,
855 * itimers and forcing user threads to preempt (aston).
856 */
857 ci->ci_data.cpu_onproc = newl;
858
859 /*
860 * Preemption related tasks. Must be done with the current
861 * CPU locked.
862 */
863 cpu_did_resched(l);
864
865 /* Unlock the run queue. */
866 spc_unlock(ci);
867
868 /* Count the context switch on this CPU. */
869 ci->ci_data.cpu_nswtch++;
870
871 /* Update status for lwpctl, if present. */
872 if (l->l_lwpctl != NULL)
873 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
874
875 /*
876 * We may need to spin-wait for if 'newl' is still
877 * context switching on another CPU.
878 */
879 if (newl->l_ctxswtch != 0) {
880 u_int count;
881 count = SPINLOCK_BACKOFF_MIN;
882 while (newl->l_ctxswtch)
883 SPINLOCK_BACKOFF(count);
884 }
885
886 /* Switch to the new LWP.. */
887 (void)cpu_switchto(NULL, newl, false);
888
889 for (;;) continue; /* XXX: convince gcc about "noreturn" */
890 /* NOTREACHED */
891 }
892
893 /*
894 * Change process state to be runnable, placing it on the run queue if it is
895 * in memory, and awakening the swapper if it isn't in memory.
896 *
897 * Call with the process and LWP locked. Will return with the LWP unlocked.
898 */
899 void
900 setrunnable(struct lwp *l)
901 {
902 struct proc *p = l->l_proc;
903 struct cpu_info *ci;
904 sigset_t *ss;
905
906 KASSERT((l->l_flag & LW_IDLE) == 0);
907 KASSERT(mutex_owned(p->p_lock));
908 KASSERT(lwp_locked(l, NULL));
909 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
910
911 switch (l->l_stat) {
912 case LSSTOP:
913 /*
914 * If we're being traced (possibly because someone attached us
915 * while we were stopped), check for a signal from the debugger.
916 */
917 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
918 if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
919 ss = &l->l_sigpend.sp_set;
920 else
921 ss = &p->p_sigpend.sp_set;
922 sigaddset(ss, p->p_xstat);
923 signotify(l);
924 }
925 p->p_nrlwps++;
926 break;
927 case LSSUSPENDED:
928 l->l_flag &= ~LW_WSUSPEND;
929 p->p_nrlwps++;
930 cv_broadcast(&p->p_lwpcv);
931 break;
932 case LSSLEEP:
933 KASSERT(l->l_wchan != NULL);
934 break;
935 default:
936 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
937 }
938
939 /*
940 * If the LWP was sleeping interruptably, then it's OK to start it
941 * again. If not, mark it as still sleeping.
942 */
943 if (l->l_wchan != NULL) {
944 l->l_stat = LSSLEEP;
945 /* lwp_unsleep() will release the lock. */
946 lwp_unsleep(l, true);
947 return;
948 }
949
950 /*
951 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
952 * about to call mi_switch(), in which case it will yield.
953 */
954 if ((l->l_pflag & LP_RUNNING) != 0) {
955 l->l_stat = LSONPROC;
956 l->l_slptime = 0;
957 lwp_unlock(l);
958 return;
959 }
960
961 /*
962 * Look for a CPU to run.
963 * Set the LWP runnable.
964 */
965 ci = sched_takecpu(l);
966 l->l_cpu = ci;
967 spc_lock(ci);
968 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
969 sched_setrunnable(l);
970 l->l_stat = LSRUN;
971 l->l_slptime = 0;
972
973 /*
974 * If thread is swapped out - wake the swapper to bring it back in.
975 * Otherwise, enter it into a run queue.
976 */
977 if (l->l_flag & LW_INMEM) {
978 sched_enqueue(l, false);
979 resched_cpu(l);
980 lwp_unlock(l);
981 } else {
982 lwp_unlock(l);
983 uvm_kick_scheduler();
984 }
985 }
986
987 /*
988 * suspendsched:
989 *
990 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
991 */
992 void
993 suspendsched(void)
994 {
995 CPU_INFO_ITERATOR cii;
996 struct cpu_info *ci;
997 struct lwp *l;
998 struct proc *p;
999
1000 /*
1001 * We do this by process in order not to violate the locking rules.
1002 */
1003 mutex_enter(proc_lock);
1004 PROCLIST_FOREACH(p, &allproc) {
1005 if ((p->p_flag & PK_MARKER) != 0)
1006 continue;
1007
1008 mutex_enter(p->p_lock);
1009 if ((p->p_flag & PK_SYSTEM) != 0) {
1010 mutex_exit(p->p_lock);
1011 continue;
1012 }
1013
1014 p->p_stat = SSTOP;
1015
1016 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1017 if (l == curlwp)
1018 continue;
1019
1020 lwp_lock(l);
1021
1022 /*
1023 * Set L_WREBOOT so that the LWP will suspend itself
1024 * when it tries to return to user mode. We want to
1025 * try and get to get as many LWPs as possible to
1026 * the user / kernel boundary, so that they will
1027 * release any locks that they hold.
1028 */
1029 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1030
1031 if (l->l_stat == LSSLEEP &&
1032 (l->l_flag & LW_SINTR) != 0) {
1033 /* setrunnable() will release the lock. */
1034 setrunnable(l);
1035 continue;
1036 }
1037
1038 lwp_unlock(l);
1039 }
1040
1041 mutex_exit(p->p_lock);
1042 }
1043 mutex_exit(proc_lock);
1044
1045 /*
1046 * Kick all CPUs to make them preempt any LWPs running in user mode.
1047 * They'll trap into the kernel and suspend themselves in userret().
1048 */
1049 for (CPU_INFO_FOREACH(cii, ci)) {
1050 spc_lock(ci);
1051 cpu_need_resched(ci, RESCHED_IMMED);
1052 spc_unlock(ci);
1053 }
1054 }
1055
1056 /*
1057 * sched_unsleep:
1058 *
1059 * The is called when the LWP has not been awoken normally but instead
1060 * interrupted: for example, if the sleep timed out. Because of this,
1061 * it's not a valid action for running or idle LWPs.
1062 */
1063 static u_int
1064 sched_unsleep(struct lwp *l, bool cleanup)
1065 {
1066
1067 lwp_unlock(l);
1068 panic("sched_unsleep");
1069 }
1070
1071 static void
1072 resched_cpu(struct lwp *l)
1073 {
1074 struct cpu_info *ci = ci = l->l_cpu;
1075
1076 KASSERT(lwp_locked(l, NULL));
1077 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1078 cpu_need_resched(ci, 0);
1079 }
1080
1081 static void
1082 sched_changepri(struct lwp *l, pri_t pri)
1083 {
1084
1085 KASSERT(lwp_locked(l, NULL));
1086
1087 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1088 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1089 sched_dequeue(l);
1090 l->l_priority = pri;
1091 sched_enqueue(l, false);
1092 } else {
1093 l->l_priority = pri;
1094 }
1095 resched_cpu(l);
1096 }
1097
1098 static void
1099 sched_lendpri(struct lwp *l, pri_t pri)
1100 {
1101
1102 KASSERT(lwp_locked(l, NULL));
1103
1104 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1105 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1106 sched_dequeue(l);
1107 l->l_inheritedprio = pri;
1108 sched_enqueue(l, false);
1109 } else {
1110 l->l_inheritedprio = pri;
1111 }
1112 resched_cpu(l);
1113 }
1114
1115 struct lwp *
1116 syncobj_noowner(wchan_t wchan)
1117 {
1118
1119 return NULL;
1120 }
1121
1122 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1123 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1124
1125 /*
1126 * sched_pstats:
1127 *
1128 * Update process statistics and check CPU resource allocation.
1129 * Call scheduler-specific hook to eventually adjust process/LWP
1130 * priorities.
1131 */
1132 /* ARGSUSED */
1133 void
1134 sched_pstats(void *arg)
1135 {
1136 const int clkhz = (stathz != 0 ? stathz : hz);
1137 struct rlimit *rlim;
1138 struct lwp *l;
1139 struct proc *p;
1140 long runtm;
1141 fixpt_t lpctcpu;
1142 u_int lcpticks;
1143 int sig;
1144
1145 sched_pstats_ticks++;
1146
1147 mutex_enter(proc_lock);
1148 PROCLIST_FOREACH(p, &allproc) {
1149 if (__predict_false((p->p_flag & PK_MARKER) != 0))
1150 continue;
1151
1152 /*
1153 * Increment time in/out of memory and sleep
1154 * time (if sleeping), ignore overflow.
1155 */
1156 mutex_enter(p->p_lock);
1157 runtm = p->p_rtime.sec;
1158 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1159 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1160 continue;
1161 lwp_lock(l);
1162 runtm += l->l_rtime.sec;
1163 l->l_swtime++;
1164 sched_lwp_stats(l);
1165 lwp_unlock(l);
1166
1167 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1168 if (l->l_slptime != 0)
1169 continue;
1170
1171 lpctcpu = l->l_pctcpu;
1172 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1173 lpctcpu += ((FSCALE - ccpu) *
1174 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1175 l->l_pctcpu = lpctcpu;
1176 }
1177 /* Calculating p_pctcpu only for ps(1) */
1178 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1179
1180 /*
1181 * Check if the process exceeds its CPU resource allocation.
1182 * If over max, kill it.
1183 */
1184 rlim = &p->p_rlimit[RLIMIT_CPU];
1185 sig = 0;
1186 if (__predict_false(runtm >= rlim->rlim_cur)) {
1187 if (runtm >= rlim->rlim_max)
1188 sig = SIGKILL;
1189 else {
1190 sig = SIGXCPU;
1191 if (rlim->rlim_cur < rlim->rlim_max)
1192 rlim->rlim_cur += 5;
1193 }
1194 }
1195 mutex_exit(p->p_lock);
1196 if (__predict_false(sig))
1197 psignal(p, sig);
1198 }
1199 mutex_exit(proc_lock);
1200 uvm_meter();
1201 cv_wakeup(&lbolt);
1202 callout_schedule(&sched_pstats_ch, hz);
1203 }
1204