Home | History | Annotate | Line # | Download | only in kern
kern_synch.c revision 1.253
      1 /m	$NetBSD: kern_synch.c,v 1.253 2008/10/29 20:18:20 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
     10  * Daniel Sieger.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*-
     35  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  * (c) UNIX System Laboratories, Inc.
     38  * All or some portions of this file are derived from material licensed
     39  * to the University of California by American Telephone and Telegraph
     40  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41  * the permission of UNIX System Laboratories, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.253 2008/10/29 20:18:20 skrll Exp $");
     72 
     73 #include "opt_kstack.h"
     74 #include "opt_perfctrs.h"
     75 #include "opt_sa.h"
     76 
     77 #define	__MUTEX_PRIVATE
     78 
     79 #include <sys/param.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/kernel.h>
     83 #if defined(PERFCTRS)
     84 #include <sys/pmc.h>
     85 #endif
     86 #include <sys/cpu.h>
     87 #include <sys/resourcevar.h>
     88 #include <sys/sched.h>
     89 #include <sys/sa.h>
     90 #include <sys/savar.h>
     91 #include <sys/syscall_stats.h>
     92 #include <sys/sleepq.h>
     93 #include <sys/lockdebug.h>
     94 #include <sys/evcnt.h>
     95 #include <sys/intr.h>
     96 #include <sys/lwpctl.h>
     97 #include <sys/atomic.h>
     98 #include <sys/simplelock.h>
     99 
    100 #include <uvm/uvm_extern.h>
    101 
    102 #include <dev/lockstat.h>
    103 
    104 static u_int	sched_unsleep(struct lwp *, bool);
    105 static void	sched_changepri(struct lwp *, pri_t);
    106 static void	sched_lendpri(struct lwp *, pri_t);
    107 static void	resched_cpu(struct lwp *);
    108 
    109 syncobj_t sleep_syncobj = {
    110 	SOBJ_SLEEPQ_SORTED,
    111 	sleepq_unsleep,
    112 	sleepq_changepri,
    113 	sleepq_lendpri,
    114 	syncobj_noowner,
    115 };
    116 
    117 syncobj_t sched_syncobj = {
    118 	SOBJ_SLEEPQ_SORTED,
    119 	sched_unsleep,
    120 	sched_changepri,
    121 	sched_lendpri,
    122 	syncobj_noowner,
    123 };
    124 
    125 callout_t 	sched_pstats_ch;
    126 unsigned	sched_pstats_ticks;
    127 kcondvar_t	lbolt;			/* once a second sleep address */
    128 
    129 /* Preemption event counters */
    130 static struct evcnt kpreempt_ev_crit;
    131 static struct evcnt kpreempt_ev_klock;
    132 static struct evcnt kpreempt_ev_ipl;
    133 static struct evcnt kpreempt_ev_immed;
    134 
    135 /*
    136  * During autoconfiguration or after a panic, a sleep will simply lower the
    137  * priority briefly to allow interrupts, then return.  The priority to be
    138  * used (safepri) is machine-dependent, thus this value is initialized and
    139  * maintained in the machine-dependent layers.  This priority will typically
    140  * be 0, or the lowest priority that is safe for use on the interrupt stack;
    141  * it can be made higher to block network software interrupts after panics.
    142  */
    143 int	safepri;
    144 
    145 void
    146 sched_init(void)
    147 {
    148 
    149 	cv_init(&lbolt, "lbolt");
    150 	callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
    151 	callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
    152 
    153 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
    154 	   "kpreempt", "defer: critical section");
    155 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
    156 	   "kpreempt", "defer: kernel_lock");
    157 	evcnt_attach_dynamic(&kpreempt_ev_ipl, EVCNT_TYPE_MISC, NULL,
    158 	   "kpreempt", "defer: IPL");
    159 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
    160 	   "kpreempt", "immediate");
    161 
    162 	sched_pstats(NULL);
    163 }
    164 
    165 /*
    166  * OBSOLETE INTERFACE
    167  *
    168  * General sleep call.  Suspends the current process until a wakeup is
    169  * performed on the specified identifier.  The process will then be made
    170  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
    171  * means no timeout).  If pri includes PCATCH flag, signals are checked
    172  * before and after sleeping, else signals are not checked.  Returns 0 if
    173  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
    174  * signal needs to be delivered, ERESTART is returned if the current system
    175  * call should be restarted if possible, and EINTR is returned if the system
    176  * call should be interrupted by the signal (return EINTR).
    177  *
    178  * The interlock is held until we are on a sleep queue. The interlock will
    179  * be locked before returning back to the caller unless the PNORELOCK flag
    180  * is specified, in which case the interlock will always be unlocked upon
    181  * return.
    182  */
    183 int
    184 ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    185 	volatile struct simplelock *interlock)
    186 {
    187 	struct lwp *l = curlwp;
    188 	sleepq_t *sq;
    189 	kmutex_t *mp;
    190 	int error;
    191 
    192 	KASSERT((l->l_pflag & LP_INTR) == 0);
    193 
    194 	if (sleepq_dontsleep(l)) {
    195 		(void)sleepq_abort(NULL, 0);
    196 		if ((priority & PNORELOCK) != 0)
    197 			simple_unlock(interlock);
    198 		return 0;
    199 	}
    200 
    201 	l->l_kpriority = true;
    202 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    203 	sleepq_enter(sq, l, mp);
    204 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    205 
    206 	if (interlock != NULL) {
    207 		KASSERT(simple_lock_held(interlock));
    208 		simple_unlock(interlock);
    209 	}
    210 
    211 	error = sleepq_block(timo, priority & PCATCH);
    212 
    213 	if (interlock != NULL && (priority & PNORELOCK) == 0)
    214 		simple_lock(interlock);
    215 
    216 	return error;
    217 }
    218 
    219 int
    220 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
    221 	kmutex_t *mtx)
    222 {
    223 	struct lwp *l = curlwp;
    224 	sleepq_t *sq;
    225 	kmutex_t *mp;
    226 	int error;
    227 
    228 	KASSERT((l->l_pflag & LP_INTR) == 0);
    229 
    230 	if (sleepq_dontsleep(l)) {
    231 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
    232 		return 0;
    233 	}
    234 
    235 	l->l_kpriority = true;
    236 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    237 	sleepq_enter(sq, l, mp);
    238 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
    239 	mutex_exit(mtx);
    240 	error = sleepq_block(timo, priority & PCATCH);
    241 
    242 	if ((priority & PNORELOCK) == 0)
    243 		mutex_enter(mtx);
    244 
    245 	return error;
    246 }
    247 
    248 /*
    249  * General sleep call for situations where a wake-up is not expected.
    250  */
    251 int
    252 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
    253 {
    254 	struct lwp *l = curlwp;
    255 	kmutex_t *mp;
    256 	sleepq_t *sq;
    257 	int error;
    258 
    259 	if (sleepq_dontsleep(l))
    260 		return sleepq_abort(NULL, 0);
    261 
    262 	if (mtx != NULL)
    263 		mutex_exit(mtx);
    264 	l->l_kpriority = true;
    265 	sq = sleeptab_lookup(&sleeptab, l, &mp);
    266 	sleepq_enter(sq, l, mp);
    267 	sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
    268 	error = sleepq_block(timo, intr);
    269 	if (mtx != NULL)
    270 		mutex_enter(mtx);
    271 
    272 	return error;
    273 }
    274 
    275 #ifdef KERN_SA
    276 /*
    277  * sa_awaken:
    278  *
    279  *	We believe this lwp is an SA lwp. If it's yielding,
    280  * let it know it needs to wake up.
    281  *
    282  *	We are called and exit with the lwp locked. We are
    283  * called in the middle of wakeup operations, so we need
    284  * to not touch the locks at all.
    285  */
    286 void
    287 sa_awaken(struct lwp *l)
    288 {
    289 	/* LOCK_ASSERT(lwp_locked(l, NULL)); */
    290 
    291 	if (l == l->l_savp->savp_lwp && l->l_flag & LW_SA_YIELD)
    292 		l->l_flag &= ~LW_SA_IDLE;
    293 }
    294 #endif /* KERN_SA */
    295 
    296 /*
    297  * OBSOLETE INTERFACE
    298  *
    299  * Make all processes sleeping on the specified identifier runnable.
    300  */
    301 void
    302 wakeup(wchan_t ident)
    303 {
    304 	sleepq_t *sq;
    305 	kmutex_t *mp;
    306 
    307 	if (cold)
    308 		return;
    309 
    310 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    311 	sleepq_wake(sq, ident, (u_int)-1, mp);
    312 }
    313 
    314 /*
    315  * OBSOLETE INTERFACE
    316  *
    317  * Make the highest priority process first in line on the specified
    318  * identifier runnable.
    319  */
    320 void
    321 wakeup_one(wchan_t ident)
    322 {
    323 	sleepq_t *sq;
    324 	kmutex_t *mp;
    325 
    326 	if (cold)
    327 		return;
    328 
    329 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
    330 	sleepq_wake(sq, ident, 1, mp);
    331 }
    332 
    333 
    334 /*
    335  * General yield call.  Puts the current process back on its run queue and
    336  * performs a voluntary context switch.  Should only be called when the
    337  * current process explicitly requests it (eg sched_yield(2)).
    338  */
    339 void
    340 yield(void)
    341 {
    342 	struct lwp *l = curlwp;
    343 
    344 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    345 	lwp_lock(l);
    346 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    347 	KASSERT(l->l_stat == LSONPROC);
    348 	l->l_kpriority = false;
    349 	(void)mi_switch(l);
    350 	KERNEL_LOCK(l->l_biglocks, l);
    351 }
    352 
    353 /*
    354  * General preemption call.  Puts the current process back on its run queue
    355  * and performs an involuntary context switch.
    356  */
    357 void
    358 preempt(void)
    359 {
    360 	struct lwp *l = curlwp;
    361 
    362 	KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
    363 	lwp_lock(l);
    364 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
    365 	KASSERT(l->l_stat == LSONPROC);
    366 	l->l_kpriority = false;
    367 	l->l_nivcsw++;
    368 	(void)mi_switch(l);
    369 	KERNEL_LOCK(l->l_biglocks, l);
    370 }
    371 
    372 /*
    373  * Handle a request made by another agent to preempt the current LWP
    374  * in-kernel.  Usually called when l_dopreempt may be non-zero.
    375  *
    376  * Character addresses for lockstat only.
    377  */
    378 static char	in_critical_section;
    379 static char	kernel_lock_held;
    380 static char	spl_raised;
    381 static char	is_softint;
    382 
    383 bool
    384 kpreempt(uintptr_t where)
    385 {
    386 	uintptr_t failed;
    387 	lwp_t *l;
    388 	int s, dop;
    389 
    390 	l = curlwp;
    391 	failed = 0;
    392 	while ((dop = l->l_dopreempt) != 0) {
    393 		if (l->l_stat != LSONPROC) {
    394 			/*
    395 			 * About to block (or die), let it happen.
    396 			 * Doesn't really count as "preemption has
    397 			 * been blocked", since we're going to
    398 			 * context switch.
    399 			 */
    400 			l->l_dopreempt = 0;
    401 			return true;
    402 		}
    403 		if (__predict_false((l->l_flag & LW_IDLE) != 0)) {
    404 			/* Can't preempt idle loop, don't count as failure. */
    405 		    	l->l_dopreempt = 0;
    406 		    	return true;
    407 		}
    408 		if (__predict_false(l->l_nopreempt != 0)) {
    409 			/* LWP holds preemption disabled, explicitly. */
    410 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    411 				kpreempt_ev_crit.ev_count++;
    412 			}
    413 			failed = (uintptr_t)&in_critical_section;
    414 			break;
    415 		}
    416 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    417 		    	/* Can't preempt soft interrupts yet. */
    418 		    	l->l_dopreempt = 0;
    419 		    	failed = (uintptr_t)&is_softint;
    420 		    	break;
    421 		}
    422 		s = splsched();
    423 		if (__predict_false(l->l_blcnt != 0 ||
    424 		    curcpu()->ci_biglock_wanted != NULL)) {
    425 			/* Hold or want kernel_lock, code is not MT safe. */
    426 			splx(s);
    427 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    428 				kpreempt_ev_klock.ev_count++;
    429 			}
    430 			failed = (uintptr_t)&kernel_lock_held;
    431 			break;
    432 		}
    433 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
    434 			/*
    435 			 * It may be that the IPL is too high.
    436 			 * kpreempt_enter() can schedule an
    437 			 * interrupt to retry later.
    438 			 */
    439 			splx(s);
    440 			if ((dop & DOPREEMPT_COUNTED) == 0) {
    441 				kpreempt_ev_ipl.ev_count++;
    442 			}
    443 			failed = (uintptr_t)&spl_raised;
    444 			break;
    445 		}
    446 		/* Do it! */
    447 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
    448 			kpreempt_ev_immed.ev_count++;
    449 		}
    450 		lwp_lock(l);
    451 		mi_switch(l);
    452 		l->l_nopreempt++;
    453 		splx(s);
    454 
    455 		/* Take care of any MD cleanup. */
    456 		cpu_kpreempt_exit(where);
    457 		l->l_nopreempt--;
    458 	}
    459 
    460 	/* Record preemption failure for reporting via lockstat. */
    461 	if (__predict_false(failed)) {
    462 		int lsflag = 0;
    463 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
    464 		LOCKSTAT_ENTER(lsflag);
    465 		/* Might recurse, make it atomic. */
    466 		if (__predict_false(lsflag)) {
    467 			if (where == 0) {
    468 				where = (uintptr_t)__builtin_return_address(0);
    469 			}
    470 			if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr,
    471 			    NULL, (void *)where) == NULL) {
    472 				LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
    473 				l->l_pfaillock = failed;
    474 			}
    475 		}
    476 		LOCKSTAT_EXIT(lsflag);
    477 	}
    478 
    479 	return failed;
    480 }
    481 
    482 /*
    483  * Return true if preemption is explicitly disabled.
    484  */
    485 bool
    486 kpreempt_disabled(void)
    487 {
    488 	lwp_t *l;
    489 
    490 	l = curlwp;
    491 
    492 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
    493 	    (l->l_flag & LW_IDLE) != 0 || cpu_kpreempt_disabled();
    494 }
    495 
    496 /*
    497  * Disable kernel preemption.
    498  */
    499 void
    500 kpreempt_disable(void)
    501 {
    502 
    503 	KPREEMPT_DISABLE(curlwp);
    504 }
    505 
    506 /*
    507  * Reenable kernel preemption.
    508  */
    509 void
    510 kpreempt_enable(void)
    511 {
    512 
    513 	KPREEMPT_ENABLE(curlwp);
    514 }
    515 
    516 /*
    517  * Compute the amount of time during which the current lwp was running.
    518  *
    519  * - update l_rtime unless it's an idle lwp.
    520  */
    521 
    522 void
    523 updatertime(lwp_t *l, const struct bintime *now)
    524 {
    525 
    526 	if ((l->l_flag & LW_IDLE) != 0)
    527 		return;
    528 
    529 	/* rtime += now - stime */
    530 	bintime_add(&l->l_rtime, now);
    531 	bintime_sub(&l->l_rtime, &l->l_stime);
    532 }
    533 
    534 /*
    535  * Select next LWP from the current CPU to run..
    536  */
    537 static inline lwp_t *
    538 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
    539 {
    540 	lwp_t *newl;
    541 
    542 	/*
    543 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    544 	 * If no LWP is runnable, select the idle LWP.
    545 	 *
    546 	 * Note that spc_lwplock might not necessary be held, and
    547 	 * new thread would be unlocked after setting the LWP-lock.
    548 	 */
    549 	newl = sched_nextlwp();
    550 	if (newl != NULL) {
    551 		sched_dequeue(newl);
    552 		KASSERT(lwp_locked(newl, spc->spc_mutex));
    553 		newl->l_stat = LSONPROC;
    554 		newl->l_cpu = ci;
    555 		newl->l_pflag |= LP_RUNNING;
    556 		lwp_setlock(newl, spc->spc_lwplock);
    557 	} else {
    558 		newl = ci->ci_data.cpu_idlelwp;
    559 		newl->l_stat = LSONPROC;
    560 		newl->l_pflag |= LP_RUNNING;
    561 	}
    562 
    563 	/*
    564 	 * Only clear want_resched if there are no pending (slow)
    565 	 * software interrupts.
    566 	 */
    567 	ci->ci_want_resched = ci->ci_data.cpu_softints;
    568 	spc->spc_flags &= ~SPCF_SWITCHCLEAR;
    569 	spc->spc_curpriority = lwp_eprio(newl);
    570 
    571 	return newl;
    572 }
    573 
    574 /*
    575  * The machine independent parts of context switch.
    576  *
    577  * Returns 1 if another LWP was actually run.
    578  */
    579 int
    580 mi_switch(lwp_t *l)
    581 {
    582 	struct cpu_info *ci;
    583 	struct schedstate_percpu *spc;
    584 	struct lwp *newl;
    585 	int retval, oldspl;
    586 	struct bintime bt;
    587 	bool returning;
    588 
    589 	KASSERT(lwp_locked(l, NULL));
    590 	KASSERT(kpreempt_disabled());
    591 	LOCKDEBUG_BARRIER(l->l_mutex, 1);
    592 
    593 #ifdef KSTACK_CHECK_MAGIC
    594 	kstack_check_magic(l);
    595 #endif
    596 
    597 	binuptime(&bt);
    598 
    599 	KASSERT(l->l_cpu == curcpu());
    600 	ci = l->l_cpu;
    601 	spc = &ci->ci_schedstate;
    602 	returning = false;
    603 	newl = NULL;
    604 
    605 	/*
    606 	 * If we have been asked to switch to a specific LWP, then there
    607 	 * is no need to inspect the run queues.  If a soft interrupt is
    608 	 * blocking, then return to the interrupted thread without adjusting
    609 	 * VM context or its start time: neither have been changed in order
    610 	 * to take the interrupt.
    611 	 */
    612 	if (l->l_switchto != NULL) {
    613 		if ((l->l_pflag & LP_INTR) != 0) {
    614 			returning = true;
    615 			softint_block(l);
    616 			if ((l->l_pflag & LP_TIMEINTR) != 0)
    617 				updatertime(l, &bt);
    618 		}
    619 		newl = l->l_switchto;
    620 		l->l_switchto = NULL;
    621 	}
    622 #ifndef __HAVE_FAST_SOFTINTS
    623 	else if (ci->ci_data.cpu_softints != 0) {
    624 		/* There are pending soft interrupts, so pick one. */
    625 		newl = softint_picklwp();
    626 		newl->l_stat = LSONPROC;
    627 		newl->l_pflag |= LP_RUNNING;
    628 	}
    629 #endif	/* !__HAVE_FAST_SOFTINTS */
    630 
    631 	/* Count time spent in current system call */
    632 	if (!returning) {
    633 		SYSCALL_TIME_SLEEP(l);
    634 
    635 		/*
    636 		 * XXXSMP If we are using h/w performance counters,
    637 		 * save context.
    638 		 */
    639 #if PERFCTRS
    640 		if (PMC_ENABLED(l->l_proc)) {
    641 			pmc_save_context(l->l_proc);
    642 		}
    643 #endif
    644 		updatertime(l, &bt);
    645 	}
    646 
    647 	/* Lock the runqueue */
    648 	KASSERT(l->l_stat != LSRUN);
    649 	mutex_spin_enter(spc->spc_mutex);
    650 
    651 	/*
    652 	 * If on the CPU and we have gotten this far, then we must yield.
    653 	 */
    654 	if (l->l_stat == LSONPROC && l != newl) {
    655 		KASSERT(lwp_locked(l, spc->spc_lwplock));
    656 		if ((l->l_flag & LW_IDLE) == 0) {
    657 			l->l_stat = LSRUN;
    658 			lwp_setlock(l, spc->spc_mutex);
    659 			sched_enqueue(l, true);
    660 			/* Handle migration case */
    661 			KASSERT(spc->spc_migrating == NULL);
    662 			if (l->l_target_cpu !=  NULL) {
    663 				spc->spc_migrating = l;
    664 			}
    665 		} else
    666 			l->l_stat = LSIDL;
    667 	}
    668 
    669 	/* Pick new LWP to run. */
    670 	if (newl == NULL) {
    671 		newl = nextlwp(ci, spc);
    672 	}
    673 
    674 	/* Items that must be updated with the CPU locked. */
    675 	if (!returning) {
    676 		/* Update the new LWP's start time. */
    677 		newl->l_stime = bt;
    678 
    679 		/*
    680 		 * ci_curlwp changes when a fast soft interrupt occurs.
    681 		 * We use cpu_onproc to keep track of which kernel or
    682 		 * user thread is running 'underneath' the software
    683 		 * interrupt.  This is important for time accounting,
    684 		 * itimers and forcing user threads to preempt (aston).
    685 		 */
    686 		ci->ci_data.cpu_onproc = newl;
    687 	}
    688 
    689 	/*
    690 	 * Preemption related tasks.  Must be done with the current
    691 	 * CPU locked.
    692 	 */
    693 	cpu_did_resched(l);
    694 	l->l_dopreempt = 0;
    695 	if (__predict_false(l->l_pfailaddr != 0)) {
    696 		LOCKSTAT_FLAG(lsflag);
    697 		LOCKSTAT_ENTER(lsflag);
    698 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
    699 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
    700 		    1, l->l_pfailtime, l->l_pfailaddr);
    701 		LOCKSTAT_EXIT(lsflag);
    702 		l->l_pfailtime = 0;
    703 		l->l_pfaillock = 0;
    704 		l->l_pfailaddr = 0;
    705 	}
    706 
    707 	if (l != newl) {
    708 		struct lwp *prevlwp;
    709 
    710 		/* Release all locks, but leave the current LWP locked */
    711 		if (l->l_mutex == spc->spc_mutex) {
    712 			/*
    713 			 * Drop spc_lwplock, if the current LWP has been moved
    714 			 * to the run queue (it is now locked by spc_mutex).
    715 			 */
    716 			mutex_spin_exit(spc->spc_lwplock);
    717 		} else {
    718 			/*
    719 			 * Otherwise, drop the spc_mutex, we are done with the
    720 			 * run queues.
    721 			 */
    722 			mutex_spin_exit(spc->spc_mutex);
    723 		}
    724 
    725 		/*
    726 		 * Mark that context switch is going to be performed
    727 		 * for this LWP, to protect it from being switched
    728 		 * to on another CPU.
    729 		 */
    730 		KASSERT(l->l_ctxswtch == 0);
    731 		l->l_ctxswtch = 1;
    732 		l->l_ncsw++;
    733 		l->l_pflag &= ~LP_RUNNING;
    734 
    735 		/*
    736 		 * Increase the count of spin-mutexes before the release
    737 		 * of the last lock - we must remain at IPL_SCHED during
    738 		 * the context switch.
    739 		 */
    740 		oldspl = MUTEX_SPIN_OLDSPL(ci);
    741 		ci->ci_mtx_count--;
    742 		lwp_unlock(l);
    743 
    744 		/* Count the context switch on this CPU. */
    745 		ci->ci_data.cpu_nswtch++;
    746 
    747 		/* Update status for lwpctl, if present. */
    748 		if (l->l_lwpctl != NULL)
    749 			l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
    750 
    751 		/*
    752 		 * Save old VM context, unless a soft interrupt
    753 		 * handler is blocking.
    754 		 */
    755 		if (!returning)
    756 			pmap_deactivate(l);
    757 
    758 		/*
    759 		 * We may need to spin-wait for if 'newl' is still
    760 		 * context switching on another CPU.
    761 		 */
    762 		if (newl->l_ctxswtch != 0) {
    763 			u_int count;
    764 			count = SPINLOCK_BACKOFF_MIN;
    765 			while (newl->l_ctxswtch)
    766 				SPINLOCK_BACKOFF(count);
    767 		}
    768 
    769 		/* Switch to the new LWP.. */
    770 		prevlwp = cpu_switchto(l, newl, returning);
    771 		ci = curcpu();
    772 
    773 		/*
    774 		 * Switched away - we have new curlwp.
    775 		 * Restore VM context and IPL.
    776 		 */
    777 		pmap_activate(l);
    778 		if (prevlwp != NULL) {
    779 			/* Normalize the count of the spin-mutexes */
    780 			ci->ci_mtx_count++;
    781 			/* Unmark the state of context switch */
    782 			membar_exit();
    783 			prevlwp->l_ctxswtch = 0;
    784 		}
    785 
    786 		/* Update status for lwpctl, if present. */
    787 		if (l->l_lwpctl != NULL) {
    788 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
    789 			l->l_lwpctl->lc_pctr++;
    790 		}
    791 
    792 		KASSERT(l->l_cpu == ci);
    793 		splx(oldspl);
    794 		retval = 1;
    795 	} else {
    796 		/* Nothing to do - just unlock and return. */
    797 		mutex_spin_exit(spc->spc_mutex);
    798 		lwp_unlock(l);
    799 		retval = 0;
    800 	}
    801 
    802 	KASSERT(l == curlwp);
    803 	KASSERT(l->l_stat == LSONPROC);
    804 
    805 	/*
    806 	 * XXXSMP If we are using h/w performance counters, restore context.
    807 	 * XXXSMP preemption problem.
    808 	 */
    809 #if PERFCTRS
    810 	if (PMC_ENABLED(l->l_proc)) {
    811 		pmc_restore_context(l->l_proc);
    812 	}
    813 #endif
    814 	SYSCALL_TIME_WAKEUP(l);
    815 	LOCKDEBUG_BARRIER(NULL, 1);
    816 
    817 	return retval;
    818 }
    819 
    820 /*
    821  * The machine independent parts of context switch to oblivion.
    822  * Does not return.  Call with the LWP unlocked.
    823  */
    824 void
    825 lwp_exit_switchaway(lwp_t *l)
    826 {
    827 	struct cpu_info *ci;
    828 	struct lwp *newl;
    829 	struct bintime bt;
    830 
    831 	ci = l->l_cpu;
    832 
    833 	KASSERT(kpreempt_disabled());
    834 	KASSERT(l->l_stat == LSZOMB || l->l_stat == LSIDL);
    835 	KASSERT(ci == curcpu());
    836 	LOCKDEBUG_BARRIER(NULL, 0);
    837 
    838 #ifdef KSTACK_CHECK_MAGIC
    839 	kstack_check_magic(l);
    840 #endif
    841 
    842 	/* Count time spent in current system call */
    843 	SYSCALL_TIME_SLEEP(l);
    844 	binuptime(&bt);
    845 	updatertime(l, &bt);
    846 
    847 	/* Must stay at IPL_SCHED even after releasing run queue lock. */
    848 	(void)splsched();
    849 
    850 	/*
    851 	 * Let sched_nextlwp() select the LWP to run the CPU next.
    852 	 * If no LWP is runnable, select the idle LWP.
    853 	 *
    854 	 * Note that spc_lwplock might not necessary be held, and
    855 	 * new thread would be unlocked after setting the LWP-lock.
    856 	 */
    857 	spc_lock(ci);
    858 #ifndef __HAVE_FAST_SOFTINTS
    859 	if (ci->ci_data.cpu_softints != 0) {
    860 		/* There are pending soft interrupts, so pick one. */
    861 		newl = softint_picklwp();
    862 		newl->l_stat = LSONPROC;
    863 		newl->l_pflag |= LP_RUNNING;
    864 	} else
    865 #endif	/* !__HAVE_FAST_SOFTINTS */
    866 	{
    867 		newl = nextlwp(ci, &ci->ci_schedstate);
    868 	}
    869 
    870 	/* Update the new LWP's start time. */
    871 	newl->l_stime = bt;
    872 	l->l_pflag &= ~LP_RUNNING;
    873 
    874 	/*
    875 	 * ci_curlwp changes when a fast soft interrupt occurs.
    876 	 * We use cpu_onproc to keep track of which kernel or
    877 	 * user thread is running 'underneath' the software
    878 	 * interrupt.  This is important for time accounting,
    879 	 * itimers and forcing user threads to preempt (aston).
    880 	 */
    881 	ci->ci_data.cpu_onproc = newl;
    882 
    883 	/*
    884 	 * Preemption related tasks.  Must be done with the current
    885 	 * CPU locked.
    886 	 */
    887 	cpu_did_resched(l);
    888 
    889 	/* Unlock the run queue. */
    890 	spc_unlock(ci);
    891 
    892 	/* Count the context switch on this CPU. */
    893 	ci->ci_data.cpu_nswtch++;
    894 
    895 	/* Update status for lwpctl, if present. */
    896 	if (l->l_lwpctl != NULL)
    897 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
    898 
    899 	/*
    900 	 * We may need to spin-wait for if 'newl' is still
    901 	 * context switching on another CPU.
    902 	 */
    903 	if (newl->l_ctxswtch != 0) {
    904 		u_int count;
    905 		count = SPINLOCK_BACKOFF_MIN;
    906 		while (newl->l_ctxswtch)
    907 			SPINLOCK_BACKOFF(count);
    908 	}
    909 
    910 	/* Switch to the new LWP.. */
    911 	(void)cpu_switchto(NULL, newl, false);
    912 
    913 	for (;;) continue;	/* XXX: convince gcc about "noreturn" */
    914 	/* NOTREACHED */
    915 }
    916 
    917 /*
    918  * Change process state to be runnable, placing it on the run queue if it is
    919  * in memory, and awakening the swapper if it isn't in memory.
    920  *
    921  * Call with the process and LWP locked.  Will return with the LWP unlocked.
    922  */
    923 void
    924 setrunnable(struct lwp *l)
    925 {
    926 	struct proc *p = l->l_proc;
    927 	struct cpu_info *ci;
    928 	sigset_t *ss;
    929 
    930 	KASSERT((l->l_flag & LW_IDLE) == 0);
    931 	KASSERT(mutex_owned(p->p_lock));
    932 	KASSERT(lwp_locked(l, NULL));
    933 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
    934 
    935 	switch (l->l_stat) {
    936 	case LSSTOP:
    937 		/*
    938 		 * If we're being traced (possibly because someone attached us
    939 		 * while we were stopped), check for a signal from the debugger.
    940 		 */
    941 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
    942 			if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
    943 				ss = &l->l_sigpend.sp_set;
    944 			else
    945 				ss = &p->p_sigpend.sp_set;
    946 			sigaddset(ss, p->p_xstat);
    947 			signotify(l);
    948 		}
    949 		p->p_nrlwps++;
    950 		break;
    951 	case LSSUSPENDED:
    952 		l->l_flag &= ~LW_WSUSPEND;
    953 		p->p_nrlwps++;
    954 		cv_broadcast(&p->p_lwpcv);
    955 		break;
    956 	case LSSLEEP:
    957 		KASSERT(l->l_wchan != NULL);
    958 		break;
    959 	default:
    960 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
    961 	}
    962 
    963 #ifdef KERN_SA
    964 	if (l->l_proc->p_sa)
    965 		sa_awaken(l);
    966 #endif /* KERN_SA */
    967 
    968 	/*
    969 	 * If the LWP was sleeping interruptably, then it's OK to start it
    970 	 * again.  If not, mark it as still sleeping.
    971 	 */
    972 	if (l->l_wchan != NULL) {
    973 		l->l_stat = LSSLEEP;
    974 		/* lwp_unsleep() will release the lock. */
    975 		lwp_unsleep(l, true);
    976 		return;
    977 	}
    978 
    979 	/*
    980 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
    981 	 * about to call mi_switch(), in which case it will yield.
    982 	 */
    983 	if ((l->l_pflag & LP_RUNNING) != 0) {
    984 		l->l_stat = LSONPROC;
    985 		l->l_slptime = 0;
    986 		lwp_unlock(l);
    987 		return;
    988 	}
    989 
    990 	/*
    991 	 * Look for a CPU to run.
    992 	 * Set the LWP runnable.
    993 	 */
    994 	ci = sched_takecpu(l);
    995 	l->l_cpu = ci;
    996 	spc_lock(ci);
    997 	lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
    998 	sched_setrunnable(l);
    999 	l->l_stat = LSRUN;
   1000 	l->l_slptime = 0;
   1001 
   1002 	/*
   1003 	 * If thread is swapped out - wake the swapper to bring it back in.
   1004 	 * Otherwise, enter it into a run queue.
   1005 	 */
   1006 	if (l->l_flag & LW_INMEM) {
   1007 		sched_enqueue(l, false);
   1008 		resched_cpu(l);
   1009 		lwp_unlock(l);
   1010 	} else {
   1011 		lwp_unlock(l);
   1012 		uvm_kick_scheduler();
   1013 	}
   1014 }
   1015 
   1016 /*
   1017  * suspendsched:
   1018  *
   1019  *	Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
   1020  */
   1021 void
   1022 suspendsched(void)
   1023 {
   1024 	CPU_INFO_ITERATOR cii;
   1025 	struct cpu_info *ci;
   1026 	struct lwp *l;
   1027 	struct proc *p;
   1028 
   1029 	/*
   1030 	 * We do this by process in order not to violate the locking rules.
   1031 	 */
   1032 	mutex_enter(proc_lock);
   1033 	PROCLIST_FOREACH(p, &allproc) {
   1034 		if ((p->p_flag & PK_MARKER) != 0)
   1035 			continue;
   1036 
   1037 		mutex_enter(p->p_lock);
   1038 		if ((p->p_flag & PK_SYSTEM) != 0) {
   1039 			mutex_exit(p->p_lock);
   1040 			continue;
   1041 		}
   1042 
   1043 		p->p_stat = SSTOP;
   1044 
   1045 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1046 			if (l == curlwp)
   1047 				continue;
   1048 
   1049 			lwp_lock(l);
   1050 
   1051 			/*
   1052 			 * Set L_WREBOOT so that the LWP will suspend itself
   1053 			 * when it tries to return to user mode.  We want to
   1054 			 * try and get to get as many LWPs as possible to
   1055 			 * the user / kernel boundary, so that they will
   1056 			 * release any locks that they hold.
   1057 			 */
   1058 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
   1059 
   1060 			if (l->l_stat == LSSLEEP &&
   1061 			    (l->l_flag & LW_SINTR) != 0) {
   1062 				/* setrunnable() will release the lock. */
   1063 				setrunnable(l);
   1064 				continue;
   1065 			}
   1066 
   1067 			lwp_unlock(l);
   1068 		}
   1069 
   1070 		mutex_exit(p->p_lock);
   1071 	}
   1072 	mutex_exit(proc_lock);
   1073 
   1074 	/*
   1075 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
   1076 	 * They'll trap into the kernel and suspend themselves in userret().
   1077 	 */
   1078 	for (CPU_INFO_FOREACH(cii, ci)) {
   1079 		spc_lock(ci);
   1080 		cpu_need_resched(ci, RESCHED_IMMED);
   1081 		spc_unlock(ci);
   1082 	}
   1083 }
   1084 
   1085 /*
   1086  * sched_unsleep:
   1087  *
   1088  *	The is called when the LWP has not been awoken normally but instead
   1089  *	interrupted: for example, if the sleep timed out.  Because of this,
   1090  *	it's not a valid action for running or idle LWPs.
   1091  */
   1092 static u_int
   1093 sched_unsleep(struct lwp *l, bool cleanup)
   1094 {
   1095 
   1096 	lwp_unlock(l);
   1097 	panic("sched_unsleep");
   1098 }
   1099 
   1100 static void
   1101 resched_cpu(struct lwp *l)
   1102 {
   1103 	struct cpu_info *ci = ci = l->l_cpu;
   1104 
   1105 	KASSERT(lwp_locked(l, NULL));
   1106 	if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
   1107 		cpu_need_resched(ci, 0);
   1108 }
   1109 
   1110 static void
   1111 sched_changepri(struct lwp *l, pri_t pri)
   1112 {
   1113 
   1114 	KASSERT(lwp_locked(l, NULL));
   1115 
   1116 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1117 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1118 		sched_dequeue(l);
   1119 		l->l_priority = pri;
   1120 		sched_enqueue(l, false);
   1121 	} else {
   1122 		l->l_priority = pri;
   1123 	}
   1124 	resched_cpu(l);
   1125 }
   1126 
   1127 static void
   1128 sched_lendpri(struct lwp *l, pri_t pri)
   1129 {
   1130 
   1131 	KASSERT(lwp_locked(l, NULL));
   1132 
   1133 	if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
   1134 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
   1135 		sched_dequeue(l);
   1136 		l->l_inheritedprio = pri;
   1137 		sched_enqueue(l, false);
   1138 	} else {
   1139 		l->l_inheritedprio = pri;
   1140 	}
   1141 	resched_cpu(l);
   1142 }
   1143 
   1144 struct lwp *
   1145 syncobj_noowner(wchan_t wchan)
   1146 {
   1147 
   1148 	return NULL;
   1149 }
   1150 
   1151 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
   1152 const fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;
   1153 
   1154 /*
   1155  * sched_pstats:
   1156  *
   1157  * Update process statistics and check CPU resource allocation.
   1158  * Call scheduler-specific hook to eventually adjust process/LWP
   1159  * priorities.
   1160  */
   1161 /* ARGSUSED */
   1162 void
   1163 sched_pstats(void *arg)
   1164 {
   1165 	const int clkhz = (stathz != 0 ? stathz : hz);
   1166 	struct rlimit *rlim;
   1167 	struct lwp *l;
   1168 	struct proc *p;
   1169 	long runtm;
   1170 	fixpt_t lpctcpu;
   1171 	u_int lcpticks;
   1172 	int sig;
   1173 
   1174 	sched_pstats_ticks++;
   1175 
   1176 	mutex_enter(proc_lock);
   1177 	PROCLIST_FOREACH(p, &allproc) {
   1178 		if (__predict_false((p->p_flag & PK_MARKER) != 0))
   1179 			continue;
   1180 
   1181 		/*
   1182 		 * Increment time in/out of memory and sleep
   1183 		 * time (if sleeping), ignore overflow.
   1184 		 */
   1185 		mutex_enter(p->p_lock);
   1186 		runtm = p->p_rtime.sec;
   1187 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
   1188 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
   1189 				continue;
   1190 			lwp_lock(l);
   1191 			runtm += l->l_rtime.sec;
   1192 			l->l_swtime++;
   1193 			sched_lwp_stats(l);
   1194 			lwp_unlock(l);
   1195 
   1196 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
   1197 			if (l->l_slptime != 0)
   1198 				continue;
   1199 
   1200 			lpctcpu = l->l_pctcpu;
   1201 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
   1202 			lpctcpu += ((FSCALE - ccpu) *
   1203 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
   1204 			l->l_pctcpu = lpctcpu;
   1205 		}
   1206 		/* Calculating p_pctcpu only for ps(1) */
   1207 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
   1208 
   1209 		/*
   1210 		 * Check if the process exceeds its CPU resource allocation.
   1211 		 * If over max, kill it.
   1212 		 */
   1213 		rlim = &p->p_rlimit[RLIMIT_CPU];
   1214 		sig = 0;
   1215 		if (__predict_false(runtm >= rlim->rlim_cur)) {
   1216 			if (runtm >= rlim->rlim_max)
   1217 				sig = SIGKILL;
   1218 			else {
   1219 				sig = SIGXCPU;
   1220 				if (rlim->rlim_cur < rlim->rlim_max)
   1221 					rlim->rlim_cur += 5;
   1222 			}
   1223 		}
   1224 		mutex_exit(p->p_lock);
   1225 		if (__predict_false(sig))
   1226 			psignal(p, sig);
   1227 	}
   1228 	mutex_exit(proc_lock);
   1229 	uvm_meter();
   1230 	cv_wakeup(&lbolt);
   1231 	callout_schedule(&sched_pstats_ch, hz);
   1232 }
   1233