Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.251
      1 /*	$NetBSD: kern_synch.c,v 1.251 2008/07/25 00:48:59 uwe Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*-
     35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.251 2008/07/25 00:48:59 uwe Exp $");
     72 
     73 #include "opt_kstack.h"
     74 #include "opt_perfctrs.h"
     75 
     76 #define	__MUTEX_PRIVATE
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/kernel.h>
     82 #if defined(PERFCTRS)
     83 #include <sys/pmc.h>
     84 #endif
     85 #include <sys/cpu.h>
     86 #include <sys/resourcevar.h>
     87 #include <sys/sched.h>
     88 #include <sys/syscall_stats.h>
     89 #include <sys/sleepq.h>
     90 #include <sys/lockdebug.h>
     91 #include <sys/evcnt.h>
     92 #include <sys/intr.h>
     93 #include <sys/lwpctl.h>
     94 #include <sys/atomic.h>
     95 #include <sys/simplelock.h>
     96 
     97 #include <uvm/uvm_extern.h>
     98 
     99 #include <dev/lockstat.h>
    100 
    101 static u_int	sched_unsleep(struct lwp *, bool);
    102 static void	sched_changepri(struct lwp *, pri_t);
    103 static void	sched_lendpri(struct lwp *, pri_t);
    104 static void	resched_cpu(struct lwp *);
    105 
    106 syncobj_t sleep_syncobj = {
    107 	SOBJ_SLEEPQ_SORTED,
    108 	sleepq_unsleep,
    109 	sleepq_changepri,
    110 	sleepq_lendpri,
    111 	syncobj_noowner,
    112 };
    113 
    114 syncobj_t sched_syncobj = {
    115 	SOBJ_SLEEPQ_SORTED,
    116 	sched_unsleep,
    117 	sched_changepri,
    118 	sched_lendpri,
    119 	syncobj_noowner,
    120 };
    121 
    122 callout_t 	sched_pstats_ch;
    123 unsigned	sched_pstats_ticks;
    124 kcondvar_t	lbolt;			/* once a second sleep address */
    125 
    126 /* Preemption event counters */
    127 static struct evcnt kpreempt_ev_crit;
    128 static struct evcnt kpreempt_ev_klock;
    129 static struct evcnt kpreempt_ev_ipl;
    130 static struct evcnt kpreempt_ev_immed;
    131 
    132 /*
    133  * During autoconfiguration or after a panic, a sleep will simply lower the
    134  * priority briefly to allow interrupts, then return.  The priority to be
    135  * used (safepri) is machine-dependent, thus this value is initialized and
    136  * maintained in the machine-dependent layers.  This priority will typically
    137  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    138  * it can be made higher to block network software interrupts after panics.
    139  */
    140 int	safepri;
    141 
    142 void
    143 sched_init(void)
    144 {
    145 
    146 	cv_init(&lbolt, "lbolt");
    147 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    148 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    149 
    150 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    151 	   "kpreempt", "defer: critical section");
    152 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    153 	   "kpreempt", "defer: kernel_lock");
    154 	evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
    155 	   "kpreempt", "defer: IPL");
    156 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    157 	   "kpreempt", "immediate");
    158 
    159 	sched_pstats(NULL);
    160 }
    161 
    162 /*
    163  * OBSOLETE INTERFACE
    164  *
    165  * General sleep call.  Suspends the current process until a wakeup is
    166  * performed on the specified identifier.  The process will then be made
    167  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    168  * means no timeout).  If pri includes PCATCH flag, signals are checked
    169  * before and after sleeping, else signals are not checked.  Returns 0 if
    170  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    171  * signal needs to be delivered, ERESTART is returned if the current system
    172  * call should be restarted if possible, and EINTR is returned if the system
    173  * call should be interrupted by the signal (return EINTR).
    174  *
    175  * The interlock is held until we are on a sleep queue. The interlock will
    176  * be locked before returning back to the caller unless the PNORELOCK flag
    177  * is specified, in which case the interlock will always be unlocked upon
    178  * return.
    179  */
    180 int
    181 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    182 	volatile struct simplelock *interlock)
    183 {
    184 	struct lwp *l = curlwp;
    185 	sleepq_t *sq;
    186 	kmutex_t *mp;
    187 	int error;
    188 
    189 	KASSERT((l->l_pflag & LP_INTR) == 0);
    190 
    191 	if (sleepq_dontsleep(l)) {
    192 		(void)sleepq_abort(NULL, 0);
    193 		if ((priority & PNORELOCK) != 0)
    194 			simple_unlock(interlock);
    195 		return 0;
    196 	}
    197 
    198 	l->l_kpriority = true;
    199 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    200 	sleepq_enter(sq, l, mp);
    201 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    202 
    203 	if (interlock != NULL) {
    204 		KASSERT(simple_lock_held(interlock));
    205 		simple_unlock(interlock);
    206 	}
    207 
    208 	error = sleepq_block(timo, priority & PCATCH);
    209 
    210 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    211 		simple_lock(interlock);
    212 
    213 	return error;
    214 }
    215 
    216 int
    217 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    218 	kmutex_t *mtx)
    219 {
    220 	struct lwp *l = curlwp;
    221 	sleepq_t *sq;
    222 	kmutex_t *mp;
    223 	int error;
    224 
    225 	KASSERT((l->l_pflag & LP_INTR) == 0);
    226 
    227 	if (sleepq_dontsleep(l)) {
    228 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    229 		return 0;
    230 	}
    231 
    232 	l->l_kpriority = true;
    233 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    234 	sleepq_enter(sq, l, mp);
    235 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    236 	mutex_exit(mtx);
    237 	error = sleepq_block(timo, priority & PCATCH);
    238 
    239 	if ((priority & PNORELOCK) == 0)
    240 		mutex_enter(mtx);
    241 
    242 	return error;
    243 }
    244 
    245 /*
    246  * General sleep call for situations where a wake-up is not expected.
    247  */
    248 int
    249 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    250 {
    251 	struct lwp *l = curlwp;
    252 	kmutex_t *mp;
    253 	sleepq_t *sq;
    254 	int error;
    255 
    256 	if (sleepq_dontsleep(l))
    257 		return sleepq_abort(NULL, 0);
    258 
    259 	if (mtx != NULL)
    260 		mutex_exit(mtx);
    261 	l->l_kpriority = true;
    262 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    263 	sleepq_enter(sq, l, mp);
    264 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    265 	error = sleepq_block(timo, intr);
    266 	if (mtx != NULL)
    267 		mutex_enter(mtx);
    268 
    269 	return error;
    270 }
    271 
    272 /*
    273  * OBSOLETE INTERFACE
    274  *
    275  * Make all processes sleeping on the specified identifier runnable.
    276  */
    277 void
    278 wakeup(wchan_t ident)
    279 {
    280 	sleepq_t *sq;
    281 	kmutex_t *mp;
    282 
    283 	if (cold)
    284 		return;
    285 
    286 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    287 	sleepq_wake(sq, ident, (u_int)-1, mp);
    288 }
    289 
    290 /*
    291  * OBSOLETE INTERFACE
    292  *
    293  * Make the highest priority process first in line on the specified
    294  * identifier runnable.
    295  */
    296 void
    297 wakeup_one(wchan_t ident)
    298 {
    299 	sleepq_t *sq;
    300 	kmutex_t *mp;
    301 
    302 	if (cold)
    303 		return;
    304 
    305 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    306 	sleepq_wake(sq, ident, 1, mp);
    307 }
    308 
    309 
    310 /*
    311  * General yield call.  Puts the current process back on its run queue and
    312  * performs a voluntary context switch.  Should only be called when the
    313  * current process explicitly requests it (eg sched_yield(2)).
    314  */
    315 void
    316 yield(void)
    317 {
    318 	struct lwp *l = curlwp;
    319 
    320 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    321 	lwp_lock(l);
    322 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    323 	KASSERT(l->l_stat == LSONPROC);
    324 	l->l_kpriority = false;
    325 	(void)mi_switch(l);
    326 	KERNEL_LOCK(l->l_biglocks, l);
    327 }
    328 
    329 /*
    330  * General preemption call.  Puts the current process back on its run queue
    331  * and performs an involuntary context switch.
    332  */
    333 void
    334 preempt(void)
    335 {
    336 	struct lwp *l = curlwp;
    337 
    338 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    339 	lwp_lock(l);
    340 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    341 	KASSERT(l->l_stat == LSONPROC);
    342 	l->l_kpriority = false;
    343 	l->l_nivcsw++;
    344 	(void)mi_switch(l);
    345 	KERNEL_LOCK(l->l_biglocks, l);
    346 }
    347 
    348 /*
    349  * Handle a request made by another agent to preempt the current LWP
    350  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    351  *
    352  * Character addresses for lockstat only.
    353  */
    354 static char	in_critical_section;
    355 static char	kernel_lock_held;
    356 static char	spl_raised;
    357 static char	is_softint;
    358 
    359 bool
    360 kpreempt(uintptr_t where)
    361 {
    362 	uintptr_t failed;
    363 	lwp_t *l;
    364 	int s, dop;
    365 
    366 	l = curlwp;
    367 	failed = 0;
    368 	while ((dop = l->l_dopreempt) != 0) {
    369 		if (l->l_stat != LSONPROC) {
    370 			/*
    371 			 * About to block (or die), let it happen.
    372 			 * Doesn't really count as "preemption has
    373 			 * been blocked", since we're going to
    374 			 * context switch.
    375 			 */
    376 			l->l_dopreempt = 0;
    377 			return true;
    378 		}
    379 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    380 			/* Can't preempt idle loop, don't count as failure. */
    381 		    	l->l_dopreempt = 0;
    382 		    	return true;
    383 		}
    384 		if (__predict_false(l->l_nopreempt != 0)) {
    385 			/* LWP holds preemption disabled, explicitly. */
    386 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    387 				kpreempt_ev_crit.ev_count++;
    388 			}
    389 			failed = (uintptr_t)&in_critical_section;
    390 			break;
    391 		}
    392 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    393 		    	/* Can't preempt soft interrupts yet. */
    394 		    	l->l_dopreempt = 0;
    395 		    	failed = (uintptr_t)&is_softint;
    396 		    	break;
    397 		}
    398 		s = splsched();
    399 		if (__predict_false(l->l_blcnt != 0 ||
    400 		    curcpu()->ci_biglock_wanted != NULL)) {
    401 			/* Hold or want kernel_lock, code is not MT safe. */
    402 			splx(s);
    403 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    404 				kpreempt_ev_klock.ev_count++;
    405 			}
    406 			failed = (uintptr_t)&kernel_lock_held;
    407 			break;
    408 		}
    409 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    410 			/*
    411 			 * It may be that the IPL is too high.
    412 			 * kpreempt_enter() can schedule an
    413 			 * interrupt to retry later.
    414 			 */
    415 			splx(s);
    416 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    417 				kpreempt_ev_ipl.ev_count++;
    418 			}
    419 			failed = (uintptr_t)&spl_raised;
    420 			break;
    421 		}
    422 		/* Do it! */
    423 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    424 			kpreempt_ev_immed.ev_count++;
    425 		}
    426 		lwp_lock(l);
    427 		mi_switch(l);
    428 		l->l_nopreempt++;
    429 		splx(s);
    430 
    431 		/* Take care of any MD cleanup. */
    432 		cpu_kpreempt_exit(where);
    433 		l->l_nopreempt--;
    434 	}
    435 
    436 	/* Record preemption failure for reporting via lockstat. */
    437 	if (__predict_false(failed)) {
    438 		int lsflag = 0;
    439 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    440 		LOCKSTAT_ENTER(lsflag);
    441 		/* Might recurse, make it atomic. */
    442 		if (__predict_false(lsflag)) {
    443 			if (where == 0) {
    444 				where = (uintptr_t)__builtin_return_address(0);
    445 			}
    446 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    447 			    NULL, (void *)where) == NULL) {
    448 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    449 				l->l_pfaillock = failed;
    450 			}
    451 		}
    452 		LOCKSTAT_EXIT(lsflag);
    453 	}
    454 
    455 	return failed;
    456 }
    457 
    458 /*
    459  * Return true if preemption is explicitly disabled.
    460  */
    461 bool
    462 kpreempt_disabled(void)
    463 {
    464 	lwp_t *l;
    465 
    466 	l = curlwp;
    467 
    468 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    469 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    470 }
    471 
    472 /*
    473  * Disable kernel preemption.
    474  */
    475 void
    476 kpreempt_disable(void)
    477 {
    478 
    479 	KPREEMPT_DISABLE(curlwp);
    480 }
    481 
    482 /*
    483  * Reenable kernel preemption.
    484  */
    485 void
    486 kpreempt_enable(void)
    487 {
    488 
    489 	KPREEMPT_ENABLE(curlwp);
    490 }
    491 
    492 /*
    493  * Compute the amount of time during which the current lwp was running.
    494  *
    495  * - update l_rtime unless it's an idle lwp.
    496  */
    497 
    498 void
    499 updatertime(lwp_t *l, const struct bintime *now)
    500 {
    501 
    502 	if ((l->l_flag & LW_IDLE) != 0)
    503 		return;
    504 
    505 	/* rtime += now - stime */
    506 	bintime_add(&l->l_rtime, now);
    507 	bintime_sub(&l->l_rtime, &l->l_stime);
    508 }
    509 
    510 /*
    511  * Select next LWP from the current CPU to run..
    512  */
    513 static inline lwp_t *
    514 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    515 {
    516 	lwp_t *newl;
    517 
    518 	/*
    519 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    520 	 * If no LWP is runnable, select the idle LWP.
    521 	 *
    522 	 * Note that spc_lwplock might not necessary be held, and
    523 	 * new thread would be unlocked after setting the LWP-lock.
    524 	 */
    525 	newl = sched_nextlwp();
    526 	if (newl != NULL) {
    527 		sched_dequeue(newl);
    528 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    529 		newl->l_stat = LSONPROC;
    530 		newl->l_cpu = ci;
    531 		newl->l_pflag |= LP_RUNNING;
    532 		lwp_setlock(newl, spc->spc_lwplock);
    533 	} else {
    534 		newl = ci->ci_data.cpu_idlelwp;
    535 		newl->l_stat = LSONPROC;
    536 		newl->l_pflag |= LP_RUNNING;
    537 	}
    538 
    539 	/*
    540 	 * Only clear want_resched if there are no pending (slow)
    541 	 * software interrupts.
    542 	 */
    543 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    544 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    545 	spc->spc_curpriority = lwp_eprio(newl);
    546 
    547 	return newl;
    548 }
    549 
    550 /*
    551  * The machine independent parts of context switch.
    552  *
    553  * Returns 1 if another LWP was actually run.
    554  */
    555 int
    556 mi_switch(lwp_t *l)
    557 {
    558 	struct cpu_info *ci;
    559 	struct schedstate_percpu *spc;
    560 	struct lwp *newl;
    561 	int retval, oldspl;
    562 	struct bintime bt;
    563 	bool returning;
    564 
    565 	KASSERT(lwp_locked(l, NULL));
    566 	KASSERT(kpreempt_disabled());
    567 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    568 
    569 #ifdef KSTACK_CHECK_MAGIC
    570 	kstack_check_magic(l);
    571 #endif
    572 
    573 	binuptime(&bt);
    574 
    575 	KASSERT(l->l_cpu == curcpu());
    576 	ci = l->l_cpu;
    577 	spc = &ci->ci_schedstate;
    578 	returning = false;
    579 	newl = NULL;
    580 
    581 	/*
    582 	 * If we have been asked to switch to a specific LWP, then there
    583 	 * is no need to inspect the run queues.  If a soft interrupt is
    584 	 * blocking, then return to the interrupted thread without adjusting
    585 	 * VM context or its start time: neither have been changed in order
    586 	 * to take the interrupt.
    587 	 */
    588 	if (l->l_switchto != NULL) {
    589 		if ((l->l_pflag & LP_INTR) != 0) {
    590 			returning = true;
    591 			softint_block(l);
    592 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    593 				updatertime(l, &bt);
    594 		}
    595 		newl = l->l_switchto;
    596 		l->l_switchto = NULL;
    597 	}
    598 #ifndef __HAVE_FAST_SOFTINTS
    599 	else if (ci->ci_data.cpu_softints != 0) {
    600 		/* There are pending soft interrupts, so pick one. */
    601 		newl = softint_picklwp();
    602 		newl->l_stat = LSONPROC;
    603 		newl->l_pflag |= LP_RUNNING;
    604 	}
    605 #endif	/* !__HAVE_FAST_SOFTINTS */
    606 
    607 	/* Count time spent in current system call */
    608 	if (!returning) {
    609 		SYSCALL_TIME_SLEEP(l);
    610 
    611 		/*
    612 		 * XXXSMP If we are using h/w performance counters,
    613 		 * save context.
    614 		 */
    615 #if PERFCTRS
    616 		if (PMC_ENABLED(l->l_proc)) {
    617 			pmc_save_context(l->l_proc);
    618 		}
    619 #endif
    620 		updatertime(l, &bt);
    621 	}
    622 
    623 	/* Lock the runqueue */
    624 	KASSERT(l->l_stat != LSRUN);
    625 	mutex_spin_enter(spc->spc_mutex);
    626 
    627 	/*
    628 	 * If on the CPU and we have gotten this far, then we must yield.
    629 	 */
    630 	if (l->l_stat == LSONPROC && l != newl) {
    631 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    632 		if ((l->l_flag & LW_IDLE) == 0) {
    633 			l->l_stat = LSRUN;
    634 			lwp_setlock(l, spc->spc_mutex);
    635 			sched_enqueue(l, true);
    636 			/* Handle migration case */
    637 			KASSERT(spc->spc_migrating == NULL);
    638 			if (l->l_target_cpu !=  NULL) {
    639 				spc->spc_migrating = l;
    640 			}
    641 		} else
    642 			l->l_stat = LSIDL;
    643 	}
    644 
    645 	/* Pick new LWP to run. */
    646 	if (newl == NULL) {
    647 		newl = nextlwp(ci, spc);
    648 	}
    649 
    650 	/* Items that must be updated with the CPU locked. */
    651 	if (!returning) {
    652 		/* Update the new LWP's start time. */
    653 		newl->l_stime = bt;
    654 
    655 		/*
    656 		 * ci_curlwp changes when a fast soft interrupt occurs.
    657 		 * We use cpu_onproc to keep track of which kernel or
    658 		 * user thread is running 'underneath' the software
    659 		 * interrupt.  This is important for time accounting,
    660 		 * itimers and forcing user threads to preempt (aston).
    661 		 */
    662 		ci->ci_data.cpu_onproc = newl;
    663 	}
    664 
    665 	/*
    666 	 * Preemption related tasks.  Must be done with the current
    667 	 * CPU locked.
    668 	 */
    669 	cpu_did_resched(l);
    670 	l->l_dopreempt = 0;
    671 	if (__predict_false(l->l_pfailaddr != 0)) {
    672 		LOCKSTAT_FLAG(lsflag);
    673 		LOCKSTAT_ENTER(lsflag);
    674 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    675 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    676 		    1, l->l_pfailtime, l->l_pfailaddr);
    677 		LOCKSTAT_EXIT(lsflag);
    678 		l->l_pfailtime = 0;
    679 		l->l_pfaillock = 0;
    680 		l->l_pfailaddr = 0;
    681 	}
    682 
    683 	if (l != newl) {
    684 		struct lwp *prevlwp;
    685 
    686 		/* Release all locks, but leave the current LWP locked */
    687 		if (l->l_mutex == spc->spc_mutex) {
    688 			/*
    689 			 * Drop spc_lwplock, if the current LWP has been moved
    690 			 * to the run queue (it is now locked by spc_mutex).
    691 			 */
    692 			mutex_spin_exit(spc->spc_lwplock);
    693 		} else {
    694 			/*
    695 			 * Otherwise, drop the spc_mutex, we are done with the
    696 			 * run queues.
    697 			 */
    698 			mutex_spin_exit(spc->spc_mutex);
    699 		}
    700 
    701 		/*
    702 		 * Mark that context switch is going to be perfomed
    703 		 * for this LWP, to protect it from being switched
    704 		 * to on another CPU.
    705 		 */
    706 		KASSERT(l->l_ctxswtch == 0);
    707 		l->l_ctxswtch = 1;
    708 		l->l_ncsw++;
    709 		l->l_pflag &= ~LP_RUNNING;
    710 
    711 		/*
    712 		 * Increase the count of spin-mutexes before the release
    713 		 * of the last lock - we must remain at IPL_SCHED during
    714 		 * the context switch.
    715 		 */
    716 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    717 		ci->ci_mtx_count--;
    718 		lwp_unlock(l);
    719 
    720 		/* Count the context switch on this CPU. */
    721 		ci->ci_data.cpu_nswtch++;
    722 
    723 		/* Update status for lwpctl, if present. */
    724 		if (l->l_lwpctl != NULL)
    725 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    726 
    727 		/*
    728 		 * Save old VM context, unless a soft interrupt
    729 		 * handler is blocking.
    730 		 */
    731 		if (!returning)
    732 			pmap_deactivate(l);
    733 
    734 		/*
    735 		 * We may need to spin-wait for if 'newl' is still
    736 		 * context switching on another CPU.
    737 		 */
    738 		if (newl->l_ctxswtch != 0) {
    739 			u_int count;
    740 			count = SPINLOCK_BACKOFF_MIN;
    741 			while (newl->l_ctxswtch)
    742 				SPINLOCK_BACKOFF(count);
    743 		}
    744 
    745 		/* Switch to the new LWP.. */
    746 		prevlwp = cpu_switchto(l, newl, returning);
    747 		ci = curcpu();
    748 
    749 		/*
    750 		 * Switched away - we have new curlwp.
    751 		 * Restore VM context and IPL.
    752 		 */
    753 		pmap_activate(l);
    754 		if (prevlwp != NULL) {
    755 			/* Normalize the count of the spin-mutexes */
    756 			ci->ci_mtx_count++;
    757 			/* Unmark the state of context switch */
    758 			membar_exit();
    759 			prevlwp->l_ctxswtch = 0;
    760 		}
    761 
    762 		/* Update status for lwpctl, if present. */
    763 		if (l->l_lwpctl != NULL) {
    764 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    765 			l->l_lwpctl->lc_pctr++;
    766 		}
    767 
    768 		KASSERT(l->l_cpu == ci);
    769 		splx(oldspl);
    770 		retval = 1;
    771 	} else {
    772 		/* Nothing to do - just unlock and return. */
    773 		mutex_spin_exit(spc->spc_mutex);
    774 		lwp_unlock(l);
    775 		retval = 0;
    776 	}
    777 
    778 	KASSERT(l == curlwp);
    779 	KASSERT(l->l_stat == LSONPROC);
    780 
    781 	/*
    782 	 * XXXSMP If we are using h/w performance counters, restore context.
    783 	 * XXXSMP preemption problem.
    784 	 */
    785 #if PERFCTRS
    786 	if (PMC_ENABLED(l->l_proc)) {
    787 		pmc_restore_context(l->l_proc);
    788 	}
    789 #endif
    790 	SYSCALL_TIME_WAKEUP(l);
    791 	LOCKDEBUG_BARRIER(NULL, 1);
    792 
    793 	return retval;
    794 }
    795 
    796 /*
    797  * The machine independent parts of context switch to oblivion.
    798  * Does not return.  Call with the LWP unlocked.
    799  */
    800 void
    801 lwp_exit_switchaway(lwp_t *l)
    802 {
    803 	struct cpu_info *ci;
    804 	struct lwp *newl;
    805 	struct bintime bt;
    806 
    807 	ci = l->l_cpu;
    808 
    809 	KASSERT(kpreempt_disabled());
    810 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    811 	KASSERT(ci == curcpu());
    812 	LOCKDEBUG_BARRIER(NULL, 0);
    813 
    814 #ifdef KSTACK_CHECK_MAGIC
    815 	kstack_check_magic(l);
    816 #endif
    817 
    818 	/* Count time spent in current system call */
    819 	SYSCALL_TIME_SLEEP(l);
    820 	binuptime(&bt);
    821 	updatertime(l, &bt);
    822 
    823 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    824 	(void)splsched();
    825 
    826 	/*
    827 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    828 	 * If no LWP is runnable, select the idle LWP.
    829 	 *
    830 	 * Note that spc_lwplock might not necessary be held, and
    831 	 * new thread would be unlocked after setting the LWP-lock.
    832 	 */
    833 	spc_lock(ci);
    834 #ifndef __HAVE_FAST_SOFTINTS
    835 	if (ci->ci_data.cpu_softints != 0) {
    836 		/* There are pending soft interrupts, so pick one. */
    837 		newl = softint_picklwp();
    838 		newl->l_stat = LSONPROC;
    839 		newl->l_pflag |= LP_RUNNING;
    840 	} else
    841 #endif	/* !__HAVE_FAST_SOFTINTS */
    842 	{
    843 		newl = nextlwp(ci, &ci->ci_schedstate);
    844 	}
    845 
    846 	/* Update the new LWP's start time. */
    847 	newl->l_stime = bt;
    848 	l->l_pflag &= ~LP_RUNNING;
    849 
    850 	/*
    851 	 * ci_curlwp changes when a fast soft interrupt occurs.
    852 	 * We use cpu_onproc to keep track of which kernel or
    853 	 * user thread is running 'underneath' the software
    854 	 * interrupt.  This is important for time accounting,
    855 	 * itimers and forcing user threads to preempt (aston).
    856 	 */
    857 	ci->ci_data.cpu_onproc = newl;
    858 
    859 	/*
    860 	 * Preemption related tasks.  Must be done with the current
    861 	 * CPU locked.
    862 	 */
    863 	cpu_did_resched(l);
    864 
    865 	/* Unlock the run queue. */
    866 	spc_unlock(ci);
    867 
    868 	/* Count the context switch on this CPU. */
    869 	ci->ci_data.cpu_nswtch++;
    870 
    871 	/* Update status for lwpctl, if present. */
    872 	if (l->l_lwpctl != NULL)
    873 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    874 
    875 	/*
    876 	 * We may need to spin-wait for if 'newl' is still
    877 	 * context switching on another CPU.
    878 	 */
    879 	if (newl->l_ctxswtch != 0) {
    880 		u_int count;
    881 		count = SPINLOCK_BACKOFF_MIN;
    882 		while (newl->l_ctxswtch)
    883 			SPINLOCK_BACKOFF(count);
    884 	}
    885 
    886 	/* Switch to the new LWP.. */
    887 	(void)cpu_switchto(NULL, newl, false);
    888 
    889 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    890 	/* NOTREACHED */
    891 }
    892 
    893 /*
    894  * Change process state to be runnable, placing it on the run queue if it is
    895  * in memory, and awakening the swapper if it isn't in memory.
    896  *
    897  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    898  */
    899 void
    900 setrunnable(struct lwp *l)
    901 {
    902 	struct proc *p = l->l_proc;
    903 	struct cpu_info *ci;
    904 	sigset_t *ss;
    905 
    906 	KASSERT((l->l_flag & LW_IDLE) == 0);
    907 	KASSERT(mutex_owned(p->p_lock));
    908 	KASSERT(lwp_locked(l, NULL));
    909 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    910 
    911 	switch (l->l_stat) {
    912 	case LSSTOP:
    913 		/*
    914 		 * If we're being traced (possibly because someone attached us
    915 		 * while we were stopped), check for a signal from the debugger.
    916 		 */
    917 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    918 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    919 				ss = &l->l_sigpend.sp_set;
    920 			else
    921 				ss = &p->p_sigpend.sp_set;
    922 			sigaddset(ss, p->p_xstat);
    923 			signotify(l);
    924 		}
    925 		p->p_nrlwps++;
    926 		break;
    927 	case LSSUSPENDED:
    928 		l->l_flag &= ~LW_WSUSPEND;
    929 		p->p_nrlwps++;
    930 		cv_broadcast(&p->p_lwpcv);
    931 		break;
    932 	case LSSLEEP:
    933 		KASSERT(l->l_wchan != NULL);
    934 		break;
    935 	default:
    936 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    937 	}
    938 
    939 	/*
    940 	 * If the LWP was sleeping interruptably, then it's OK to start it
    941 	 * again.  If not, mark it as still sleeping.
    942 	 */
    943 	if (l->l_wchan != NULL) {
    944 		l->l_stat = LSSLEEP;
    945 		/* lwp_unsleep() will release the lock. */
    946 		lwp_unsleep(l, true);
    947 		return;
    948 	}
    949 
    950 	/*
    951 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    952 	 * about to call mi_switch(), in which case it will yield.
    953 	 */
    954 	if ((l->l_pflag & LP_RUNNING) != 0) {
    955 		l->l_stat = LSONPROC;
    956 		l->l_slptime = 0;
    957 		lwp_unlock(l);
    958 		return;
    959 	}
    960 
    961 	/*
    962 	 * Look for a CPU to run.
    963 	 * Set the LWP runnable.
    964 	 */
    965 	ci = sched_takecpu(l);
    966 	l->l_cpu = ci;
    967 	spc_lock(ci);
    968 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    969 	sched_setrunnable(l);
    970 	l->l_stat = LSRUN;
    971 	l->l_slptime = 0;
    972 
    973 	/*
    974 	 * If thread is swapped out - wake the swapper to bring it back in.
    975 	 * Otherwise, enter it into a run queue.
    976 	 */
    977 	if (l->l_flag & LW_INMEM) {
    978 		sched_enqueue(l, false);
    979 		resched_cpu(l);
    980 		lwp_unlock(l);
    981 	} else {
    982 		lwp_unlock(l);
    983 		uvm_kick_scheduler();
    984 	}
    985 }
    986 
    987 /*
    988  * suspendsched:
    989  *
    990  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
    991  */
    992 void
    993 suspendsched(void)
    994 {
    995 	CPU_INFO_ITERATOR cii;
    996 	struct cpu_info *ci;
    997 	struct lwp *l;
    998 	struct proc *p;
    999 
   1000 	/*
   1001 	 * We do this by process in order not to violate the locking rules.
   1002 	 */
   1003 	mutex_enter(proc_lock);
   1004 	PROCLIST_FOREACH(p, &allproc) {
   1005 		if ((p->p_flag & PK_MARKER) != 0)
   1006 			continue;
   1007 
   1008 		mutex_enter(p->p_lock);
   1009 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1010 			mutex_exit(p->p_lock);
   1011 			continue;
   1012 		}
   1013 
   1014 		p->p_stat = SSTOP;
   1015 
   1016 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1017 			if (l == curlwp)
   1018 				continue;
   1019 
   1020 			lwp_lock(l);
   1021 
   1022 			/*
   1023 			 * Set L_WREBOOT so that the LWP will suspend itself
   1024 			 * when it tries to return to user mode.  We want to
   1025 			 * try and get to get as many LWPs as possible to
   1026 			 * the user / kernel boundary, so that they will
   1027 			 * release any locks that they hold.
   1028 			 */
   1029 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1030 
   1031 			if (l->l_stat == LSSLEEP &&
   1032 			    (l->l_flag & LW_SINTR) != 0) {
   1033 				/* setrunnable() will release the lock. */
   1034 				setrunnable(l);
   1035 				continue;
   1036 			}
   1037 
   1038 			lwp_unlock(l);
   1039 		}
   1040 
   1041 		mutex_exit(p->p_lock);
   1042 	}
   1043 	mutex_exit(proc_lock);
   1044 
   1045 	/*
   1046 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1047 	 * They'll trap into the kernel and suspend themselves in userret().
   1048 	 */
   1049 	for (CPU_INFO_FOREACH(cii, ci)) {
   1050 		spc_lock(ci);
   1051 		cpu_need_resched(ci, RESCHED_IMMED);
   1052 		spc_unlock(ci);
   1053 	}
   1054 }
   1055 
   1056 /*
   1057  * sched_unsleep:
   1058  *
   1059  *	The is called when the LWP has not been awoken normally but instead
   1060  *	interrupted: for example, if the sleep timed out.  Because of this,
   1061  *	it's not a valid action for running or idle LWPs.
   1062  */
   1063 static u_int
   1064 sched_unsleep(struct lwp *l, bool cleanup)
   1065 {
   1066 
   1067 	lwp_unlock(l);
   1068 	panic("sched_unsleep");
   1069 }
   1070 
   1071 static void
   1072 resched_cpu(struct lwp *l)
   1073 {
   1074 	struct cpu_info *ci = ci = l->l_cpu;
   1075 
   1076 	KASSERT(lwp_locked(l, NULL));
   1077 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1078 		cpu_need_resched(ci, 0);
   1079 }
   1080 
   1081 static void
   1082 sched_changepri(struct lwp *l, pri_t pri)
   1083 {
   1084 
   1085 	KASSERT(lwp_locked(l, NULL));
   1086 
   1087 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1088 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1089 		sched_dequeue(l);
   1090 		l->l_priority = pri;
   1091 		sched_enqueue(l, false);
   1092 	} else {
   1093 		l->l_priority = pri;
   1094 	}
   1095 	resched_cpu(l);
   1096 }
   1097 
   1098 static void
   1099 sched_lendpri(struct lwp *l, pri_t pri)
   1100 {
   1101 
   1102 	KASSERT(lwp_locked(l, NULL));
   1103 
   1104 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1105 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1106 		sched_dequeue(l);
   1107 		l->l_inheritedprio = pri;
   1108 		sched_enqueue(l, false);
   1109 	} else {
   1110 		l->l_inheritedprio = pri;
   1111 	}
   1112 	resched_cpu(l);
   1113 }
   1114 
   1115 struct lwp *
   1116 syncobj_noowner(wchan_t wchan)
   1117 {
   1118 
   1119 	return NULL;
   1120 }
   1121 
   1122 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1123 const fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;
   1124 
   1125 /*
   1126  * sched_pstats:
   1127  *
   1128  * Update process statistics and check CPU resource allocation.
   1129  * Call scheduler-specific hook to eventually adjust process/LWP
   1130  * priorities.
   1131  */
   1132 /* ARGSUSED */
   1133 void
   1134 sched_pstats(void *arg)
   1135 {
   1136 	const int clkhz = (stathz != 0 ? stathz : hz);
   1137 	struct rlimit *rlim;
   1138 	struct lwp *l;
   1139 	struct proc *p;
   1140 	long runtm;
   1141 	fixpt_t lpctcpu;
   1142 	u_int lcpticks;
   1143 	int sig;
   1144 
   1145 	sched_pstats_ticks++;
   1146 
   1147 	mutex_enter(proc_lock);
   1148 	PROCLIST_FOREACH(p, &allproc) {
   1149 		if (__predict_false((p->p_flag & PK_MARKER) != 0))
   1150 			continue;
   1151 
   1152 		/*
   1153 		 * Increment time in/out of memory and sleep
   1154 		 * time (if sleeping), ignore overflow.
   1155 		 */
   1156 		mutex_enter(p->p_lock);
   1157 		runtm = p->p_rtime.sec;
   1158 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1159 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1160 				continue;
   1161 			lwp_lock(l);
   1162 			runtm += l->l_rtime.sec;
   1163 			l->l_swtime++;
   1164 			sched_lwp_stats(l);
   1165 			lwp_unlock(l);
   1166 
   1167 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1168 			if (l->l_slptime != 0)
   1169 				continue;
   1170 
   1171 			lpctcpu = l->l_pctcpu;
   1172 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1173 			lpctcpu += ((FSCALE - ccpu) *
   1174 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1175 			l->l_pctcpu = lpctcpu;
   1176 		}
   1177 		/* Calculating p_pctcpu only for ps(1) */
   1178 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1179 
   1180 		/*
   1181 		 * Check if the process exceeds its CPU resource allocation.
   1182 		 * If over max, kill it.
   1183 		 */
   1184 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1185 		sig = 0;
   1186 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1187 			if (runtm >= rlim->rlim_max)
   1188 				sig = SIGKILL;
   1189 			else {
   1190 				sig = SIGXCPU;
   1191 				if (rlim->rlim_cur < rlim->rlim_max)
   1192 					rlim->rlim_cur += 5;
   1193 			}
   1194 		}
   1195 		mutex_exit(p->p_lock);
   1196 		if (__predict_false(sig))
   1197 			psignal(p, sig);
   1198 	}
   1199 	mutex_exit(proc_lock);
   1200 	uvm_meter();
   1201 	cv_wakeup(&lbolt);
   1202 	callout_schedule(&sched_pstats_ch, hz);
   1203 }
   1204