kern_synch.c revision 1.252.2.3 1 /* $NetBSD: kern_synch.c,v 1.252.2.3 2009/04/28 07:36:59 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE.
67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.252.2.3 2009/04/28 07:36:59 skrll Exp $");
73
74 #include "opt_kstack.h"
75 #include "opt_perfctrs.h"
76 #include "opt_sa.h"
77
78 #define __MUTEX_PRIVATE
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/kernel.h>
84 #if defined(PERFCTRS)
85 #include <sys/pmc.h>
86 #endif
87 #include <sys/cpu.h>
88 #include <sys/resourcevar.h>
89 #include <sys/sched.h>
90 #include <sys/sa.h>
91 #include <sys/savar.h>
92 #include <sys/syscall_stats.h>
93 #include <sys/sleepq.h>
94 #include <sys/lockdebug.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/lwpctl.h>
98 #include <sys/atomic.h>
99 #include <sys/simplelock.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <dev/lockstat.h>
104
105 static u_int sched_unsleep(struct lwp *, bool);
106 static void sched_changepri(struct lwp *, pri_t);
107 static void sched_lendpri(struct lwp *, pri_t);
108 static void resched_cpu(struct lwp *);
109
110 syncobj_t sleep_syncobj = {
111 SOBJ_SLEEPQ_SORTED,
112 sleepq_unsleep,
113 sleepq_changepri,
114 sleepq_lendpri,
115 syncobj_noowner,
116 };
117
118 syncobj_t sched_syncobj = {
119 SOBJ_SLEEPQ_SORTED,
120 sched_unsleep,
121 sched_changepri,
122 sched_lendpri,
123 syncobj_noowner,
124 };
125
126 callout_t sched_pstats_ch;
127 unsigned sched_pstats_ticks;
128 kcondvar_t lbolt; /* once a second sleep address */
129
130 /* Preemption event counters */
131 static struct evcnt kpreempt_ev_crit;
132 static struct evcnt kpreempt_ev_klock;
133 static struct evcnt kpreempt_ev_immed;
134
135 /*
136 * During autoconfiguration or after a panic, a sleep will simply lower the
137 * priority briefly to allow interrupts, then return. The priority to be
138 * used (safepri) is machine-dependent, thus this value is initialized and
139 * maintained in the machine-dependent layers. This priority will typically
140 * be 0, or the lowest priority that is safe for use on the interrupt stack;
141 * it can be made higher to block network software interrupts after panics.
142 */
143 int safepri;
144
145 void
146 sched_init(void)
147 {
148
149 cv_init(&lbolt, "lbolt");
150 callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
151 callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
152
153 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
154 "kpreempt", "defer: critical section");
155 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
156 "kpreempt", "defer: kernel_lock");
157 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
158 "kpreempt", "immediate");
159
160 sched_pstats(NULL);
161 }
162
163 /*
164 * OBSOLETE INTERFACE
165 *
166 * General sleep call. Suspends the current LWP until a wakeup is
167 * performed on the specified identifier. The LWP will then be made
168 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
169 * means no timeout). If pri includes PCATCH flag, signals are checked
170 * before and after sleeping, else signals are not checked. Returns 0 if
171 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
172 * signal needs to be delivered, ERESTART is returned if the current system
173 * call should be restarted if possible, and EINTR is returned if the system
174 * call should be interrupted by the signal (return EINTR).
175 *
176 * The interlock is held until we are on a sleep queue. The interlock will
177 * be locked before returning back to the caller unless the PNORELOCK flag
178 * is specified, in which case the interlock will always be unlocked upon
179 * return.
180 */
181 int
182 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
183 volatile struct simplelock *interlock)
184 {
185 struct lwp *l = curlwp;
186 sleepq_t *sq;
187 kmutex_t *mp;
188 int error;
189
190 KASSERT((l->l_pflag & LP_INTR) == 0);
191
192 if (sleepq_dontsleep(l)) {
193 (void)sleepq_abort(NULL, 0);
194 if ((priority & PNORELOCK) != 0)
195 simple_unlock(interlock);
196 return 0;
197 }
198
199 l->l_kpriority = true;
200 sq = sleeptab_lookup(&sleeptab, ident, &mp);
201 sleepq_enter(sq, l, mp);
202 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
203
204 if (interlock != NULL) {
205 KASSERT(simple_lock_held(interlock));
206 simple_unlock(interlock);
207 }
208
209 error = sleepq_block(timo, priority & PCATCH);
210
211 if (interlock != NULL && (priority & PNORELOCK) == 0)
212 simple_lock(interlock);
213
214 return error;
215 }
216
217 int
218 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
219 kmutex_t *mtx)
220 {
221 struct lwp *l = curlwp;
222 sleepq_t *sq;
223 kmutex_t *mp;
224 int error;
225
226 KASSERT((l->l_pflag & LP_INTR) == 0);
227
228 if (sleepq_dontsleep(l)) {
229 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
230 return 0;
231 }
232
233 l->l_kpriority = true;
234 sq = sleeptab_lookup(&sleeptab, ident, &mp);
235 sleepq_enter(sq, l, mp);
236 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
237 mutex_exit(mtx);
238 error = sleepq_block(timo, priority & PCATCH);
239
240 if ((priority & PNORELOCK) == 0)
241 mutex_enter(mtx);
242
243 return error;
244 }
245
246 /*
247 * General sleep call for situations where a wake-up is not expected.
248 */
249 int
250 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
251 {
252 struct lwp *l = curlwp;
253 kmutex_t *mp;
254 sleepq_t *sq;
255 int error;
256
257 if (sleepq_dontsleep(l))
258 return sleepq_abort(NULL, 0);
259
260 if (mtx != NULL)
261 mutex_exit(mtx);
262 l->l_kpriority = true;
263 sq = sleeptab_lookup(&sleeptab, l, &mp);
264 sleepq_enter(sq, l, mp);
265 sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
266 error = sleepq_block(timo, intr);
267 if (mtx != NULL)
268 mutex_enter(mtx);
269
270 return error;
271 }
272
273 #ifdef KERN_SA
274 /*
275 * sa_awaken:
276 *
277 * We believe this lwp is an SA lwp. If it's yielding,
278 * let it know it needs to wake up.
279 *
280 * We are called and exit with the lwp locked. We are
281 * called in the middle of wakeup operations, so we need
282 * to not touch the locks at all.
283 */
284 void
285 sa_awaken(struct lwp *l)
286 {
287 /* LOCK_ASSERT(lwp_locked(l, NULL)); */
288
289 if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
290 l->l_flag &= ~LW_SA_IDLE;
291 }
292 #endif /* KERN_SA */
293
294 /*
295 * OBSOLETE INTERFACE
296 *
297 * Make all LWPs sleeping on the specified identifier runnable.
298 */
299 void
300 wakeup(wchan_t ident)
301 {
302 sleepq_t *sq;
303 kmutex_t *mp;
304
305 if (__predict_false(cold))
306 return;
307
308 sq = sleeptab_lookup(&sleeptab, ident, &mp);
309 sleepq_wake(sq, ident, (u_int)-1, mp);
310 }
311
312 /*
313 * OBSOLETE INTERFACE
314 *
315 * Make the highest priority LWP first in line on the specified
316 * identifier runnable.
317 */
318 void
319 wakeup_one(wchan_t ident)
320 {
321 sleepq_t *sq;
322 kmutex_t *mp;
323
324 if (__predict_false(cold))
325 return;
326
327 sq = sleeptab_lookup(&sleeptab, ident, &mp);
328 sleepq_wake(sq, ident, 1, mp);
329 }
330
331
332 /*
333 * General yield call. Puts the current LWP back on its run queue and
334 * performs a voluntary context switch. Should only be called when the
335 * current LWP explicitly requests it (eg sched_yield(2)).
336 */
337 void
338 yield(void)
339 {
340 struct lwp *l = curlwp;
341
342 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
343 lwp_lock(l);
344 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
345 KASSERT(l->l_stat == LSONPROC);
346 l->l_kpriority = false;
347 (void)mi_switch(l);
348 KERNEL_LOCK(l->l_biglocks, l);
349 }
350
351 /*
352 * General preemption call. Puts the current LWP back on its run queue
353 * and performs an involuntary context switch.
354 */
355 void
356 preempt(void)
357 {
358 struct lwp *l = curlwp;
359
360 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
361 lwp_lock(l);
362 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
363 KASSERT(l->l_stat == LSONPROC);
364 l->l_kpriority = false;
365 l->l_nivcsw++;
366 (void)mi_switch(l);
367 KERNEL_LOCK(l->l_biglocks, l);
368 }
369
370 /*
371 * Handle a request made by another agent to preempt the current LWP
372 * in-kernel. Usually called when l_dopreempt may be non-zero.
373 *
374 * Character addresses for lockstat only.
375 */
376 static char in_critical_section;
377 static char kernel_lock_held;
378 static char is_softint;
379 static char cpu_kpreempt_enter_fail;
380
381 bool
382 kpreempt(uintptr_t where)
383 {
384 uintptr_t failed;
385 lwp_t *l;
386 int s, dop, lsflag;
387
388 l = curlwp;
389 failed = 0;
390 while ((dop = l->l_dopreempt) != 0) {
391 if (l->l_stat != LSONPROC) {
392 /*
393 * About to block (or die), let it happen.
394 * Doesn't really count as "preemption has
395 * been blocked", since we're going to
396 * context switch.
397 */
398 l->l_dopreempt = 0;
399 return true;
400 }
401 if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
402 /* Can't preempt idle loop, don't count as failure. */
403 l->l_dopreempt = 0;
404 return true;
405 }
406 if (__predict_false(l->l_nopreempt != 0)) {
407 /* LWP holds preemption disabled, explicitly. */
408 if ((dop & DOPREEMPT_COUNTED) == 0) {
409 kpreempt_ev_crit.ev_count++;
410 }
411 failed = (uintptr_t)&in_critical_section;
412 break;
413 }
414 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
415 /* Can't preempt soft interrupts yet. */
416 l->l_dopreempt = 0;
417 failed = (uintptr_t)&is_softint;
418 break;
419 }
420 s = splsched();
421 if (__predict_false(l->l_blcnt != 0 ||
422 curcpu()->ci_biglock_wanted != NULL)) {
423 /* Hold or want kernel_lock, code is not MT safe. */
424 splx(s);
425 if ((dop & DOPREEMPT_COUNTED) == 0) {
426 kpreempt_ev_klock.ev_count++;
427 }
428 failed = (uintptr_t)&kernel_lock_held;
429 break;
430 }
431 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
432 /*
433 * It may be that the IPL is too high.
434 * kpreempt_enter() can schedule an
435 * interrupt to retry later.
436 */
437 splx(s);
438 failed = (uintptr_t)&cpu_kpreempt_enter_fail;
439 break;
440 }
441 /* Do it! */
442 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
443 kpreempt_ev_immed.ev_count++;
444 }
445 lwp_lock(l);
446 mi_switch(l);
447 l->l_nopreempt++;
448 splx(s);
449
450 /* Take care of any MD cleanup. */
451 cpu_kpreempt_exit(where);
452 l->l_nopreempt--;
453 }
454
455 if (__predict_true(!failed)) {
456 return false;
457 }
458
459 /* Record preemption failure for reporting via lockstat. */
460 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
461 lsflag = 0;
462 LOCKSTAT_ENTER(lsflag);
463 if (__predict_false(lsflag)) {
464 if (where == 0) {
465 where = (uintptr_t)__builtin_return_address(0);
466 }
467 /* Preemption is on, might recurse, so make it atomic. */
468 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
469 (void *)where) == NULL) {
470 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
471 l->l_pfaillock = failed;
472 }
473 }
474 LOCKSTAT_EXIT(lsflag);
475 return true;
476 }
477
478 /*
479 * Return true if preemption is explicitly disabled.
480 */
481 bool
482 kpreempt_disabled(void)
483 {
484 const lwp_t *l = curlwp;
485
486 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
487 (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
488 }
489
490 /*
491 * Disable kernel preemption.
492 */
493 void
494 kpreempt_disable(void)
495 {
496
497 KPREEMPT_DISABLE(curlwp);
498 }
499
500 /*
501 * Reenable kernel preemption.
502 */
503 void
504 kpreempt_enable(void)
505 {
506
507 KPREEMPT_ENABLE(curlwp);
508 }
509
510 /*
511 * Compute the amount of time during which the current lwp was running.
512 *
513 * - update l_rtime unless it's an idle lwp.
514 */
515
516 void
517 updatertime(lwp_t *l, const struct bintime *now)
518 {
519
520 if (__predict_false(l->l_flag & LW_IDLE))
521 return;
522
523 /* rtime += now - stime */
524 bintime_add(&l->l_rtime, now);
525 bintime_sub(&l->l_rtime, &l->l_stime);
526 }
527
528 /*
529 * Select next LWP from the current CPU to run..
530 */
531 static inline lwp_t *
532 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
533 {
534 lwp_t *newl;
535
536 /*
537 * Let sched_nextlwp() select the LWP to run the CPU next.
538 * If no LWP is runnable, select the idle LWP.
539 *
540 * Note that spc_lwplock might not necessary be held, and
541 * new thread would be unlocked after setting the LWP-lock.
542 */
543 newl = sched_nextlwp();
544 if (newl != NULL) {
545 sched_dequeue(newl);
546 KASSERT(lwp_locked(newl, spc->spc_mutex));
547 newl->l_stat = LSONPROC;
548 newl->l_cpu = ci;
549 newl->l_pflag |= LP_RUNNING;
550 lwp_setlock(newl, spc->spc_lwplock);
551 } else {
552 newl = ci->ci_data.cpu_idlelwp;
553 newl->l_stat = LSONPROC;
554 newl->l_pflag |= LP_RUNNING;
555 }
556
557 /*
558 * Only clear want_resched if there are no pending (slow)
559 * software interrupts.
560 */
561 ci->ci_want_resched = ci->ci_data.cpu_softints;
562 spc->spc_flags &= ~SPCF_SWITCHCLEAR;
563 spc->spc_curpriority = lwp_eprio(newl);
564
565 return newl;
566 }
567
568 /*
569 * The machine independent parts of context switch.
570 *
571 * Returns 1 if another LWP was actually run.
572 */
573 int
574 mi_switch(lwp_t *l)
575 {
576 struct cpu_info *ci;
577 struct schedstate_percpu *spc;
578 struct lwp *newl;
579 int retval, oldspl;
580 struct bintime bt;
581 bool returning;
582
583 KASSERT(lwp_locked(l, NULL));
584 KASSERT(kpreempt_disabled());
585 LOCKDEBUG_BARRIER(l->l_mutex, 1);
586
587 kstack_check_magic(l);
588
589 binuptime(&bt);
590
591 KASSERT(l->l_cpu == curcpu());
592 ci = l->l_cpu;
593 spc = &ci->ci_schedstate;
594 returning = false;
595 newl = NULL;
596
597 /*
598 * If we have been asked to switch to a specific LWP, then there
599 * is no need to inspect the run queues. If a soft interrupt is
600 * blocking, then return to the interrupted thread without adjusting
601 * VM context or its start time: neither have been changed in order
602 * to take the interrupt.
603 */
604 if (l->l_switchto != NULL) {
605 if ((l->l_pflag & LP_INTR) != 0) {
606 returning = true;
607 softint_block(l);
608 if ((l->l_pflag & LP_TIMEINTR) != 0)
609 updatertime(l, &bt);
610 }
611 newl = l->l_switchto;
612 l->l_switchto = NULL;
613 }
614 #ifndef __HAVE_FAST_SOFTINTS
615 else if (ci->ci_data.cpu_softints != 0) {
616 /* There are pending soft interrupts, so pick one. */
617 newl = softint_picklwp();
618 newl->l_stat = LSONPROC;
619 newl->l_pflag |= LP_RUNNING;
620 }
621 #endif /* !__HAVE_FAST_SOFTINTS */
622
623 /* Count time spent in current system call */
624 if (!returning) {
625 SYSCALL_TIME_SLEEP(l);
626
627 /*
628 * XXXSMP If we are using h/w performance counters,
629 * save context.
630 */
631 #if PERFCTRS
632 if (PMC_ENABLED(l->l_proc)) {
633 pmc_save_context(l->l_proc);
634 }
635 #endif
636 updatertime(l, &bt);
637 }
638
639 /* Lock the runqueue */
640 KASSERT(l->l_stat != LSRUN);
641 mutex_spin_enter(spc->spc_mutex);
642
643 /*
644 * If on the CPU and we have gotten this far, then we must yield.
645 */
646 if (l->l_stat == LSONPROC && l != newl) {
647 KASSERT(lwp_locked(l, spc->spc_lwplock));
648 if ((l->l_flag & LW_IDLE) == 0) {
649 l->l_stat = LSRUN;
650 lwp_setlock(l, spc->spc_mutex);
651 sched_enqueue(l, true);
652 /* Handle migration case */
653 KASSERT(spc->spc_migrating == NULL);
654 if (l->l_target_cpu != NULL) {
655 spc->spc_migrating = l;
656 }
657 } else
658 l->l_stat = LSIDL;
659 }
660
661 /* Pick new LWP to run. */
662 if (newl == NULL) {
663 newl = nextlwp(ci, spc);
664 }
665
666 /* Items that must be updated with the CPU locked. */
667 if (!returning) {
668 /* Update the new LWP's start time. */
669 newl->l_stime = bt;
670
671 /*
672 * ci_curlwp changes when a fast soft interrupt occurs.
673 * We use cpu_onproc to keep track of which kernel or
674 * user thread is running 'underneath' the software
675 * interrupt. This is important for time accounting,
676 * itimers and forcing user threads to preempt (aston).
677 */
678 ci->ci_data.cpu_onproc = newl;
679 }
680
681 /*
682 * Preemption related tasks. Must be done with the current
683 * CPU locked.
684 */
685 cpu_did_resched(l);
686 l->l_dopreempt = 0;
687 if (__predict_false(l->l_pfailaddr != 0)) {
688 LOCKSTAT_FLAG(lsflag);
689 LOCKSTAT_ENTER(lsflag);
690 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
691 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
692 1, l->l_pfailtime, l->l_pfailaddr);
693 LOCKSTAT_EXIT(lsflag);
694 l->l_pfailtime = 0;
695 l->l_pfaillock = 0;
696 l->l_pfailaddr = 0;
697 }
698
699 if (l != newl) {
700 struct lwp *prevlwp;
701
702 /* Release all locks, but leave the current LWP locked */
703 if (l->l_mutex == spc->spc_mutex) {
704 /*
705 * Drop spc_lwplock, if the current LWP has been moved
706 * to the run queue (it is now locked by spc_mutex).
707 */
708 mutex_spin_exit(spc->spc_lwplock);
709 } else {
710 /*
711 * Otherwise, drop the spc_mutex, we are done with the
712 * run queues.
713 */
714 mutex_spin_exit(spc->spc_mutex);
715 }
716
717 /*
718 * Mark that context switch is going to be performed
719 * for this LWP, to protect it from being switched
720 * to on another CPU.
721 */
722 KASSERT(l->l_ctxswtch == 0);
723 l->l_ctxswtch = 1;
724 l->l_ncsw++;
725 l->l_pflag &= ~LP_RUNNING;
726
727 /*
728 * Increase the count of spin-mutexes before the release
729 * of the last lock - we must remain at IPL_SCHED during
730 * the context switch.
731 */
732 oldspl = MUTEX_SPIN_OLDSPL(ci);
733 ci->ci_mtx_count--;
734 lwp_unlock(l);
735
736 /* Count the context switch on this CPU. */
737 ci->ci_data.cpu_nswtch++;
738
739 /* Update status for lwpctl, if present. */
740 if (l->l_lwpctl != NULL)
741 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
742
743 /*
744 * Save old VM context, unless a soft interrupt
745 * handler is blocking.
746 */
747 if (!returning)
748 pmap_deactivate(l);
749
750 /*
751 * We may need to spin-wait for if 'newl' is still
752 * context switching on another CPU.
753 */
754 if (__predict_false(newl->l_ctxswtch != 0)) {
755 u_int count;
756 count = SPINLOCK_BACKOFF_MIN;
757 while (newl->l_ctxswtch)
758 SPINLOCK_BACKOFF(count);
759 }
760
761 /* Switch to the new LWP.. */
762 prevlwp = cpu_switchto(l, newl, returning);
763 ci = curcpu();
764
765 /*
766 * Switched away - we have new curlwp.
767 * Restore VM context and IPL.
768 */
769 pmap_activate(l);
770 if (prevlwp != NULL) {
771 /* Normalize the count of the spin-mutexes */
772 ci->ci_mtx_count++;
773 /* Unmark the state of context switch */
774 membar_exit();
775 prevlwp->l_ctxswtch = 0;
776 }
777
778 /* Update status for lwpctl, if present. */
779 if (l->l_lwpctl != NULL) {
780 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
781 l->l_lwpctl->lc_pctr++;
782 }
783
784 KASSERT(l->l_cpu == ci);
785 splx(oldspl);
786 retval = 1;
787 } else {
788 /* Nothing to do - just unlock and return. */
789 mutex_spin_exit(spc->spc_mutex);
790 lwp_unlock(l);
791 retval = 0;
792 }
793
794 KASSERT(l == curlwp);
795 KASSERT(l->l_stat == LSONPROC);
796
797 /*
798 * XXXSMP If we are using h/w performance counters, restore context.
799 * XXXSMP preemption problem.
800 */
801 #if PERFCTRS
802 if (PMC_ENABLED(l->l_proc)) {
803 pmc_restore_context(l->l_proc);
804 }
805 #endif
806 SYSCALL_TIME_WAKEUP(l);
807 LOCKDEBUG_BARRIER(NULL, 1);
808
809 return retval;
810 }
811
812 /*
813 * The machine independent parts of context switch to oblivion.
814 * Does not return. Call with the LWP unlocked.
815 */
816 void
817 lwp_exit_switchaway(lwp_t *l)
818 {
819 struct cpu_info *ci;
820 struct lwp *newl;
821 struct bintime bt;
822
823 ci = l->l_cpu;
824
825 KASSERT(kpreempt_disabled());
826 KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
827 KASSERT(ci == curcpu());
828 LOCKDEBUG_BARRIER(NULL, 0);
829
830 kstack_check_magic(l);
831
832 /* Count time spent in current system call */
833 SYSCALL_TIME_SLEEP(l);
834 binuptime(&bt);
835 updatertime(l, &bt);
836
837 /* Must stay at IPL_SCHED even after releasing run queue lock. */
838 (void)splsched();
839
840 /*
841 * Let sched_nextlwp() select the LWP to run the CPU next.
842 * If no LWP is runnable, select the idle LWP.
843 *
844 * Note that spc_lwplock might not necessary be held, and
845 * new thread would be unlocked after setting the LWP-lock.
846 */
847 spc_lock(ci);
848 #ifndef __HAVE_FAST_SOFTINTS
849 if (ci->ci_data.cpu_softints != 0) {
850 /* There are pending soft interrupts, so pick one. */
851 newl = softint_picklwp();
852 newl->l_stat = LSONPROC;
853 newl->l_pflag |= LP_RUNNING;
854 } else
855 #endif /* !__HAVE_FAST_SOFTINTS */
856 {
857 newl = nextlwp(ci, &ci->ci_schedstate);
858 }
859
860 /* Update the new LWP's start time. */
861 newl->l_stime = bt;
862 l->l_pflag &= ~LP_RUNNING;
863
864 /*
865 * ci_curlwp changes when a fast soft interrupt occurs.
866 * We use cpu_onproc to keep track of which kernel or
867 * user thread is running 'underneath' the software
868 * interrupt. This is important for time accounting,
869 * itimers and forcing user threads to preempt (aston).
870 */
871 ci->ci_data.cpu_onproc = newl;
872
873 /*
874 * Preemption related tasks. Must be done with the current
875 * CPU locked.
876 */
877 cpu_did_resched(l);
878
879 /* Unlock the run queue. */
880 spc_unlock(ci);
881
882 /* Count the context switch on this CPU. */
883 ci->ci_data.cpu_nswtch++;
884
885 /* Update status for lwpctl, if present. */
886 if (l->l_lwpctl != NULL)
887 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
888
889 /*
890 * We may need to spin-wait for if 'newl' is still
891 * context switching on another CPU.
892 */
893 if (__predict_false(newl->l_ctxswtch != 0)) {
894 u_int count;
895 count = SPINLOCK_BACKOFF_MIN;
896 while (newl->l_ctxswtch)
897 SPINLOCK_BACKOFF(count);
898 }
899
900 /* Switch to the new LWP.. */
901 (void)cpu_switchto(NULL, newl, false);
902
903 for (;;) continue; /* XXX: convince gcc about "noreturn" */
904 /* NOTREACHED */
905 }
906
907 /*
908 * Change LWP state to be runnable, placing it on the run queue if it is
909 * in memory, and awakening the swapper if it isn't in memory.
910 *
911 * Call with the process and LWP locked. Will return with the LWP unlocked.
912 */
913 void
914 setrunnable(struct lwp *l)
915 {
916 struct proc *p = l->l_proc;
917 struct cpu_info *ci;
918
919 KASSERT((l->l_flag & LW_IDLE) == 0);
920 KASSERT(mutex_owned(p->p_lock));
921 KASSERT(lwp_locked(l, NULL));
922 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
923
924 switch (l->l_stat) {
925 case LSSTOP:
926 /*
927 * If we're being traced (possibly because someone attached us
928 * while we were stopped), check for a signal from the debugger.
929 */
930 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0)
931 signotify(l);
932 p->p_nrlwps++;
933 break;
934 case LSSUSPENDED:
935 l->l_flag &= ~LW_WSUSPEND;
936 p->p_nrlwps++;
937 cv_broadcast(&p->p_lwpcv);
938 break;
939 case LSSLEEP:
940 KASSERT(l->l_wchan != NULL);
941 break;
942 default:
943 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
944 }
945
946 #ifdef KERN_SA
947 if (l->l_proc->p_sa)
948 sa_awaken(l);
949 #endif /* KERN_SA */
950
951 /*
952 * If the LWP was sleeping interruptably, then it's OK to start it
953 * again. If not, mark it as still sleeping.
954 */
955 if (l->l_wchan != NULL) {
956 l->l_stat = LSSLEEP;
957 /* lwp_unsleep() will release the lock. */
958 lwp_unsleep(l, true);
959 return;
960 }
961
962 /*
963 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
964 * about to call mi_switch(), in which case it will yield.
965 */
966 if ((l->l_pflag & LP_RUNNING) != 0) {
967 l->l_stat = LSONPROC;
968 l->l_slptime = 0;
969 lwp_unlock(l);
970 return;
971 }
972
973 /*
974 * Look for a CPU to run.
975 * Set the LWP runnable.
976 */
977 ci = sched_takecpu(l);
978 l->l_cpu = ci;
979 spc_lock(ci);
980 lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
981 sched_setrunnable(l);
982 l->l_stat = LSRUN;
983 l->l_slptime = 0;
984
985 /*
986 * If thread is swapped out - wake the swapper to bring it back in.
987 * Otherwise, enter it into a run queue.
988 */
989 if (l->l_flag & LW_INMEM) {
990 sched_enqueue(l, false);
991 resched_cpu(l);
992 lwp_unlock(l);
993 } else {
994 lwp_unlock(l);
995 uvm_kick_scheduler();
996 }
997 }
998
999 /*
1000 * suspendsched:
1001 *
1002 * Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
1003 */
1004 void
1005 suspendsched(void)
1006 {
1007 CPU_INFO_ITERATOR cii;
1008 struct cpu_info *ci;
1009 struct lwp *l;
1010 struct proc *p;
1011
1012 /*
1013 * We do this by process in order not to violate the locking rules.
1014 */
1015 mutex_enter(proc_lock);
1016 PROCLIST_FOREACH(p, &allproc) {
1017 if ((p->p_flag & PK_MARKER) != 0)
1018 continue;
1019
1020 mutex_enter(p->p_lock);
1021 if ((p->p_flag & PK_SYSTEM) != 0) {
1022 mutex_exit(p->p_lock);
1023 continue;
1024 }
1025
1026 p->p_stat = SSTOP;
1027
1028 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1029 if (l == curlwp)
1030 continue;
1031
1032 lwp_lock(l);
1033
1034 /*
1035 * Set L_WREBOOT so that the LWP will suspend itself
1036 * when it tries to return to user mode. We want to
1037 * try and get to get as many LWPs as possible to
1038 * the user / kernel boundary, so that they will
1039 * release any locks that they hold.
1040 */
1041 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1042
1043 if (l->l_stat == LSSLEEP &&
1044 (l->l_flag & LW_SINTR) != 0) {
1045 /* setrunnable() will release the lock. */
1046 setrunnable(l);
1047 continue;
1048 }
1049
1050 lwp_unlock(l);
1051 }
1052
1053 mutex_exit(p->p_lock);
1054 }
1055 mutex_exit(proc_lock);
1056
1057 /*
1058 * Kick all CPUs to make them preempt any LWPs running in user mode.
1059 * They'll trap into the kernel and suspend themselves in userret().
1060 */
1061 for (CPU_INFO_FOREACH(cii, ci)) {
1062 spc_lock(ci);
1063 cpu_need_resched(ci, RESCHED_IMMED);
1064 spc_unlock(ci);
1065 }
1066 }
1067
1068 /*
1069 * sched_unsleep:
1070 *
1071 * The is called when the LWP has not been awoken normally but instead
1072 * interrupted: for example, if the sleep timed out. Because of this,
1073 * it's not a valid action for running or idle LWPs.
1074 */
1075 static u_int
1076 sched_unsleep(struct lwp *l, bool cleanup)
1077 {
1078
1079 lwp_unlock(l);
1080 panic("sched_unsleep");
1081 }
1082
1083 static void
1084 resched_cpu(struct lwp *l)
1085 {
1086 struct cpu_info *ci = ci = l->l_cpu;
1087
1088 KASSERT(lwp_locked(l, NULL));
1089 if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
1090 cpu_need_resched(ci, 0);
1091 }
1092
1093 static void
1094 sched_changepri(struct lwp *l, pri_t pri)
1095 {
1096
1097 KASSERT(lwp_locked(l, NULL));
1098
1099 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1100 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1101 sched_dequeue(l);
1102 l->l_priority = pri;
1103 sched_enqueue(l, false);
1104 } else {
1105 l->l_priority = pri;
1106 }
1107 resched_cpu(l);
1108 }
1109
1110 static void
1111 sched_lendpri(struct lwp *l, pri_t pri)
1112 {
1113
1114 KASSERT(lwp_locked(l, NULL));
1115
1116 if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
1117 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
1118 sched_dequeue(l);
1119 l->l_inheritedprio = pri;
1120 sched_enqueue(l, false);
1121 } else {
1122 l->l_inheritedprio = pri;
1123 }
1124 resched_cpu(l);
1125 }
1126
1127 struct lwp *
1128 syncobj_noowner(wchan_t wchan)
1129 {
1130
1131 return NULL;
1132 }
1133
1134 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1135 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1136
1137 /*
1138 * sched_pstats:
1139 *
1140 * Update process statistics and check CPU resource allocation.
1141 * Call scheduler-specific hook to eventually adjust process/LWP
1142 * priorities.
1143 */
1144 /* ARGSUSED */
1145 void
1146 sched_pstats(void *arg)
1147 {
1148 const int clkhz = (stathz != 0 ? stathz : hz);
1149 static bool backwards;
1150 struct rlimit *rlim;
1151 struct lwp *l;
1152 struct proc *p;
1153 long runtm;
1154 fixpt_t lpctcpu;
1155 u_int lcpticks;
1156 int sig;
1157
1158 sched_pstats_ticks++;
1159
1160 mutex_enter(proc_lock);
1161 PROCLIST_FOREACH(p, &allproc) {
1162 if (__predict_false((p->p_flag & PK_MARKER) != 0))
1163 continue;
1164
1165 /*
1166 * Increment time in/out of memory and sleep
1167 * time (if sleeping), ignore overflow.
1168 */
1169 mutex_enter(p->p_lock);
1170 runtm = p->p_rtime.sec;
1171 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1172 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1173 continue;
1174 lwp_lock(l);
1175 runtm += l->l_rtime.sec;
1176 l->l_swtime++;
1177 sched_lwp_stats(l);
1178 lwp_unlock(l);
1179
1180 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1181 if (l->l_slptime != 0)
1182 continue;
1183
1184 lpctcpu = l->l_pctcpu;
1185 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1186 lpctcpu += ((FSCALE - ccpu) *
1187 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1188 l->l_pctcpu = lpctcpu;
1189 }
1190 /* Calculating p_pctcpu only for ps(1) */
1191 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1192
1193 /*
1194 * Check if the process exceeds its CPU resource allocation.
1195 * If over max, kill it.
1196 */
1197 rlim = &p->p_rlimit[RLIMIT_CPU];
1198 sig = 0;
1199 if (__predict_false(runtm >= rlim->rlim_cur)) {
1200 if (runtm >= rlim->rlim_max)
1201 sig = SIGKILL;
1202 else {
1203 sig = SIGXCPU;
1204 if (rlim->rlim_cur < rlim->rlim_max)
1205 rlim->rlim_cur += 5;
1206 }
1207 }
1208 mutex_exit(p->p_lock);
1209 if (__predict_false(runtm < 0)) {
1210 if (!backwards) {
1211 backwards = true;
1212 printf("WARNING: negative runtime; "
1213 "monotonic clock has gone backwards\n");
1214 }
1215 } else if (__predict_false(sig)) {
1216 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1217 psignal(p, sig);
1218 }
1219 }
1220 mutex_exit(proc_lock);
1221 uvm_meter();
1222 cv_wakeup(&lbolt);
1223 callout_schedule(&sched_pstats_ch, hz);
1224 }
1225